2fe8fb192f
There is important information about booting non-ack images in docs/UPDATING. ack/aout-format images can't be built any more, and booting clang/ELF-format ones is a little different. Updating to the new boot monitor is recommended. Changes in this commit: . drop boot monitor -> allowing dropping ack support . facility to copy ELF boot files to /boot so that old boot monitor can still boot fairly easily, see UPDATING . no more ack-format libraries -> single-case libraries . some cleanup of OBJECT_FMT, COMPILER_TYPE, etc cases . drop several ack toolchain commands, but not all support commands (e.g. aal is gone but acksize is not yet). . a few libc files moved to netbsd libc dir . new /bin/date as minix date used code in libc/ . test compile fix . harmonize includes . /usr/lib is no longer special: without ack, /usr/lib plays no kind of special bootstrapping role any more and bootstrapping is done exclusively through packages, so releases depend even less on the state of the machine making them now. . rename nbsd_lib* to lib* . reduce mtree
815 lines
18 KiB
C
815 lines
18 KiB
C
/* $NetBSD: dtoa.c,v 1.5 2008/03/21 23:13:48 christos Exp $ */
|
|
|
|
/****************************************************************
|
|
|
|
The author of this software is David M. Gay.
|
|
|
|
Copyright (C) 1998, 1999 by Lucent Technologies
|
|
All Rights Reserved
|
|
|
|
Permission to use, copy, modify, and distribute this software and
|
|
its documentation for any purpose and without fee is hereby
|
|
granted, provided that the above copyright notice appear in all
|
|
copies and that both that the copyright notice and this
|
|
permission notice and warranty disclaimer appear in supporting
|
|
documentation, and that the name of Lucent or any of its entities
|
|
not be used in advertising or publicity pertaining to
|
|
distribution of the software without specific, written prior
|
|
permission.
|
|
|
|
LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
|
|
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
|
|
IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
|
|
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
|
|
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
|
|
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
|
|
THIS SOFTWARE.
|
|
|
|
****************************************************************/
|
|
|
|
/* Please send bug reports to David M. Gay (dmg at acm dot org,
|
|
* with " at " changed at "@" and " dot " changed to "."). */
|
|
|
|
#include "gdtoaimp.h"
|
|
|
|
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
|
|
*
|
|
* Inspired by "How to Print Floating-Point Numbers Accurately" by
|
|
* Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
|
|
*
|
|
* Modifications:
|
|
* 1. Rather than iterating, we use a simple numeric overestimate
|
|
* to determine k = floor(log10(d)). We scale relevant
|
|
* quantities using O(log2(k)) rather than O(k) multiplications.
|
|
* 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
|
|
* try to generate digits strictly left to right. Instead, we
|
|
* compute with fewer bits and propagate the carry if necessary
|
|
* when rounding the final digit up. This is often faster.
|
|
* 3. Under the assumption that input will be rounded nearest,
|
|
* mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
|
|
* That is, we allow equality in stopping tests when the
|
|
* round-nearest rule will give the same floating-point value
|
|
* as would satisfaction of the stopping test with strict
|
|
* inequality.
|
|
* 4. We remove common factors of powers of 2 from relevant
|
|
* quantities.
|
|
* 5. When converting floating-point integers less than 1e16,
|
|
* we use floating-point arithmetic rather than resorting
|
|
* to multiple-precision integers.
|
|
* 6. When asked to produce fewer than 15 digits, we first try
|
|
* to get by with floating-point arithmetic; we resort to
|
|
* multiple-precision integer arithmetic only if we cannot
|
|
* guarantee that the floating-point calculation has given
|
|
* the correctly rounded result. For k requested digits and
|
|
* "uniformly" distributed input, the probability is
|
|
* something like 10^(k-15) that we must resort to the Long
|
|
* calculation.
|
|
*/
|
|
|
|
#ifdef Honor_FLT_ROUNDS
|
|
#define Rounding rounding
|
|
#undef Check_FLT_ROUNDS
|
|
#define Check_FLT_ROUNDS
|
|
#else
|
|
#define Rounding Flt_Rounds
|
|
#endif
|
|
|
|
char *
|
|
dtoa
|
|
#ifdef KR_headers
|
|
(d, mode, ndigits, decpt, sign, rve)
|
|
double d; int mode, ndigits, *decpt, *sign; char **rve;
|
|
#else
|
|
(double d, int mode, int ndigits, int *decpt, int *sign, char **rve)
|
|
#endif
|
|
{
|
|
/* Arguments ndigits, decpt, sign are similar to those
|
|
of ecvt and fcvt; trailing zeros are suppressed from
|
|
the returned string. If not null, *rve is set to point
|
|
to the end of the return value. If d is +-Infinity or NaN,
|
|
then *decpt is set to 9999.
