minix/lib/libm/noieee_src/n_support.c
Ben Gras 2fe8fb192f Full switch to clang/ELF. Drop ack. Simplify.
There is important information about booting non-ack images in
docs/UPDATING. ack/aout-format images can't be built any more, and
booting clang/ELF-format ones is a little different. Updating to the
new boot monitor is recommended.

Changes in this commit:

	. drop boot monitor -> allowing dropping ack support
	. facility to copy ELF boot files to /boot so that old boot monitor
	  can still boot fairly easily, see UPDATING
	. no more ack-format libraries -> single-case libraries
	. some cleanup of OBJECT_FMT, COMPILER_TYPE, etc cases
	. drop several ack toolchain commands, but not all support
	  commands (e.g. aal is gone but acksize is not yet).
	. a few libc files moved to netbsd libc dir
	. new /bin/date as minix date used code in libc/
	. test compile fix
	. harmonize includes
	. /usr/lib is no longer special: without ack, /usr/lib plays no
	  kind of special bootstrapping role any more and bootstrapping
	  is done exclusively through packages, so releases depend even
	  less on the state of the machine making them now.
	. rename nbsd_lib* to lib*
	. reduce mtree
2012-02-14 14:52:02 +01:00

521 lines
17 KiB
C

/* $NetBSD: n_support.c,v 1.5 2003/08/07 16:44:52 agc Exp $ */
/*
* Copyright (c) 1985, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef lint
static char sccsid[] = "@(#)support.c 8.1 (Berkeley) 6/4/93";
#endif /* not lint */
/*
* Some IEEE standard 754 recommended functions and remainder and sqrt for
* supporting the C elementary functions.
******************************************************************************
* WARNING:
* These codes are developed (in double) to support the C elementary
* functions temporarily. They are not universal, and some of them are very
* slow (in particular, drem and sqrt is extremely inefficient). Each
* computer system should have its implementation of these functions using
* its own assembler.
******************************************************************************
*
* IEEE 754 required operations:
* drem(x,p)
* returns x REM y = x - [x/y]*y , where [x/y] is the integer
* nearest x/y; in half way case, choose the even one.
* sqrt(x)
* returns the square root of x correctly rounded according to
* the rounding mod.
*
* IEEE 754 recommended functions:
* (a) copysign(x,y)
* returns x with the sign of y.
* (b) scalb(x,N)
* returns x * (2**N), for integer values N.
* (c) logb(x)
* returns the unbiased exponent of x, a signed integer in
* double precision, except that logb(0) is -INF, logb(INF)
* is +INF, and logb(NAN) is that NAN.
* (d) finite(x)
* returns the value TRUE if -INF < x < +INF and returns
* FALSE otherwise.
*
*
* CODED IN C BY K.C. NG, 11/25/84;
* REVISED BY K.C. NG on 1/22/85, 2/13/85, 3/24/85.
*/
#include "mathimpl.h"
#include "trig.h"
#if defined(__vax__)||defined(tahoe) /* VAX D format */
#include <errno.h>
static const unsigned short msign=0x7fff , mexp =0x7f80 ;
static const short prep1=57, gap=7, bias=129 ;
static const double novf=1.7E38, nunf=3.0E-39 ;
#else /* defined(__vax__)||defined(tahoe) */
static const unsigned short msign=0x7fff, mexp =0x7ff0 ;
static const short prep1=54, gap=4, bias=1023 ;
static const double novf=1.7E308, nunf=3.0E-308;
#endif /* defined(__vax__)||defined(tahoe) */
double
scalb(double x, int N)
{
int k;
#ifdef national
unsigned short *px=(unsigned short *) &x + 3;
#else /* national */
unsigned short *px=(unsigned short *) &x;
#endif /* national */
if( x == __zero ) return(x);
#if defined(__vax__)||defined(tahoe)
if( (k= *px & mexp ) != ~msign ) {
if (N < -260)
return(nunf*nunf);
else if (N > 260) {
return(copysign(infnan(ERANGE),x));
}
#else /* defined(__vax__)||defined(tahoe) */
