b6cbf7203b
This patch imports the unmodified current version of NetBSD libc. The NetBSD includes are in /nbsd_include, while the libc code itself is split between lib/nbsd_libc and common/lib/libc.
1202 lines
35 KiB
C
1202 lines
35 KiB
C
/* $NetBSD: ptree.c,v 1.5 2009/06/07 03:12:40 yamt Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2008 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Matt Thomas <matt@3am-software.com>.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#define _PT_PRIVATE
|
|
|
|
#if defined(PTCHECK) && !defined(PTDEBUG)
|
|
#define PTDEBUG
|
|
#endif
|
|
|
|
#if defined(_KERNEL) || defined(_STANDALONE)
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
#include <sys/systm.h>
|
|
#include <lib/libkern/libkern.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: ptree.c,v 1.5 2009/06/07 03:12:40 yamt Exp $");
|
|
#else
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <limits.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
#ifdef PTDEBUG
|
|
#include <assert.h>
|
|
#define KASSERT(e) assert(e)
|
|
#else
|
|
#define KASSERT(e) do { } while (/*CONSTCOND*/ 0)
|
|
#endif
|
|
__RCSID("$NetBSD: ptree.c,v 1.5 2009/06/07 03:12:40 yamt Exp $");
|
|
#endif /* _KERNEL || _STANDALONE */
|
|
|
|
#ifdef _LIBC
|
|
#include "namespace.h"
|
|
#endif
|
|
|
|
#ifdef PTTEST
|
|
#include "ptree.h"
|
|
#else
|
|
#include <sys/ptree.h>
|
|
#endif
|
|
|
|
/*
|
|
* This is an implementation of a radix / PATRICIA tree. As in a traditional
|
|
* patricia tree, all the data is at the leaves of the tree. An N-value
|
|
* tree would have N leaves, N-1 branching nodes, and a root pointer. Each
|
|
* branching node would have left(0) and right(1) pointers that either point
|
|
* to another branching node or a leaf node. The root pointer would also
|
|
* point to either the first branching node or a leaf node. Leaf nodes
|
|
* have no need for pointers.
|
|
*
|
|
* However, allocation for these branching nodes is problematic since the
|
|
* allocation could fail. This would cause insertions to fail for reasons
|
|
* beyond the users control. So to prevent this, in this implementation
|
|
* each node has two identities: its leaf identity and its branch identity.
|
|
* Each is separate from the other. Every branch is tagged as to whether
|
|
* it points to a leaf or a branch. This is not an attribute of the object
|
|
* but of the pointer to the object. The low bit of the pointer is used as
|
|
* the tag to determine whether it points to a leaf or branch identity, with
|
|
* branch identities having the low bit set.
|
|
*
|
|
* A node's branch identity has one rule: when traversing the tree from the
|
|
* root to the node's leaf identity, one of the branches traversed will be via
|
|
* the node's branch identity. Of course, that has an exception: since to
|
|
* store N leaves, you need N-1 branches. That one node whose branch identity
|
|
* isn't used is stored as "oddman"-out in the root.
|
|
*
|
|
* Branching nodes also has a bit offset and a bit length which determines
|
|
* which branch slot is used. The bit length can be zero resulting in a
|
|
* one-way branch. This is happens in two special cases: the root and
|
|
* interior mask nodes.
|
|
*
|
|
* To support longest match first lookups, when a mask node (one that only
|
|
* match the first N bits) has children who first N bits match the mask nodes,
|
|
* that mask node is converted from being a leaf node to being a one-way
|
|
* branch-node. The mask becomes fixed in position in the tree. The mask
|
|
* will always be the longest mask match for its descendants (unless they
|
|
* traverse an even longer match).
|
|
*/
|
|
|
|
#define NODETOITEM(pt, ptn) \
|
|
((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset))
|
|
#define NODETOKEY(pt, ptn) \
|
|
((void *)((uintptr_t)(ptn) - (pt)->pt_node_offset + pt->pt_key_offset))
|
|
#define ITEMTONODE(pt, ptn) \
|
|
((pt_node_t *)((uintptr_t)(ptn) + (pt)->pt_node_offset))
|
|
|
|
bool ptree_check(const pt_tree_t *);
|
|
#if PTCHECK > 1
|
|
#define PTREE_CHECK(pt) ptree_check(pt)
|
|
#else
|
|
#define PTREE_CHECK(pt) do { } while (/*CONSTCOND*/ 0)
|
|
#endif
|
|
|
|
static inline bool
|
|
ptree_matchnode(const pt_tree_t *pt, const pt_node_t *target,
|
|
const pt_node_t *ptn, pt_bitoff_t max_bitoff,
|
|
pt_bitoff_t *bitoff_p, pt_slot_t *slots_p)
|
|
{
|
|
return (*pt->pt_ops->ptto_matchnode)(NODETOKEY(pt, target),
|
|
(ptn != NULL ? NODETOKEY(pt, ptn) : NULL), max_bitoff,
|
|
bitoff_p, slots_p);
|
|
}
|
|
|
|
static inline pt_slot_t
|
|
ptree_testnode(const pt_tree_t *pt, const pt_node_t *target,
|
|
const pt_node_t *ptn)
|
|
{
|
|
const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
|
|
if (bitlen == 0)
|
|
return PT_SLOT_ROOT;
|
|
return (*pt->pt_ops->ptto_testnode)(NODETOKEY(pt, target),
|
|
PTN_BRANCH_BITOFF(ptn),
|
|
bitlen);
|
|
}
|
|
|
|
static inline bool
|
|
ptree_matchkey(const pt_tree_t *pt, const void *key,
|
|
const pt_node_t *ptn, pt_bitoff_t bitoff, pt_bitlen_t bitlen)
|
|
{
|
|
return (*pt->pt_ops->ptto_matchkey)(key, NODETOKEY(pt, ptn),
|
|
bitoff, bitlen);
|
|
}
|
|
|
|
static inline pt_slot_t
|
|
ptree_testkey(const pt_tree_t *pt, const void *key, const pt_node_t *ptn)
|
|
{
|
|
return (*pt->pt_ops->ptto_testkey)(key,
|
|
PTN_BRANCH_BITOFF(ptn),
|
|
PTN_BRANCH_BITLEN(ptn));
|
|
}
|
|
|
|
static inline void
|
|
ptree_set_position(uintptr_t node, pt_slot_t position)
|
|
{
|
|
if (PT_LEAF_P(node))
|
|
PTN_SET_LEAF_POSITION(PT_NODE(node), position);
|
|
else
|
|
PTN_SET_BRANCH_POSITION(PT_NODE(node), position);
|
|
}
|
|
|
|
void
|
|
ptree_init(pt_tree_t *pt, const pt_tree_ops_t *ops, size_t node_offset,
|
|
size_t key_offset)
|
|
{
|
|
memset(pt, 0, sizeof(*pt));
|
|
pt->pt_node_offset = node_offset;
|
|
pt->pt_key_offset = key_offset;
|
|
pt->pt_ops = ops;
|
|
}
|
|
|
|
typedef struct {
|
|
uintptr_t *id_insertp;
|
|
pt_node_t *id_parent;
|
|
uintptr_t id_node;
|
|
pt_slot_t id_parent_slot;
|
|
pt_bitoff_t id_bitoff;
|
|
pt_slot_t id_slot;
|
|
} pt_insertdata_t;
|
|
|
|
typedef bool (*pt_insertfunc_t)(pt_tree_t *, pt_node_t *, pt_insertdata_t *);
|
|
|
|
/*
|
|
* Move a branch identify from src to dst. The leaves don't care since
|
|
* nothing for them has changed.
