2d72cbec41
. add cpufeature detection of both . use it for both ipc and kernelcall traps, using a register for call number . SYSENTER/SYSCALL does not save any context, therefore userland has to save it . to accomodate multiple kernel entry/exit types, the entry type is recorded in the process struct. hitherto all types were interrupt (soft int, exception, hard int); now SYSENTER/SYSCALL is new, with the difference that context is not fully restored from proc struct when running the process again. this can't be done as some information is missing. . complication: cases in which the kernel has to fully change process context (i.e. sigreturn). in that case the exit type is changed from SYSENTER/SYSEXIT to soft-int (i.e. iret) and context is fully restored from the proc struct. this does mean the PC and SP must change, as the sysenter/sysexit userland code will otherwise try to restore its own context. this is true in the sigreturn case. . override all usage by setting libc_ipc=1
99 lines
2.5 KiB
C
99 lines
2.5 KiB
C
#include <sys/types.h>
|
|
#include <stdint.h>
|
|
#include <minix/minlib.h>
|
|
#include <minix/cpufeature.h>
|
|
#include <machine/vm.h>
|
|
#include <string.h>
|
|
|
|
int _cpufeature(int cpufeature)
|
|
{
|
|
u32_t eax, ebx, ecx, edx;
|
|
u32_t ef_eax = 0, ef_ebx = 0, ef_ecx = 0, ef_edx = 0;
|
|
unsigned int family, model, stepping;
|
|
int is_intel = 0, is_amd = 0;
|
|
|
|
eax = ebx = ecx = edx = 0;
|
|
|
|
/* We assume >= pentium for cpuid */
|
|
eax = 0;
|
|
_cpuid(&eax, &ebx, &ecx, &edx);
|
|
if(eax > 0) {
|
|
char vendor[12];
|
|
memcpy(vendor, &ebx, sizeof(ebx));
|
|
memcpy(vendor+4, &edx, sizeof(edx));
|
|
memcpy(vendor+8, &ecx, sizeof(ecx));
|
|
if(!strncmp(vendor, "GenuineIntel", sizeof(vendor)))
|
|
is_intel = 1;
|
|
if(!strncmp(vendor, "AuthenticAMD", sizeof(vendor)))
|
|
is_amd = 1;
|
|
eax = 1;
|
|
_cpuid(&eax, &ebx, &ecx, &edx);
|
|
} else return 0;
|
|
|
|
stepping = eax & 0xf;
|
|
model = (eax >> 4) & 0xf;
|
|
|
|
if(model == 0xf || model == 0x6) {
|
|
model += ((eax >> 16) & 0xf) << 4;
|
|
}
|
|
|
|
family = (eax >> 8) & 0xf;
|
|
|
|
if(family == 0xf) {
|
|
family += (eax >> 20) & 0xff;
|
|
}
|
|
|
|
if(is_amd) {
|
|
ef_eax = 0x80000001;
|
|
_cpuid(&ef_eax, &ef_ebx, &ef_ecx, &ef_edx);
|
|
}
|
|
|
|
switch(cpufeature) {
|
|
case _CPUF_I386_PSE:
|
|
return edx & CPUID1_EDX_PSE;
|
|
case _CPUF_I386_PGE:
|
|
return edx & CPUID1_EDX_PGE;
|
|
case _CPUF_I386_APIC_ON_CHIP:
|
|
return edx & CPUID1_EDX_APIC_ON_CHIP;
|
|
case _CPUF_I386_TSC:
|
|
return edx & CPUID1_EDX_TSC;
|
|
case _CPUF_I386_FPU:
|
|
return edx & CPUID1_EDX_FPU;
|
|
#define SSE_FULL_EDX (CPUID1_EDX_FXSR | CPUID1_EDX_SSE | CPUID1_EDX_SSE2)
|
|
#define SSE_FULL_ECX (CPUID1_ECX_SSE3 | CPUID1_ECX_SSSE3 | \
|
|
CPUID1_ECX_SSE4_1 | CPUID1_ECX_SSE4_2)
|
|
case _CPUF_I386_SSE1234_12:
|
|
return (edx & SSE_FULL_EDX) == SSE_FULL_EDX &&
|
|
(ecx & SSE_FULL_ECX) == SSE_FULL_ECX;
|
|
case _CPUF_I386_FXSR:
|
|
return edx & CPUID1_EDX_FXSR;
|
|
case _CPUF_I386_SSE:
|
|
return edx & CPUID1_EDX_SSE;
|
|
case _CPUF_I386_SSE2:
|
|
return edx & CPUID1_EDX_SSE2;
|
|
case _CPUF_I386_SSE3:
|
|
return ecx & CPUID1_ECX_SSE3;
|
|
case _CPUF_I386_SSSE3:
|
|
return ecx & CPUID1_ECX_SSSE3;
|
|
case _CPUF_I386_SSE4_1:
|
|
return ecx & CPUID1_ECX_SSE4_1;
|
|
case _CPUF_I386_SSE4_2:
|
|
return ecx & CPUID1_ECX_SSE4_2;
|
|
case _CPUF_I386_HTT:
|
|
return edx & CPUID1_EDX_HTT;
|
|
case _CPUF_I386_HTT_MAX_NUM:
|
|
return (ebx >> 16) & 0xff;
|
|
case _CPUF_I386_SYSENTER:
|
|
if(!is_intel) return 0;
|
|
if(!(edx & CPUID1_EDX_SYSENTER)) return 0;
|
|
if(family == 6 && model < 3 && stepping < 3) return 0;
|
|
return 1;
|
|
case _CPUF_I386_SYSCALL:
|
|
if(!is_amd) return 0;
|
|
if(!(ef_edx & CPUID_EF_EDX_SYSENTER)) return 0;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|