if( (k= *px & mexp ) != mexp ) {
if( N<-2100) return(nunf*nunf); else if(N>2100) return(novf+novf);
if( k == 0 ) {
x *= scalb(1.0,(int)prep1); N -= prep1; return(scalb(x,N));}
#endif /* defined(__vax__)||defined(tahoe) */
if((k = (k>>gap)+ N) > 0 )
if( k < (mexp>>gap) ) *px = (*px&~mexp) | (k<<gap);
else x=novf+novf; /* overflow */
else
if( k > -prep1 )
/* gradual underflow */
{*px=(*px&~mexp)|(short)(1<<gap); x *= scalb(1.0,k-1);}
else
return(nunf*nunf);
}
return(x);
}
double
copysign(double x, double y)
{
#ifdef national
unsigned short *px=(unsigned short *) &x+3,
*py=(unsigned short *) &y+3;
#else /* national */
unsigned short *px=(unsigned short *) &x,
*py=(unsigned short *) &y;
#endif /* national */
#if defined(__vax__)||defined(tahoe)
if ( (*px & mexp) == 0 ) return(x);
#endif /* defined(__vax__)||defined(tahoe) */
*px = ( *px & msign ) | ( *py & ~msign );
return(x);
}
double
logb(double x)
{
#ifdef national
short *px=(short *) &x+3, k;
#else /* national */
short *px=(short *) &x, k;
#endif /* national */
#if defined(__vax__)||defined(tahoe)
return (int)(((*px&mexp)>>gap)-bias);
#else /* defined(__vax__)||defined(tahoe) */
if( (k= *px & mexp ) != mexp )
if ( k != 0 )
return ( (k>>gap) - bias );
else if( x != __zero)
return ( -1022.0 );
else
return(-(1.0/__zero));
else if(x != x)
return(x);
else
{*px &= msign; return(x);}
#endif /* defined(__vax__)||defined(tahoe) */
}
int
finite(double x)
{
#if defined(__vax__)||defined(tahoe)
return(1);
#else /* defined(__vax__)||defined(tahoe) */
#ifdef national
return( (*((short *) &x+3 ) & mexp ) != mexp );
#else /* national */
return( (*((short *) &x ) & mexp ) != mexp );
#endif /* national */
#endif /* defined(__vax__)||defined(tahoe) */
}
double
drem(double x, double p)
{
short sign;
double hp,dp,tmp;
unsigned short k;
#ifdef national
unsigned short
*px=(unsigned short *) &x +3,
*pp=(unsigned short *) &p +3,
*pd=(unsigned short *) &dp +3,
*pt=(unsigned short *) &tmp+3;
#else /* national */
unsigned short
*px=(unsigned short *) &x ,
*pp=(unsigned short *) &p ,
*pd=(unsigned short *) &dp ,
*pt=(unsigned short *) &tmp;
#endif /* national */
*pp &= msign ;
#if defined(__vax__)||defined(tahoe)
if( ( *px & mexp ) == ~msign ) /* is x a reserved operand? */
#else /* defined(__vax__)||defined(tahoe) */
if( ( *px & mexp ) == mexp )
#endif /* defined(__vax__)||defined(tahoe) */
return (x-p)-(x-p); /* create nan if x is inf */
if (p == __zero) {
#if defined(__vax__)||defined(tahoe)
return(infnan(EDOM));
#else /* defined(__vax__)||defined(tahoe) */
return __zero/__zero;
#endif /* defined(__vax__)||defined(tahoe) */
}
#if defined(__vax__)||defined(tahoe)
if( ( *pp & mexp ) == ~msign ) /* is p a reserved operand? */
#else /* defined(__vax__)||defined(tahoe) */
if( ( *pp & mexp ) == mexp )
#endif /* defined(__vax__)||defined(tahoe) */
{ if (p != p) return p; else return x;}
else if ( ((*pp & mexp)>>gap) <= 1 )
/* subnormal p, or almost subnormal p */
{ double b; b=scalb(1.0,(int)prep1);
p *= b; x = drem(x,p); x *= b; return(drem(x,p)/b);}
else if ( p >= novf/2)
{ p /= 2 ; x /= 2; return(drem(x,p)*2);}
else
{
dp=p+p; hp=p/2;
sign= *px & ~msign ;
*px &= msign ;
while ( x > dp )
{
k=(*px & mexp) - (*pd & mexp) ;
tmp = dp ;
*pt += k ;
#if defined(__vax__)||defined(tahoe)
if( x < tmp ) *pt -= 128 ;
#else /* defined(__vax__)||defined(tahoe) */
if( x < tmp ) *pt -= 16 ;
#endif /* defined(__vax__)||defined(tahoe) */
x -= tmp ;
}
if ( x > hp )
{ x -= p ; if ( x >= hp ) x -= p ; }
#if defined(__vax__)||defined(tahoe)
if (x)
#endif /* defined(__vax__)||defined(tahoe) */
*px ^= sign;
return( x);
}
}
double
sqrt(double x)
{
double q,s,b,r;
double t;
int m,n,i;
#if defined(__vax__)||defined(tahoe)
int k=54;
#else /* defined(__vax__)||defined(tahoe) */