|
|
*/
|
|
/*ARGSUSED*/
|
|
static uintptr_t
|
|
ptree_move_branch(pt_tree_t * const pt, pt_node_t * const dst,
|
|
const pt_node_t * const src)
|
|
{
|
|
KASSERT(PTN_BRANCH_BITLEN(src) == 1);
|
|
/* set branch bitlen and bitoff in one step. */
|
|
dst->ptn_branchdata = src->ptn_branchdata;
|
|
PTN_SET_BRANCH_POSITION(dst, PTN_BRANCH_POSITION(src));
|
|
PTN_COPY_BRANCH_SLOTS(dst, src);
|
|
return PTN_BRANCH(dst);
|
|
}
|
|
|
|
#ifndef PTNOMASK
|
|
static inline uintptr_t *
|
|
ptree_find_branch(pt_tree_t * const pt, uintptr_t branch_node)
|
|
{
|
|
pt_node_t * const branch = PT_NODE(branch_node);
|
|
pt_node_t *parent;
|
|
|
|
for (parent = &pt->pt_rootnode;;) {
|
|
uintptr_t *nodep =
|
|
&PTN_BRANCH_SLOT(parent, ptree_testnode(pt, branch, parent));
|
|
if (*nodep == branch_node)
|
|
return nodep;
|
|
if (PT_LEAF_P(*nodep))
|
|
return NULL;
|
|
parent = PT_NODE(*nodep);
|
|
}
|
|
}
|
|
|
|
static bool
|
|
ptree_insert_leaf_after_mask(pt_tree_t * const pt, pt_node_t * const target,
|
|
pt_insertdata_t * const id)
|
|
{
|
|
const uintptr_t target_node = PTN_LEAF(target);
|
|
const uintptr_t mask_node = id->id_node;
|
|
pt_node_t * const mask = PT_NODE(mask_node);
|
|
const pt_bitlen_t mask_len = PTN_MASK_BITLEN(mask);
|
|
|
|
KASSERT(PT_LEAF_P(mask_node));
|
|
KASSERT(PTN_LEAF_POSITION(mask) == id->id_parent_slot);
|
|
KASSERT(mask_len <= id->id_bitoff);
|
|
KASSERT(PTN_ISMASK_P(mask));
|
|
KASSERT(!PTN_ISMASK_P(target) || mask_len < PTN_MASK_BITLEN(target));
|
|
|
|
if (mask_node == PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode)) {
|
|
KASSERT(id->id_parent != mask);
|
|
/*
|
|
* Nice, mask was an oddman. So just set the oddman to target.
|
|
*/
|
|
PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = target_node;
|
|
} else {
|
|
/*
|
|
* We need to find out who's pointing to mask's branch
|
|
* identity. We know that between root and the leaf identity,
|
|
* we must traverse the node's branch identity.
|
|
*/
|
|
uintptr_t * const mask_nodep = ptree_find_branch(pt, PTN_BRANCH(mask));
|
|
KASSERT(mask_nodep != NULL);
|
|
KASSERT(*mask_nodep == PTN_BRANCH(mask));
|
|
KASSERT(PTN_BRANCH_BITLEN(mask) == 1);
|
|
|
|
/*
|
|
* Alas, mask was used as a branch. Since the mask is becoming
|
|
* a one-way branch, we need make target take over mask's
|
|
* branching responsibilities. Only then can we change it.
|
|
*/
|
|
*mask_nodep = ptree_move_branch(pt, target, mask);
|
|
|
|
/*
|
|
* However, it's possible that mask's parent is itself. If
|
|
* that's true, update the insert point to use target since it
|
|
* has taken over mask's branching duties.
|
|
*/
|
|
if (id->id_parent == mask)
|
|
id->id_insertp = &PTN_BRANCH_SLOT(target,
|
|
id->id_parent_slot);
|
|
}
|
|
|
|
PTN_SET_BRANCH_BITLEN(mask, 0);
|
|
PTN_SET_BRANCH_BITOFF(mask, mask_len);
|
|
|
|
PTN_BRANCH_ROOT_SLOT(mask) = target_node;
|
|
PTN_BRANCH_ODDMAN_SLOT(mask) = PT_NULL;
|
|
PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT);
|
|
PTN_SET_BRANCH_POSITION(mask, id->id_parent_slot);
|
|
|
|
/*
|
|
* Now that everything is done, to make target visible we need to
|
|
* change mask from a leaf to a branch.
|
|
*/
|
|
*id->id_insertp = PTN_BRANCH(mask);
|
|
PTREE_CHECK(pt);
|
|
return true;
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static bool
|
|
ptree_insert_mask_before_node(pt_tree_t * const pt, pt_node_t * const target,
|
|
pt_insertdata_t * const id)
|
|
{
|
|
const uintptr_t node = id->id_node;
|
|
pt_node_t * const ptn = PT_NODE(node);
|
|
const pt_slot_t mask_len = PTN_MASK_BITLEN(target);
|
|
const pt_bitlen_t node_mask_len = PTN_MASK_BITLEN(ptn);
|
|
|
|
KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(ptn));
|
|
KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(ptn));
|
|
KASSERT(PTN_ISMASK_P(target));
|
|
|
|
/*
|
|
* If the node we are placing ourself in front is a mask with the
|
|
* same mask length as us, return failure.