|
|
|
|
mode:
|
|
0 ==> shortest string that yields d when read in
|
|
and rounded to nearest.
|
|
1 ==> like 0, but with Steele & White stopping rule;
|
|
e.g. with IEEE P754 arithmetic , mode 0 gives
|
|
1e23 whereas mode 1 gives 9.999999999999999e22.
|
|
2 ==> max(1,ndigits) significant digits. This gives a
|
|
return value similar to that of ecvt, except
|
|
that trailing zeros are suppressed.
|
|
3 ==> through ndigits past the decimal point. This
|
|
gives a return value similar to that from fcvt,
|
|
except that trailing zeros are suppressed, and
|
|
ndigits can be negative.
|
|
4,5 ==> similar to 2 and 3, respectively, but (in
|
|
round-nearest mode) with the tests of mode 0 to
|
|
possibly return a shorter string that rounds to d.
|
|
With IEEE arithmetic and compilation with
|
|
-DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
|
|
as modes 2 and 3 when FLT_ROUNDS != 1.
|
|
6-9 ==> Debugging modes similar to mode - 4: don't try
|
|
fast floating-point estimate (if applicable).
|
|
|
|
Values of mode other than 0-9 are treated as mode 0.
|
|
|
|
Sufficient space is allocated to the return value
|
|
to hold the suppressed trailing zeros.
|
|
*/
|
|
|
|
int bbits, b2, b5, be, dig, i, ieps, ilim0,
|
|
j, jj1, k, k0, k_check, leftright, m2, m5, s2, s5,
|
|
spec_case, try_quick;
|
|
int ilim = 0, ilim1 = 0; /* pacify gcc */
|
|
Long L;
|
|
#ifndef Sudden_Underflow
|
|
int denorm;
|
|
ULong x;
|
|
#endif
|
|
Bigint *b, *b1, *delta, *mhi, *S;
|
|
Bigint *mlo = NULL; /* pacify gcc */
|
|
double d2, ds, eps;
|
|
char *s, *s0;
|
|
#ifdef Honor_FLT_ROUNDS
|
|
int rounding;
|
|
#endif
|
|
#ifdef SET_INEXACT
|
|
int inexact, oldinexact;
|
|
#endif
|
|
|
|
#ifndef MULTIPLE_THREADS
|
|
if (dtoa_result) {
|
|
freedtoa(dtoa_result);
|
|
dtoa_result = 0;
|
|
}
|
|
#endif
|
|
|
|
if (word0(d) & Sign_bit) {
|
|
/* set sign for everything, including 0's and NaNs */
|
|
*sign = 1;
|
|
word0(d) &= ~Sign_bit; /* clear sign bit */
|
|
}
|
|
else
|
|
*sign = 0;
|
|
|
|
#if defined(IEEE_Arith) + defined(VAX)
|
|
#ifdef IEEE_Arith
|
|
if ((word0(d) & Exp_mask) == Exp_mask)
|
|
#else
|
|
if (word0(d) == 0x8000)
|
|
#endif
|
|
{
|
|
/* Infinity or NaN */
|
|
*decpt = 9999;
|
|
#ifdef IEEE_Arith
|
|
if (!word1(d) && !(word0(d) & 0xfffff))
|
|
return nrv_alloc("Infinity", rve, 8);
|
|
#endif
|
|
return nrv_alloc("NaN", rve, 3);
|
|
}
|
|
#endif
|
|
#ifdef IBM
|
|
dval(d) += 0; /* normalize */
|
|
#endif
|
|
if (!dval(d)) {
|
|
*decpt = 1;
|
|
return nrv_alloc("0", rve, 1);
|
|
}
|
|
|
|
#ifdef SET_INEXACT
|
|
try_quick = oldinexact = get_inexact();
|
|
inexact = 1;
|
|
#endif
|
|
#ifdef Honor_FLT_ROUNDS
|
|
if ((rounding = Flt_Rounds) >= 2) {
|
|
if (*sign)
|
|
rounding = rounding == 2 ? 0 : 2;
|
|
else
|
|
if (rounding != 2)
|
|
rounding = 0;
|
|
}
|
|
#endif
|
|
|
|
b = d2b(dval(d), &be, &bbits);
|
|
if (b == NULL)
|
|
return NULL;
|
|
#ifdef Sudden_Underflow
|
|
i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
|
|
#else
|
|
if (( i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)) )!=0) {
|
|
#endif
|
|
dval(d2) = dval(d);
|
|
word0(d2) &= Frac_mask1;
|
|
word0(d2) |= Exp_11;
|
|
#ifdef IBM
|
|
if (( j = 11 - hi0bits(word0(d2) & Frac_mask) )!=0)
|
|
dval(d2) /= 1 << j;
|
|
#endif
|
|
|
|
/* log(x) ~=~ log(1.5) + (x-1.5)/1.5
|
|
* log10(x) = log(x) / log(10)
|
|
* ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
|
|
* log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
|
|
*
|
|
* This suggests computing an approximation k to log10(d) by
|
|
*
|
|
* k = (i - Bias)*0.301029995663981
|
|
* + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
|
|
*
|
|
* We want k to be too large rather than too small.