int k=51;
#endif /* defined(__vax__)||defined(tahoe) */
/* sqrt(NaN) is NaN, sqrt(+-0) = +-0 */
if(x!=x||x==__zero) return(x);
/* sqrt(negative) is invalid */
if(x<__zero) {
#if defined(__vax__)||defined(tahoe)
return (infnan(EDOM)); /* NaN */
#else /* defined(__vax__)||defined(tahoe) */
return(__zero/__zero);
#endif /* defined(__vax__)||defined(tahoe) */
}
/* sqrt(INF) is INF */
if(!finite(x)) return(x);
/* scale x to [1,4) */
n=logb(x);
x=scalb(x,-n);
if((m=logb(x))!=0) x=scalb(x,-m); /* subnormal number */
m += n;
n = m/2;
if((n+n)!=m) {x *= 2; m -=1; n=m/2;}
/* generate sqrt(x) bit by bit (accumulating in q) */
q=1.0; s=4.0; x -= 1.0; r=1;
for(i=1;i<=k;i++) {
t=s+1; x *= 4; r /= 2;
if(t<=x) {
s=t+t+2, x -= t; q += r;}
else
s *= 2;
}
/* generate the last bit and determine the final rounding */
r/=2; x *= 4;
if(x==__zero) goto end; 100+r; /* trigger inexact flag */
if(s<x) {
q+=r; x -=s; s += 2; s *= 2; x *= 4;
t = (x-s)-5;
b=1.0+3*r/4; if(b==1.0) goto end; /* b==1 : Round-to-zero */
b=1.0+r/4; if(b>1.0) t=1; /* b>1 : Round-to-(+INF) */
if(t>=0) q+=r; } /* else: Round-to-nearest */
else {
s *= 2; x *= 4;
t = (x-s)-1;
b=1.0+3*r/4; if(b==1.0) goto end;
b=1.0+r/4; if(b>1.0) t=1;
if(t>=0) q+=r; }
end: return(scalb(q,n));
}
#if 0
/* DREM(X,Y)
* RETURN X REM Y =X-N*Y, N=[X/Y] ROUNDED (ROUNDED TO EVEN IN THE HALF WAY CASE)
* DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
* INTENDED FOR ASSEMBLY LANGUAGE
* CODED IN C BY K.C. NG, 3/23/85, 4/8/85.
*
* Warning: this code should not get compiled in unless ALL of
* the following machine-dependent routines are supplied.
*
* Required machine dependent functions (not on a VAX):
* swapINX(i): save inexact flag and reset it to "i"
* swapENI(e): save inexact enable and reset it to "e"
*/
double
drem(double x, double y)
{
#ifdef national /* order of words in floating point number */
static const n0=3,n1=2,n2=1,n3=0;
#else /* VAX, SUN, ZILOG, TAHOE */
static const n0=0,n1=1,n2=2,n3=3;
#endif
static const unsigned short mexp =0x7ff0, m25 =0x0190, m57 =0x0390;
double hy,y1,t,t1;
short k;
long n;
int i,e;
unsigned short xexp,yexp, *px =(unsigned short *) &x ,
nx,nf, *py =(unsigned short *) &y ,
sign, *pt =(unsigned short *) &t ,
*pt1 =(unsigned short *) &t1 ;
xexp = px[n0] & mexp ; /* exponent of x */
yexp = py[n0] & mexp ; /* exponent of y */
sign = px[n0] &0x8000; /* sign of x */
/* return NaN if x is NaN, or y is NaN, or x is INF, or y is zero */
if(x!=x) return(x); if(y!=y) return(y); /* x or y is NaN */
if( xexp == mexp ) return(__zero/__zero); /* x is INF */
if(y==__zero) return(y/y);
/* save the inexact flag and inexact enable in i and e respectively
* and reset them to zero
*/
i=swapINX(0); e=swapENI(0);
/* subnormal number */
nx=0;
if(yexp==0) {t=1.0,pt[n0]+=m57; y*=t; nx=m57;}
/* if y is tiny (biased exponent <= 57), scale up y to y*2**57 */
if( yexp <= m57 ) {py[n0]+=m57; nx+=m57; yexp+=m57;}
nf=nx;
py[n0] &= 0x7fff;
px[n0] &= 0x7fff;
/* mask off the least significant 27 bits of y */
t=y; pt[n3]=0; pt[n2]&=0xf800; y1=t;
/* LOOP: argument reduction on x whenever x > y */
loop:
while ( x > y )
{
t=y;
t1=y1;
xexp=px[n0]&mexp; /* exponent of x */
k=xexp-yexp-m25;
if(k>0) /* if x/y >= 2**26, scale up y so that x/y < 2**26 */
{pt[n0]+=k;pt1[n0]+=k;}
n=x/t; x=(x-n*t1)-n*(t-t1);
}
/* end while (x > y) */
if(nx!=0) {t=1.0; pt[n0]+=nx; x*=t; nx=0; goto loop;}
/* final adjustment */
hy=y/2.0;
if(x>hy||((x==hy)&&n%2==1)) x-=y;
px[n0] ^= sign;
if(nf!=0) { t=1.0; pt[n0]-=nf; x*=t;}
/* restore inexact flag and inexact enable */
swapINX(i); swapENI(e);
return(x);
}
#endif
#if 0
/* SQRT
* RETURN CORRECTLY ROUNDED (ACCORDING TO THE ROUNDING MODE) SQRT
* FOR IEEE DOUBLE PRECISION ONLY, INTENDED FOR ASSEMBLY LANGUAGE
* CODED IN C BY K.C. NG, 3/22/85.