|
|
*/
|
|
if (PTN_ISMASK_P(ptn) && node_mask_len == mask_len)
|
|
return false;
|
|
|
|
PTN_SET_BRANCH_BITLEN(target, 0);
|
|
PTN_SET_BRANCH_BITOFF(target, mask_len);
|
|
|
|
PTN_BRANCH_SLOT(target, PT_SLOT_ROOT) = node;
|
|
*id->id_insertp = PTN_BRANCH(target);
|
|
|
|
PTN_SET_BRANCH_POSITION(target, id->id_parent_slot);
|
|
ptree_set_position(node, PT_SLOT_ROOT);
|
|
|
|
PTREE_CHECK(pt);
|
|
return true;
|
|
}
|
|
#endif /* !PTNOMASK */
|
|
|
|
/*ARGSUSED*/
|
|
static bool
|
|
ptree_insert_branch_at_node(pt_tree_t * const pt, pt_node_t * const target,
|
|
pt_insertdata_t * const id)
|
|
{
|
|
const uintptr_t target_node = PTN_LEAF(target);
|
|
const uintptr_t node = id->id_node;
|
|
const pt_slot_t other_slot = id->id_slot ^ PT_SLOT_OTHER;
|
|
|
|
KASSERT(PT_BRANCH_P(node) || id->id_parent_slot == PTN_LEAF_POSITION(PT_NODE(node)));
|
|
KASSERT(PT_LEAF_P(node) || id->id_parent_slot == PTN_BRANCH_POSITION(PT_NODE(node)));
|
|
KASSERT((node == pt->pt_root) == (id->id_parent == &pt->pt_rootnode));
|
|
#ifndef PTNOMASK
|
|
KASSERT(!PTN_ISMASK_P(target) || id->id_bitoff <= PTN_MASK_BITLEN(target));
|
|
#endif
|
|
KASSERT(node == pt->pt_root || PTN_BRANCH_BITOFF(id->id_parent) + PTN_BRANCH_BITLEN(id->id_parent) <= id->id_bitoff);
|
|
|
|
PTN_SET_BRANCH_BITOFF(target, id->id_bitoff);
|
|
PTN_SET_BRANCH_BITLEN(target, 1);
|
|
|
|
PTN_BRANCH_SLOT(target, id->id_slot) = target_node;
|
|
PTN_BRANCH_SLOT(target, other_slot) = node;
|
|
*id->id_insertp = PTN_BRANCH(target);
|
|
|
|
PTN_SET_LEAF_POSITION(target, id->id_slot);
|
|
ptree_set_position(node, other_slot);
|
|
|
|
PTN_SET_BRANCH_POSITION(target, id->id_parent_slot);
|
|
PTREE_CHECK(pt);
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
ptree_insert_leaf(pt_tree_t * const pt, pt_node_t * const target,
|
|
pt_insertdata_t * const id)
|
|
{
|
|
const uintptr_t leaf_node = id->id_node;
|
|
pt_node_t * const leaf = PT_NODE(leaf_node);
|
|
#ifdef PTNOMASK
|
|
const bool inserting_mask = false;
|
|
const bool at_mask = false;
|
|
#else
|
|
const bool inserting_mask = PTN_ISMASK_P(target);
|
|
const bool at_mask = PTN_ISMASK_P(leaf);
|
|
const pt_bitlen_t leaf_masklen = PTN_MASK_BITLEN(leaf);
|
|
const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target);
|
|
#endif
|
|
pt_insertfunc_t insertfunc = ptree_insert_branch_at_node;
|
|
bool matched;
|
|
|
|
/*
|
|
* In all likelyhood we are going simply going to insert a branch
|
|
* where this leaf is which will point to the old and new leaves.
|
|
*/
|
|
KASSERT(PT_LEAF_P(leaf_node));
|
|
KASSERT(PTN_LEAF_POSITION(leaf) == id->id_parent_slot);
|
|
matched = ptree_matchnode(pt, target, leaf, UINT_MAX,
|
|
&id->id_bitoff, &id->id_slot);
|
|
if (__predict_false(!inserting_mask)) {
|
|
/*
|
|
* We aren't inserting a mask nor is the leaf a mask, which
|
|
* means we are trying to insert a duplicate leaf. Can't do
|
|
* that.
|
|
*/
|
|
if (!at_mask && matched)
|
|
return false;
|
|
|
|
#ifndef PTNOMASK
|
|
/*
|
|
* We are at a mask and the leaf we are about to insert
|
|
* is at or beyond the mask, we need to convert the mask
|
|
* from a leaf to a one-way branch interior mask.
|
|
*/
|
|
if (at_mask && id->id_bitoff >= leaf_masklen)
|
|
insertfunc = ptree_insert_leaf_after_mask;
|
|
#endif /* PTNOMASK */
|
|
}
|
|
#ifndef PTNOMASK
|
|
else {
|
|
/*
|
|
* We are inserting a mask.
|
|
*/
|
|
if (matched) {
|
|
/*
|
|
* If the leaf isn't a mask, we obviously have to
|
|
* insert the new mask before non-mask leaf. If the
|
|
* leaf is a mask, and the new node has a LEQ mask
|
|
* length it too needs to inserted before leaf (*).
|
|
*
|
|
* In other cases, we place the new mask as leaf after
|
|
* leaf mask. Which mask comes first will be a one-way
|
|
* branch interior mask node which has the other mask
|
|
* node as a child.
|
|
*
|
|
* (*) ptree_insert_mask_before_node can detect a
|
|
* duplicate mask and return failure if needed.
|
|
*/
|
|
if (!at_mask || target_masklen <= leaf_masklen)
|
|
insertfunc = ptree_insert_mask_before_node;
|
|
else
|
|
insertfunc = ptree_insert_leaf_after_mask;
|
|
} else if (at_mask && id->id_bitoff >= leaf_masklen) {
|
|
/*
|
|
* If the new mask has a bit offset GEQ than the leaf's
|
|
* mask length, convert the left to a one-way branch
|
|
* interior mask and make that point to the new [leaf]
|
|
* mask.
|
|
*/
|
|
insertfunc = ptree_insert_leaf_after_mask;
|
|
} else {
|
|
/*
|
|
* The new mask has a bit offset less than the leaf's
|
|
* mask length or if the leaf isn't a mask at all, the
|
|
* new mask deserves to be its own leaf so we use the
|
|
* default insertfunc to do that.
|
|
*/
|
|
}
|
|
}
|
|
#endif /* PTNOMASK */
|
|
|
|
return (*insertfunc)(pt, target, id);
|
|
}
|
|
|
|
static bool
|
|
ptree_insert_node_common(pt_tree_t *pt, void *item)
|
|
{
|
|
pt_node_t * const target = ITEMTONODE(pt, item);
|
|
#ifndef PTNOMASK
|
|
const bool inserting_mask = PTN_ISMASK_P(target);
|
|
const pt_bitlen_t target_masklen = PTN_MASK_BITLEN(target);
|
|
#endif
|
|
pt_insertfunc_t insertfunc;
|
|
pt_insertdata_t id;
|
|
|
|
/*
|
|
* We need a leaf so we can match against. Until we get a leaf
|
|
* we having nothing to test against.