|
|
* The error in the first-order Taylor series approximation
|
|
* is in our favor, so we just round up the constant enough
|
|
* to compensate for any error in the multiplication of
|
|
* (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
|
|
* and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
|
|
* adding 1e-13 to the constant term more than suffices.
|
|
* Hence we adjust the constant term to 0.1760912590558.
|
|
* (We could get a more accurate k by invoking log10,
|
|
* but this is probably not worthwhile.)
|
|
*/
|
|
|
|
i -= Bias;
|
|
#ifdef IBM
|
|
i <<= 2;
|
|
i += j;
|
|
#endif
|
|
#ifndef Sudden_Underflow
|
|
denorm = 0;
|
|
}
|
|
else {
|
|
/* d is denormalized */
|
|
|
|
i = bbits + be + (Bias + (P-1) - 1);
|
|
x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32)
|
|
: word1(d) << (32 - i);
|
|
dval(d2) = x;
|
|
word0(d2) -= 31*Exp_msk1; /* adjust exponent */
|
|
i -= (Bias + (P-1) - 1) + 1;
|
|
denorm = 1;
|
|
}
|
|
#endif
|
|
ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
|
|
k = (int)ds;
|
|
if (ds < 0. && ds != k)
|
|
k--; /* want k = floor(ds) */
|
|
k_check = 1;
|
|
if (k >= 0 && k <= Ten_pmax) {
|
|
if (dval(d) < tens[k])
|
|
k--;
|
|
k_check = 0;
|
|
}
|
|
j = bbits - i - 1;
|
|
if (j >= 0) {
|
|
b2 = 0;
|
|
s2 = j;
|
|
}
|
|
else {
|
|
b2 = -j;
|
|
s2 = 0;
|
|
}
|
|
if (k >= 0) {
|
|
b5 = 0;
|
|
s5 = k;
|
|
s2 += k;
|
|
}
|
|
else {
|
|
b2 -= k;
|
|
b5 = -k;
|
|
s5 = 0;
|
|
}
|
|
if (mode < 0 || mode > 9)
|
|
mode = 0;
|
|
|
|
#ifndef SET_INEXACT
|
|
#ifdef Check_FLT_ROUNDS
|
|
try_quick = Rounding == 1;
|
|
#else
|
|
try_quick = 1;
|
|
#endif
|
|
#endif /*SET_INEXACT*/
|
|
|
|
if (mode > 5) {
|
|
mode -= 4;
|
|
try_quick = 0;
|
|
}
|
|
leftright = 1;
|
|
switch(mode) {
|
|
case 0:
|
|
case 1:
|
|
ilim = ilim1 = -1;
|
|
i = 18;
|
|
ndigits = 0;
|
|
break;
|
|
case 2:
|
|
leftright = 0;
|
|
/* FALLTHROUGH */
|
|
case 4:
|
|
if (ndigits <= 0)
|
|
ndigits = 1;
|
|
ilim = ilim1 = i = ndigits;
|
|
break;
|
|
case 3:
|
|
leftright = 0;
|
|
/* FALLTHROUGH */
|
|
case 5:
|
|
i = ndigits + k + 1;
|
|
ilim = i;
|
|
ilim1 = i - 1;
|
|
if (i <= 0)
|
|
i = 1;
|
|
}
|
|
s = s0 = rv_alloc((size_t)i);
|
|
if (s == NULL)
|
|
return NULL;
|
|
|
|
#ifdef Honor_FLT_ROUNDS
|
|
if (mode > 1 && rounding != 1)
|
|
leftright = 0;
|
|
#endif
|
|
|
|
if (ilim >= 0 && ilim <= Quick_max && try_quick) {
|
|
|
|
/* Try to get by with floating-point arithmetic. */
|
|
|
|
i = 0;
|
|
dval(d2) = dval(d);
|
|
k0 = k;
|
|
ilim0 = ilim;
|
|
ieps = 2; /* conservative */
|
|
if (k > 0) {
|
|
ds = tens[k&0xf];
|
|
j = (unsigned int)k >> 4;
|
|
if (j & Bletch) {
|
|
/* prevent overflows */
|
|
j &= Bletch - 1;
|
|
dval(d) /= bigtens[n_bigtens-1];