*
* Warning: this code should not get compiled in unless ALL of
* the following machine-dependent routines are supplied.
*
* Required machine dependent functions:
* swapINX(i) ...return the status of INEXACT flag and reset it to "i"
* swapRM(r) ...return the current Rounding Mode and reset it to "r"
* swapENI(e) ...return the status of inexact enable and reset it to "e"
* addc(t) ...perform t=t+1 regarding t as a 64 bit unsigned integer
* subc(t) ...perform t=t-1 regarding t as a 64 bit unsigned integer
*/
static const unsigned long table[] = {
0, 1204, 3062, 5746, 9193, 13348, 18162, 23592, 29598, 36145, 43202, 50740,
58733, 67158, 75992, 85215, 83599, 71378, 60428, 50647, 41945, 34246, 27478,
21581, 16499, 12183, 8588, 5674, 3403, 1742, 661, 130, };
double
newsqrt(double x)
{
double y,z,t,addc(),subc()
double const b54=134217728.*134217728.; /* b54=2**54 */
long mx,scalx;
long const mexp=0x7ff00000;
int i,j,r,e,swapINX(),swapRM(),swapENI();
unsigned long *py=(unsigned long *) &y ,
*pt=(unsigned long *) &t ,
*px=(unsigned long *) &x ;
#ifdef national /* ordering of word in a floating point number */
const int n0=1, n1=0;
#else
const int n0=0, n1=1;
#endif
/* Rounding Mode: RN ...round-to-nearest
* RZ ...round-towards 0
* RP ...round-towards +INF
* RM ...round-towards -INF
*/
const int RN=0,RZ=1,RP=2,RM=3;
/* machine dependent: work on a Zilog Z8070
* and a National 32081 & 16081
*/
/* exceptions */
if(x!=x||x==0.0) return(x); /* sqrt(NaN) is NaN, sqrt(+-0) = +-0 */
if(x<0) return((x-x)/(x-x)); /* sqrt(negative) is invalid */
if((mx=px[n0]&mexp)==mexp) return(x); /* sqrt(+INF) is +INF */
/* save, reset, initialize */
e=swapENI(0); /* ...save and reset the inexact enable */
i=swapINX(0); /* ...save INEXACT flag */
r=swapRM(RN); /* ...save and reset the Rounding Mode to RN */
scalx=0;
/* subnormal number, scale up x to x*2**54 */
if(mx==0) {x *= b54 ; scalx-=0x01b00000;}
/* scale x to avoid intermediate over/underflow:
* if (x > 2**512) x=x/2**512; if (x < 2**-512) x=x*2**512 */
if(mx>0x5ff00000) {px[n0] -= 0x20000000; scalx+= 0x10000000;}
if(mx<0x1ff00000) {px[n0] += 0x20000000; scalx-= 0x10000000;}
/* magic initial approximation to almost 8 sig. bits */
py[n0]=(px[n0]>>1)+0x1ff80000;
py[n0]=py[n0]-table[(py[n0]>>15)&31];
/* Heron's rule once with correction to improve y to almost 18 sig. bits */
t=x/y; y=y+t; py[n0]=py[n0]-0x00100006; py[n1]=0;
/* triple to almost 56 sig. bits; now y approx. sqrt(x) to within 1 ulp */
t=y*y; z=t; pt[n0]+=0x00100000; t+=z; z=(x-z)*y;
t=z/(t+x) ; pt[n0]+=0x00100000; y+=t;
/* twiddle last bit to force y correctly rounded */
swapRM(RZ); /* ...set Rounding Mode to round-toward-zero */
swapINX(0); /* ...clear INEXACT flag */
swapENI(e); /* ...restore inexact enable status */
t=x/y; /* ...chopped quotient, possibly inexact */
j=swapINX(i); /* ...read and restore inexact flag */
if(j==0) { if(t==y) goto end; else t=subc(t); } /* ...t=t-ulp */
b54+0.1; /* ..trigger inexact flag, sqrt(x) is inexact */
if(r==RN) t=addc(t); /* ...t=t+ulp */
else if(r==RP) { t=addc(t);y=addc(y);}/* ...t=t+ulp;y=y+ulp; */
y=y+t; /* ...chopped sum */
py[n0]=py[n0]-0x00100000; /* ...correctly rounded sqrt(x) */
end: py[n0]=py[n0]+scalx; /* ...scale back y */
swapRM(r); /* ...restore Rounding Mode */
return(y);
}
#endif