|
|
*/
|
|
if (__predict_false(PT_NULL_P(pt->pt_root))) {
|
|
PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PTN_LEAF(target);
|
|
PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(target);
|
|
PTN_SET_LEAF_POSITION(target, PT_SLOT_ROOT);
|
|
PTREE_CHECK(pt);
|
|
return true;
|
|
}
|
|
|
|
id.id_bitoff = 0;
|
|
id.id_parent = &pt->pt_rootnode;
|
|
id.id_parent_slot = PT_SLOT_ROOT;
|
|
id.id_insertp = &PTN_BRANCH_ROOT_SLOT(id.id_parent);
|
|
for (;;) {
|
|
pt_bitoff_t branch_bitoff;
|
|
pt_node_t * const ptn = PT_NODE(*id.id_insertp);
|
|
id.id_node = *id.id_insertp;
|
|
|
|
/*
|
|
* If we hit a leaf, try to insert target at leaf. We could
|
|
* have inlined ptree_insert_leaf here but that would have
|
|
* made this routine much harder to understand. Trust the
|
|
* compiler to optimize this properly.
|
|
*/
|
|
if (PT_LEAF_P(id.id_node)) {
|
|
KASSERT(PTN_LEAF_POSITION(ptn) == id.id_parent_slot);
|
|
insertfunc = ptree_insert_leaf;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we aren't a leaf, we must be a branch. Make sure we are
|
|
* in the slot we think we are.
|
|
*/
|
|
KASSERT(PT_BRANCH_P(id.id_node));
|
|
KASSERT(PTN_BRANCH_POSITION(ptn) == id.id_parent_slot);
|
|
|
|
/*
|
|
* Where is this branch?
|
|
*/
|
|
branch_bitoff = PTN_BRANCH_BITOFF(ptn);
|
|
|
|
#ifndef PTNOMASK
|
|
/*
|
|
* If this is a one-way mask node, its offset must equal
|
|
* its mask's bitlen.
|
|
*/
|
|
KASSERT(!(PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) || PTN_MASK_BITLEN(ptn) == branch_bitoff);
|
|
|
|
/*
|
|
* If we are inserting a mask, and we know that at this point
|
|
* all bits before the current bit offset match both the target
|
|
* and the branch. If the target's mask length is LEQ than
|
|
* this branch's bit offset, then this is where the mask needs
|
|
* to added to the tree.
|
|
*/
|
|
if (__predict_false(inserting_mask)
|
|
&& (PTN_ISROOT_P(pt, id.id_parent)
|
|
|| id.id_bitoff < target_masklen)
|
|
&& target_masklen <= branch_bitoff) {
|
|
/*
|
|
* We don't know about the bits (if any) between
|
|
* id.id_bitoff and the target's mask length match
|
|
* both the target and the branch. If the target's
|
|
* mask length is greater than the current bit offset
|
|
* make sure the untested bits match both the target
|
|
* and the branch.
|
|
*/
|
|
if (target_masklen == id.id_bitoff
|
|
|| ptree_matchnode(pt, target, ptn, target_masklen,
|
|
&id.id_bitoff, &id.id_slot)) {
|
|
/*
|
|
* The bits matched, so insert the mask as a
|
|
* one-way branch.
|
|
*/
|
|
insertfunc = ptree_insert_mask_before_node;
|
|
break;
|
|
} else if (id.id_bitoff < branch_bitoff) {
|
|
/*
|
|
* They didn't match, so create a normal branch
|
|
* because this mask needs to a be a new leaf.
|
|
*/
|
|
insertfunc = ptree_insert_branch_at_node;
|
|
break;
|
|
}
|
|
}
|
|
#endif /* PTNOMASK */
|
|
|
|
/*
|
|
* If we are skipping some bits, verify they match the node.
|
|
* If they don't match, it means we have a leaf to insert.
|
|
* Note that if we are advancing bit by bit, we'll skip
|
|
* doing matchnode and walk the tree bit by bit via testnode.
|
|
*/
|
|
if (id.id_bitoff < branch_bitoff
|
|
&& !ptree_matchnode(pt, target, ptn, branch_bitoff,
|
|
&id.id_bitoff, &id.id_slot)) {
|
|
KASSERT(id.id_bitoff < branch_bitoff);
|
|
insertfunc = ptree_insert_branch_at_node;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* At this point, all bits before branch_bitoff are known
|
|
* to match the target.
|
|
*/
|
|
KASSERT(id.id_bitoff >= branch_bitoff);
|
|
|
|
/*
|
|
* Decend the tree one level.
|
|
*/
|
|
id.id_parent = ptn;
|
|
id.id_parent_slot = ptree_testnode(pt, target, id.id_parent);
|
|
id.id_bitoff += PTN_BRANCH_BITLEN(id.id_parent);
|
|
id.id_insertp = &PTN_BRANCH_SLOT(id.id_parent, id.id_parent_slot);
|
|
}
|
|
|
|
/*
|
|
* Do the actual insertion.
|
|
*/
|
|
return (*insertfunc)(pt, target, &id);
|
|
}
|
|
|
|
bool
|
|
ptree_insert_node(pt_tree_t *pt, void *item)
|
|
{
|
|
pt_node_t * const target = ITEMTONODE(pt, item);
|
|
|
|
memset(target, 0, sizeof(*target));
|
|
return ptree_insert_node_common(pt, target);
|
|
}
|
|
|
|
#ifndef PTNOMASK
|
|
bool
|
|
ptree_insert_mask_node(pt_tree_t *pt, void *item, pt_bitlen_t mask_len)
|
|
{
|
|
pt_node_t * const target = ITEMTONODE(pt, item);
|
|
pt_bitoff_t bitoff = mask_len;
|
|
pt_slot_t slot;
|
|
|
|
memset(target, 0, sizeof(*target));
|
|
KASSERT(mask_len == 0 || (~PT__MASK(PTN_MASK_BITLEN) & mask_len) == 0);
|
|
/*
|
|
* Only the first <mask_len> bits can be non-zero.
|
|
* All other bits must be 0.