|
|
ieps++;
|
|
}
|
|
for(; j; j = (unsigned int)j >> 1, i++)
|
|
if (j & 1) {
|
|
ieps++;
|
|
ds *= bigtens[i];
|
|
}
|
|
dval(d) /= ds;
|
|
}
|
|
else if (( jj1 = -k )!=0) {
|
|
dval(d) *= tens[jj1 & 0xf];
|
|
for(j = jj1 >> 4; j; j >>= 1, i++)
|
|
if (j & 1) {
|
|
ieps++;
|
|
dval(d) *= bigtens[i];
|
|
}
|
|
}
|
|
if (k_check && dval(d) < 1. && ilim > 0) {
|
|
if (ilim1 <= 0)
|
|
goto fast_failed;
|
|
ilim = ilim1;
|
|
k--;
|
|
dval(d) *= 10.;
|
|
ieps++;
|
|
}
|
|
dval(eps) = ieps*dval(d) + 7.;
|
|
word0(eps) -= (P-1)*Exp_msk1;
|
|
if (ilim == 0) {
|
|
S = mhi = 0;
|
|
dval(d) -= 5.;
|
|
if (dval(d) > dval(eps))
|
|
goto one_digit;
|
|
if (dval(d) < -dval(eps))
|
|
goto no_digits;
|
|
goto fast_failed;
|
|
}
|
|
#ifndef No_leftright
|
|
if (leftright) {
|
|
/* Use Steele & White method of only
|
|
* generating digits needed.
|
|
*/
|
|
dval(eps) = 0.5/tens[ilim-1] - dval(eps);
|
|
for(i = 0;;) {
|
|
L = dval(d);
|
|
dval(d) -= L;
|
|
*s++ = '0' + (int)L;
|
|
if (dval(d) < dval(eps))
|
|
goto ret1;
|
|
if (1. - dval(d) < dval(eps))
|
|
goto bump_up;
|
|
if (++i >= ilim)
|
|
break;
|
|
dval(eps) *= 10.;
|
|
dval(d) *= 10.;
|
|
}
|
|
}
|
|
else {
|
|
#endif
|
|
/* Generate ilim digits, then fix them up. */
|
|
dval(eps) *= tens[ilim-1];
|
|
for(i = 1;; i++, dval(d) *= 10.) {
|
|
L = (Long)(dval(d));
|
|
if (!(dval(d) -= L))
|
|
ilim = i;
|
|
*s++ = '0' + (int)L;
|
|
if (i == ilim) {
|
|
if (dval(d) > 0.5 + dval(eps))
|
|
goto bump_up;
|
|
else if (dval(d) < 0.5 - dval(eps)) {
|
|
while(*--s == '0');
|
|
s++;
|
|
goto ret1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
#ifndef No_leftright
|
|
}
|
|
#endif
|
|
fast_failed:
|
|
s = s0;
|
|
dval(d) = dval(d2);
|
|
k = k0;
|
|
ilim = ilim0;
|
|
}
|
|
|
|
/* Do we have a "small" integer? */
|
|
|
|
if (be >= 0 && k <= Int_max) {
|
|
/* Yes. */
|
|
ds = tens[k];
|
|
if (ndigits < 0 && ilim <= 0) {
|
|
S = mhi = 0;
|
|
if (ilim < 0 || dval(d) <= 5*ds)
|
|
goto no_digits;
|
|
goto one_digit;
|
|
}
|
|
for(i = 1;; i++, dval(d) *= 10.) {
|
|
L = (Long)(dval(d) / ds);
|
|
dval(d) -= L*ds;
|
|
#ifdef Check_FLT_ROUNDS
|
|
/* If FLT_ROUNDS == 2, L will usually be high by 1 */
|
|
if (dval(d) < 0) {
|
|
L--;
|
|
dval(d) += ds;
|
|
}
|
|
#endif
|
|
*s++ = '0' + (int)L;
|
|
if (!dval(d)) {
|
|
#ifdef SET_INEXACT
|
|
inexact = 0;
|
|
#endif
|
|
break;
|
|
}
|
|
if (i == ilim) {
|
|
#ifdef Honor_FLT_ROUNDS
|
|
if (mode > 1)
|
|
switch(rounding) {
|
|
case 0: goto ret1;
|
|
case 2: goto bump_up;
|
|
}
|
|
#endif
|
|
dval(d) += dval(d);
|
|
if (dval(d) > ds || (dval(d) == ds && L & 1)) {
|
|
bump_up:
|
|
while(*--s == '9')
|
|
if (s == s0) {
|
|
k++;
|
|
*s = '0';
|
|
break;
|
|
}
|
|