|
|
*/
|
|
if (!ptree_matchnode(pt, target, NULL, UINT_MAX, &bitoff, &slot))
|
|
return false;
|
|
PTN_SET_MASK_BITLEN(target, mask_len);
|
|
PTN_MARK_MASK(target);
|
|
return ptree_insert_node_common(pt, target);
|
|
}
|
|
#endif /* !PTNOMASH */
|
|
|
|
void *
|
|
ptree_find_filtered_node(pt_tree_t *pt, void *key, pt_filter_t filter,
|
|
void *filter_arg)
|
|
{
|
|
#ifndef PTNOMASK
|
|
pt_node_t *mask = NULL;
|
|
#endif
|
|
bool at_mask = false;
|
|
pt_node_t *ptn, *parent;
|
|
pt_bitoff_t bitoff;
|
|
pt_slot_t parent_slot;
|
|
|
|
if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode)))
|
|
return NULL;
|
|
|
|
bitoff = 0;
|
|
parent = &pt->pt_rootnode;
|
|
parent_slot = PT_SLOT_ROOT;
|
|
for (;;) {
|
|
const uintptr_t node = PTN_BRANCH_SLOT(parent, parent_slot);
|
|
const pt_slot_t branch_bitoff = PTN_BRANCH_BITOFF(PT_NODE(node));
|
|
ptn = PT_NODE(node);
|
|
|
|
if (PT_LEAF_P(node)) {
|
|
#ifndef PTNOMASK
|
|
at_mask = PTN_ISMASK_P(ptn);
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
if (bitoff < branch_bitoff) {
|
|
if (!ptree_matchkey(pt, key, ptn, bitoff, branch_bitoff - bitoff)) {
|
|
#ifndef PTNOMASK
|
|
if (mask != NULL)
|
|
return NODETOITEM(pt, mask);
|
|
#endif
|
|
return NULL;
|
|
}
|
|
bitoff = branch_bitoff;
|
|
}
|
|
|
|
#ifndef PTNOMASK
|
|
if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0
|
|
&& (!filter
|
|
|| (*filter)(filter_arg, NODETOITEM(pt, ptn),
|
|
PT_FILTER_MASK)))
|
|
mask = ptn;
|
|
#endif
|
|
|
|
parent = ptn;
|
|
parent_slot = ptree_testkey(pt, key, parent);
|
|
bitoff += PTN_BRANCH_BITLEN(parent);
|
|
}
|
|
|
|
KASSERT(PTN_ISROOT_P(pt, parent) || PTN_BRANCH_BITOFF(parent) + PTN_BRANCH_BITLEN(parent) == bitoff);
|
|
if (!filter || (*filter)(filter_arg, NODETOITEM(pt, ptn), at_mask ? PT_FILTER_MASK : 0)) {
|
|
#ifndef PTNOMASK
|
|
if (PTN_ISMASK_P(ptn)) {
|
|
const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn);
|
|
if (bitoff == PTN_MASK_BITLEN(ptn))
|
|
return NODETOITEM(pt, ptn);
|
|
if (ptree_matchkey(pt, key, ptn, bitoff, mask_len - bitoff))
|
|
return NODETOITEM(pt, ptn);
|
|
} else
|
|
#endif /* !PTNOMASK */
|
|
if (ptree_matchkey(pt, key, ptn, bitoff, UINT_MAX))
|
|
return NODETOITEM(pt, ptn);
|
|
}
|
|
|
|
#ifndef PTNOMASK
|
|
/*
|
|
* By virtue of how the mask was placed in the tree,
|
|
* all nodes descended from it will match it. But the bits
|
|
* before the mask still need to be checked and since the
|
|
* mask was a branch, that was done implicitly.
|
|
*/
|
|
if (mask != NULL) {
|
|
KASSERT(ptree_matchkey(pt, key, mask, 0, PTN_MASK_BITLEN(mask)));
|
|
return NODETOITEM(pt, mask);
|
|
}
|
|
#endif /* !PTNOMASK */
|
|
|
|
/*
|
|
* Nothing matched.
|
|
*/
|
|
return NULL;
|
|
}
|
|
|
|
void *
|
|
ptree_iterate(pt_tree_t *pt, const void *item, pt_direction_t direction)
|
|
{
|
|
const pt_node_t * const target = ITEMTONODE(pt, item);
|
|
uintptr_t node, next_node;
|
|
|
|
if (direction != PT_ASCENDING && direction != PT_DESCENDING)
|
|
return NULL;
|
|
|
|
node = PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode);
|
|
if (PT_NULL_P(node))
|
|
return NULL;
|
|
|
|
if (item == NULL) {
|
|
pt_node_t * const ptn = PT_NODE(node);
|
|
if (direction == PT_ASCENDING
|
|
&& PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0)
|
|
return NODETOITEM(pt, ptn);
|
|
next_node = node;
|
|
} else {
|
|
#ifndef PTNOMASK
|
|
uintptr_t mask_node = PT_NULL;
|
|
#endif /* !PTNOMASK */
|
|
next_node = PT_NULL;
|
|
while (!PT_LEAF_P(node)) {
|
|
pt_node_t * const ptn = PT_NODE(node);
|
|
pt_slot_t slot;
|
|
#ifndef PTNOMASK
|
|
if (PTN_ISMASK_P(ptn) && PTN_BRANCH_BITLEN(ptn) == 0) {
|
|
if (ptn == target)
|
|
break;
|
|
if (direction == PT_DESCENDING) {
|
|
mask_node = node;
|
|
next_node = PT_NULL;
|
|
}
|
|
}
|
|
#endif /* !PTNOMASK */
|
|
slot = ptree_testnode(pt, target, ptn);
|
|
node = PTN_BRANCH_SLOT(ptn, slot);
|
|
if (direction == PT_ASCENDING) {
|
|
if (slot != (pt_slot_t)((1 << PTN_BRANCH_BITLEN(ptn)) - 1))
|
|
next_node = PTN_BRANCH_SLOT(ptn, slot + 1);
|
|
} else {
|
|
if (slot > 0) {
|
|
#ifndef PTNOMASK
|
|
mask_node = PT_NULL;
|
|
#endif /* !PTNOMASK */
|
|
next_node = PTN_BRANCH_SLOT(ptn, slot - 1);
|
|
}
|
|
}
|
|
}
|
|
if (PT_NODE(node) != target)
|
|
return NULL;
|
|
#ifndef PTNOMASK
|
|
if (PT_BRANCH_P(node)) {
|
|
pt_node_t *ptn = PT_NODE(node);
|
|
KASSERT(PTN_ISMASK_P(PT_NODE(node)) && PTN_BRANCH_BITLEN(PT_NODE(node)) == 0);
|
|
if (direction == PT_ASCENDING) {
|
|
next_node = PTN_BRANCH_ROOT_SLOT(ptn);
|
|
ptn = PT_NODE(next_node);
|
|
}
|
|
}
|
|
/*
|
|
* When descending, if we countered a mask node then that's
|
|
* we want to return.
|
|
*/
|
|
if (direction == PT_DESCENDING && !PT_NULL_P(mask_node)) {
|
|
KASSERT(PT_NULL_P(next_node));
|
|
return NODETOITEM(pt, PT_NODE(mask_node));
|
|
}
|
|
#endif /* !PTNOMASK */
|
|
}
|
|
|
|
node = next_node;
|
|
if (PT_NULL_P(node))
|
|
return NULL;
|
|
|
|
while (!PT_LEAF_P(node)) {
|
|
pt_node_t * const ptn = PT_NODE(node);
|
|
pt_slot_t slot;
|
|
if (direction == PT_ASCENDING) {
|
|
#ifndef PTNOMASK
|
|
if (PT_BRANCH_P(node)
|
|
&& PTN_ISMASK_P(ptn)
|
|
&& PTN_BRANCH_BITLEN(ptn) == 0)
|
|
return NODETOITEM(pt, ptn);
|
|
#endif /* !PTNOMASK */
|
|
slot = PT_SLOT_LEFT;
|
|
} else {
|
|
slot = (1 << PTN_BRANCH_BITLEN(ptn)) - 1;
|
|
}
|
|
node = PTN_BRANCH_SLOT(ptn, slot);
|
|
}
|
|
return NODETOITEM(pt, PT_NODE(node));
|
|
}
|
|
|
|
void
|
|
ptree_remove_node(pt_tree_t *pt, void *item)
|
|
{
|
|
pt_node_t * const target = ITEMTONODE(pt, item);
|
|
const pt_slot_t leaf_slot = PTN_LEAF_POSITION(target);
|
|
const pt_slot_t branch_slot = PTN_BRANCH_POSITION(target);
|
|
pt_node_t *ptn, *parent;
|
|
uintptr_t node;
|
|
uintptr_t *removep;
|
|
uintptr_t *nodep;
|
|
pt_bitoff_t bitoff;
|
|
pt_slot_t parent_slot;
|
|
#ifndef PTNOMASK
|
|
bool at_mask;
|
|
#endif
|
|
|
|
if (PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode))) {
|
|
KASSERT(!PT_NULL_P(PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode)));
|
|
return;
|
|
}
|
|
|
|
bitoff = 0;
|
|
removep = NULL;
|
|
nodep = NULL;
|
|
parent = &pt->pt_rootnode;
|
|
parent_slot = PT_SLOT_ROOT;
|
|
for (;;) {
|
|
node = PTN_BRANCH_SLOT(parent, parent_slot);
|
|
ptn = PT_NODE(node);
|
|
#ifndef PTNOMASK
|
|
at_mask = PTN_ISMASK_P(ptn);
|
|
#endif
|
|
|
|
if (PT_LEAF_P(node))
|
|
break;
|
|
|
|
/*
|
|
* If we are at the target, then we are looking at its branch
|
|
* identity. We need to remember who's pointing at it so we
|
|
* stop them from doing that.
|
|
*/
|
|
if (__predict_false(ptn == target)) {
|
|
KASSERT(nodep == NULL);
|
|
#ifndef PTNOMASK
|
|
/*
|
|
* Interior mask nodes are trivial to get rid of.
|
|
*/
|
|
if (at_mask && PTN_BRANCH_BITLEN(ptn) == 0) {
|
|
PTN_BRANCH_SLOT(parent, parent_slot) =
|
|
PTN_BRANCH_ROOT_SLOT(ptn);
|
|
KASSERT(PT_NULL_P(PTN_BRANCH_ODDMAN_SLOT(ptn)));
|
|
PTREE_CHECK(pt);
|
|
return;
|
|
}
|
|
#endif /* !PTNOMASK */
|
|
nodep = &PTN_BRANCH_SLOT(parent, parent_slot);
|
|
KASSERT(*nodep == PTN_BRANCH(target));
|
|
}
|
|
/*
|
|
* We need also need to know who's pointing at our parent.
|
|
* After we remove ourselves from our parent, he'll only
|
|
* have one child and that's unacceptable. So we replace
|
|
* the pointer to the parent with our abadoned sibling.
|
|
*/
|
|
removep = &PTN_BRANCH_SLOT(parent, parent_slot);
|
|
|
|
/*
|
|
* Descend into the tree.
|
|
*/
|
|
parent = ptn;
|
|
parent_slot = ptree_testnode(pt, target, parent);
|
|
bitoff += PTN_BRANCH_BITLEN(parent);
|
|
}
|
|
|
|
/*
|
|
* We better have found that the leaf we are looking for is target.
|
|
*/
|
|
if (target != ptn) {
|
|
KASSERT(target == ptn);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we didn't encounter target as branch, then target must be the
|
|
* oddman-out.
|
|
*/
|
|
if (nodep == NULL) {
|
|
KASSERT(PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) == PTN_LEAF(target));
|
|
KASSERT(nodep == NULL);
|
|
nodep = &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode);
|
|
}
|
|
|
|
KASSERT((removep == NULL) == (parent == &pt->pt_rootnode));
|
|
|
|
/*
|
|
* We have to special remove the last leaf from the root since
|
|
* the only time the tree can a PT_NULL node is when it's empty.
|
|
*/
|
|
if (__predict_false(PTN_ISROOT_P(pt, parent))) {
|
|
KASSERT(removep == NULL);
|
|
KASSERT(parent == &pt->pt_rootnode);
|
|
KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode));
|
|
KASSERT(*nodep == PTN_LEAF(target));
|
|
PTN_BRANCH_ROOT_SLOT(&pt->pt_rootnode) = PT_NULL;
|
|
PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PT_NULL;
|
|
return;
|
|
}
|
|
|
|
KASSERT((parent == target) == (removep == nodep));
|
|
if (PTN_BRANCH(parent) == PTN_BRANCH_SLOT(target, PTN_BRANCH_POSITION(parent))) {
|
|
/*
|
|
* The pointer to the parent actually lives in the target's
|
|
* branch identity. We can't just move the target's branch
|
|
* identity since that would result in the parent pointing
|
|
* to its own branch identity and that's fobidden.
|
|
*/
|
|
const pt_slot_t slot = PTN_BRANCH_POSITION(parent);
|
|
const pt_slot_t other_slot = slot ^ PT_SLOT_OTHER;
|
|
const pt_bitlen_t parent_bitlen = PTN_BRANCH_BITLEN(parent);
|
|
|
|
KASSERT(PTN_BRANCH_BITOFF(target) < PTN_BRANCH_BITOFF(parent));
|
|
|
|
/*
|
|
* This gets so confusing. The target's branch identity
|
|
* points to the branch identity of the parent of the target's
|
|
* leaf identity:
|
|
*
|
|
* TB = { X, PB = { TL, Y } }
|
|
* or TB = { X, PB = { TL } }
|
|
*
|
|
* So we can't move the target's branch identity to the parent
|
|
* because that would corrupt the tree.
|
|
*/
|
|
if (__predict_true(parent_bitlen > 0)) {
|
|
/*
|
|
* The parent is a two-way branch. We have to have
|
|
* do to this chang in two steps to keep internally
|
|
* consistent. First step is to copy our sibling from
|
|
* our parent to where we are pointing to parent's
|
|
* branch identiy. This remove all references to his
|
|
* branch identity from the tree. We then simply make
|
|
* the parent assume the target's branching duties.
|
|
*
|
|
* TB = { X, PB = { Y, TL } } --> PB = { X, Y }.
|
|
* TB = { X, PB = { TL, Y } } --> PB = { X, Y }.
|
|
* TB = { PB = { Y, TL }, X } --> PB = { Y, X }.
|
|
* TB = { PB = { TL, Y }, X } --> PB = { Y, X }.
|
|
*/
|
|
PTN_BRANCH_SLOT(target, slot) =
|
|
PTN_BRANCH_SLOT(parent, parent_slot ^ PT_SLOT_OTHER);
|
|
*nodep = ptree_move_branch(pt, parent, target);
|
|
PTREE_CHECK(pt);
|
|
return;
|
|
} else {
|
|
/*
|
|
* If parent was a one-way branch, it must have been
|
|
* mask which pointed to a single leaf which we are
|
|
* removing. This means we have to convert the
|
|
* parent back to a leaf node. So in the same
|
|
* position that target pointed to parent, we place
|
|
* leaf pointer to parent. In the other position,
|
|
* we just put the other node from target.
|
|
*
|
|
* TB = { X, PB = { TL } } --> PB = { X, PL }
|
|
*/
|
|
KASSERT(PTN_ISMASK_P(parent));
|
|
KASSERT(slot == ptree_testnode(pt, parent, target));
|
|
PTN_BRANCH_SLOT(parent, slot) = PTN_LEAF(parent);
|
|
PTN_BRANCH_SLOT(parent, other_slot) =
|
|
PTN_BRANCH_SLOT(target, other_slot);
|
|
PTN_SET_LEAF_POSITION(parent,slot);
|
|
PTN_SET_BRANCH_BITLEN(parent, 1);
|
|
}
|
|
PTN_SET_BRANCH_BITOFF(parent, PTN_BRANCH_BITOFF(target));
|
|
PTN_SET_BRANCH_POSITION(parent, PTN_BRANCH_POSITION(target));
|
|
|
|
*nodep = PTN_BRANCH(parent);
|
|
PTREE_CHECK(pt);
|
|
return;
|
|
}
|
|
|
|
#ifndef PTNOMASK
|
|
if (__predict_false(PTN_BRANCH_BITLEN(parent) == 0)) {
|
|
/*
|
|
* Parent was a one-way branch which is changing back to a leaf.
|
|
* Since parent is no longer a one-way branch, it can take over
|
|
* target's branching duties.
|
|
*
|
|
* GB = { PB = { TL } } --> GB = { PL }
|
|
* TB = { X, Y } --> PB = { X, Y }
|
|
*/
|
|
KASSERT(PTN_ISMASK_P(parent));
|
|
KASSERT(parent != target);
|
|
*removep = PTN_LEAF(parent);
|
|
} else
|
|
#endif /* !PTNOMASK */
|
|
{
|
|
/*
|
|
* Now we are the normal removal case. Since after the
|
|
* target's leaf identity is removed from the its parent,
|
|
* that parent will only have one decendent. So we can
|
|
* just as easily replace the node that has the parent's
|
|
* branch identity with the surviving node. This freeing
|
|
* parent from its branching duties which means it can
|
|
* take over target's branching duties.
|
|
*
|
|
* GB = { PB = { X, TL } } --> GB = { X }
|
|
* TB = { V, W } --> PB = { V, W }
|
|
*/
|
|
const pt_slot_t other_slot = parent_slot ^ PT_SLOT_OTHER;
|
|
uintptr_t other_node = PTN_BRANCH_SLOT(parent, other_slot);
|
|
const pt_slot_t target_slot = (parent == target ? branch_slot : leaf_slot);
|
|
|
|
*removep = other_node;
|
|
|
|
ptree_set_position(other_node, target_slot);
|
|
|
|
/*
|
|
* If target's branch identity contained its leaf identity, we
|
|
* have nothing left to do. We've already moved 'X' so there
|
|
* is no longer anything in the target's branch identiy that
|
|
* has to be preserved.
|
|
*/
|
|
if (parent == target) {
|
|
/*
|
|
* GB = { TB = { X, TL } } --> GB = { X }
|
|
* TB = { X, TL } --> don't care
|
|
*/
|
|
PTREE_CHECK(pt);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If target wasn't used as a branch, then it must have been the
|
|
* oddman-out of the tree (the one node that doesn't have a branch
|
|
* identity). This makes parent the new oddman-out.
|
|
*/
|
|
if (*nodep == PTN_LEAF(target)) {
|
|
KASSERT(nodep == &PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode));
|
|
PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) = PTN_LEAF(parent);
|
|
PTREE_CHECK(pt);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Finally move the target's branching duties to the parent.
|
|
*/
|
|
KASSERT(PTN_BRANCH_BITOFF(parent) > PTN_BRANCH_BITOFF(target));
|
|
*nodep = ptree_move_branch(pt, parent, target);
|
|
PTREE_CHECK(pt);
|
|
}
|
|
|
|
#ifdef PTCHECK
|
|
static const pt_node_t *
|
|
ptree_check_find_node2(const pt_tree_t *pt, const pt_node_t *parent,
|
|
uintptr_t target)
|
|
{
|
|
const pt_bitlen_t slots = 1 << PTN_BRANCH_BITLEN(parent);
|
|
pt_slot_t slot;
|
|
|
|
for (slot = 0; slot < slots; slot++) {
|
|
const uintptr_t node = PTN_BRANCH_SLOT(parent, slot);
|
|
if (PTN_BRANCH_SLOT(parent, slot) == node)
|
|
return parent;
|
|
}
|
|
for (slot = 0; slot < slots; slot++) {
|
|
const uintptr_t node = PTN_BRANCH_SLOT(parent, slot);
|
|
const pt_node_t *branch;
|
|
if (!PT_BRANCH_P(node))
|
|
continue;
|
|
branch = ptree_check_find_node2(pt, PT_NODE(node), target);
|
|
if (branch != NULL)
|
|
return branch;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static bool
|
|
ptree_check_leaf(const pt_tree_t *pt, const pt_node_t *parent,
|
|
const pt_node_t *ptn)
|
|
{
|
|
const pt_bitoff_t leaf_position = PTN_LEAF_POSITION(ptn);
|
|
const pt_bitlen_t bitlen = PTN_BRANCH_BITLEN(ptn);
|
|
const pt_bitlen_t mask_len = PTN_MASK_BITLEN(ptn);
|
|
const uintptr_t leaf_node = PTN_LEAF(ptn);
|
|
const bool is_parent_root = (parent == &pt->pt_rootnode);
|
|
const bool is_mask = PTN_ISMASK_P(ptn);
|
|
bool ok = true;
|
|
|
|
if (is_parent_root) {
|
|
ok = ok && PTN_BRANCH_ODDMAN_SLOT(parent) == leaf_node;
|
|
KASSERT(ok);
|
|
return ok;
|
|
}
|
|
|
|
if (is_mask && PTN_ISMASK_P(parent) && PTN_BRANCH_BITLEN(parent) == 0) {
|
|
ok = ok && PTN_MASK_BITLEN(parent) < mask_len;
|
|
KASSERT(ok);
|
|
ok = ok && PTN_BRANCH_BITOFF(parent) < mask_len;
|
|
KASSERT(ok);
|
|
}
|
|
ok = ok && PTN_BRANCH_SLOT(parent, leaf_position) == leaf_node;
|
|
KASSERT(ok);
|
|
ok = ok && leaf_position == ptree_testnode(pt, ptn, parent);
|
|
KASSERT(ok);
|
|
if (PTN_BRANCH_ODDMAN_SLOT(&pt->pt_rootnode) != leaf_node) {
|
|
ok = ok && bitlen > 0;
|
|
KASSERT(ok);
|
|
ok = ok && ptn == ptree_check_find_node2(pt, ptn, PTN_LEAF(ptn));
|
|
KASSERT(ok);
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
static bool
|
|
ptree_check_branch(const pt_tree_t *pt, const pt_node_t *parent,
|
|
const pt_node_t *ptn)
|
|
{
|
|
const bool is_parent_root = (parent == &pt->pt_rootnode);
|
|
const pt_slot_t branch_slot = PTN_BRANCH_POSITION(ptn);
|
|
const pt_bitoff_t bitoff = PTN_BRANCH_BITOFF(ptn);
|
|
const pt_bitoff_t bitlen = PTN_BRANCH_BITLEN(ptn);
|
|
const pt_bitoff_t parent_bitoff = PTN_BRANCH_BITOFF(parent);
|
|
const pt_bitoff_t parent_bitlen = PTN_BRANCH_BITLEN(parent);
|
|
const bool is_parent_mask = PTN_ISMASK_P(parent) && parent_bitlen == 0;
|
|
const bool is_mask = PTN_ISMASK_P(ptn) && bitlen == 0;
|
|
const pt_bitoff_t parent_mask_len = PTN_MASK_BITLEN(parent);
|
|
const pt_bitoff_t mask_len = PTN_MASK_BITLEN(ptn);
|
|
const pt_bitlen_t slots = 1 << bitlen;
|
|
pt_slot_t slot;
|
|
bool ok = true;
|
|
|
|
ok = ok && PTN_BRANCH_SLOT(parent, branch_slot) == PTN_BRANCH(ptn);
|
|
KASSERT(ok);
|
|
ok = ok && branch_slot == ptree_testnode(pt, ptn, parent);
|
|
KASSERT(ok);
|
|
|
|
if (is_mask) {
|
|
ok = ok && bitoff == mask_len;
|
|
KASSERT(ok);
|
|
if (is_parent_mask) {
|
|
ok = ok && parent_mask_len < mask_len;
|
|
KASSERT(ok);
|
|
ok = ok && parent_bitoff < bitoff;
|
|
KASSERT(ok);
|
|
}
|
|
} else {
|
|
if (is_parent_mask) {
|
|
ok = ok && parent_bitoff <= bitoff;
|
|
} else if (!is_parent_root) {
|
|
ok = ok && parent_bitoff < bitoff;
|
|
}
|
|
KASSERT(ok);
|
|
}
|
|
|
|
for (slot = 0; slot < slots; slot++) {
|
|
const uintptr_t node = PTN_BRANCH_SLOT(ptn, slot);
|
|
pt_bitoff_t tmp_bitoff = 0;
|
|
pt_slot_t tmp_slot;
|
|
ok = ok && node != PTN_BRANCH(ptn);
|
|
KASSERT(ok);
|
|
if (bitlen > 0) {
|
|
ok = ok && ptree_matchnode(pt, PT_NODE(node), ptn, bitoff, &tmp_bitoff, &tmp_slot);
|
|
KASSERT(ok);
|
|
tmp_slot = ptree_testnode(pt, PT_NODE(node), ptn);
|
|
ok = ok && slot == tmp_slot;
|
|
KASSERT(ok);
|
|
}
|
|
if (PT_LEAF_P(node))
|
|
ok = ok && ptree_check_leaf(pt, ptn, PT_NODE(node));
|
|
else
|
|
ok = ok && ptree_check_branch(pt, ptn, PT_NODE(node));
|
|
}
|
|
|
|
return ok;
|
|
}
|
|
#endif /* PTCHECK */
|
|
|
|
/*ARGSUSED*/
|
|
bool
|
|
ptree_check(const pt_tree_t *pt)
|
|
{
|
|
bool ok = true;
|
|
#ifdef PTCHECK
|
|
const pt_node_t * const parent = &pt->pt_rootnode;
|
|
const uintptr_t node = pt->pt_root;
|
|
const pt_node_t * const ptn = PT_NODE(node);
|
|
|
|
ok = ok && PTN_BRANCH_BITOFF(parent) == 0;
|
|
ok = ok && !PTN_ISMASK_P(parent);
|
|
|
|
if (PT_NULL_P(node))
|
|
return ok;
|
|
|
|
if (PT_LEAF_P(node))
|
|
ok = ok && ptree_check_leaf(pt, parent, ptn);
|
|
else
|
|
ok = ok && ptree_check_branch(pt, parent, ptn);
|
|
#endif
|
|
return ok;
|
|
}
|