++*s++;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
goto ret1;
|
|
}
|
|
|
|
m2 = b2;
|
|
m5 = b5;
|
|
mhi = mlo = 0;
|
|
if (leftright) {
|
|
i =
|
|
#ifndef Sudden_Underflow
|
|
denorm ? be + (Bias + (P-1) - 1 + 1) :
|
|
#endif
|
|
#ifdef IBM
|
|
1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
|
|
#else
|
|
1 + P - bbits;
|
|
#endif
|
|
b2 += i;
|
|
s2 += i;
|
|
mhi = i2b(1);
|
|
if (mhi == NULL)
|
|
return NULL;
|
|
}
|
|
if (m2 > 0 && s2 > 0) {
|
|
i = m2 < s2 ? m2 : s2;
|
|
b2 -= i;
|
|
m2 -= i;
|
|
s2 -= i;
|
|
}
|
|
if (b5 > 0) {
|
|
if (leftright) {
|
|
if (m5 > 0) {
|
|
mhi = pow5mult(mhi, m5);
|
|
if (mhi == NULL)
|
|
return NULL;
|
|
b1 = mult(mhi, b);
|
|
if (b1 == NULL)
|
|
return NULL;
|
|
Bfree(b);
|
|
b = b1;
|
|
}
|
|
if (( j = b5 - m5 )!=0)
|
|
b = pow5mult(b, j);
|
|
if (b == NULL)
|
|
return NULL;
|
|
}
|
|
else
|
|
b = pow5mult(b, b5);
|
|
if (b == NULL)
|
|
return NULL;
|
|
}
|
|
S = i2b(1);
|
|
if (S == NULL)
|
|
return NULL;
|
|
if (s5 > 0) {
|
|
S = pow5mult(S, s5);
|
|
if (S == NULL)
|
|
return NULL;
|
|
}
|
|
|
|
/* Check for special case that d is a normalized power of 2. */
|
|
|
|
spec_case = 0;
|
|
if ((mode < 2 || leftright)
|
|
#ifdef Honor_FLT_ROUNDS
|
|
&& rounding == 1
|
|
#endif
|
|
) {
|
|
if (!word1(d) && !(word0(d) & Bndry_mask)
|
|
#ifndef Sudden_Underflow
|
|
&& word0(d) & (Exp_mask & ~Exp_msk1)
|
|
#endif
|
|
) {
|
|
/* The special case */
|
|
b2 += Log2P;
|
|
s2 += Log2P;
|
|
spec_case = 1;
|
|
}
|
|
}
|
|
|
|
/* Arrange for convenient computation of quotients:
|
|
* shift left if necessary so divisor has 4 leading 0 bits.
|
|
*
|
|
* Perhaps we should just compute leading 28 bits of S once
|
|
* and for all and pass them and a shift to quorem, so it
|
|
* can do shifts and ors to compute the numerator for q.
|
|
*/
|
|
#ifdef Pack_32
|
|
if (( i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f )!=0)
|
|
i = 32 - i;
|
|
#else
|
|
if (( i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf )!=0)
|
|
i = 16 - i;
|
|
#endif
|
|
if (i > 4) {
|
|
i -= 4;
|
|
b2 += i;
|
|
m2 += i;
|
|
s2 += i;
|
|
}
|
|
else if (i < 4) {
|
|
i += 28;
|
|
b2 += i;
|
|
m2 += i;
|
|
s2 += i;
|
|
}
|
|
if (b2 > 0) {
|
|
b = lshift(b, b2);
|
|
if (b == NULL)
|
|
return NULL;
|
|
}
|
|
if (s2 > 0) {
|
|
S = lshift(S, s2);
|
|
if (S == NULL)
|
|
return NULL;
|
|
}
|
|
if (k_check) {
|
|
if (cmp(b,S) < 0) {
|
|
k--;
|
|
b = multadd(b, 10, 0); /* we botched the k estimate */
|
|
if (b == NULL)
|
|
return NULL;
|
|
if (leftright) {
|
|
mhi = multadd(mhi, 10, 0);
|
|
if (mhi == NULL)
|
|
return NULL;
|
|
}
|
|
ilim = ilim1;
|
|
}
|
|
}
|
|
if (ilim <= 0 && (mode == 3 || mode == 5)) {
|
|
if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
|
|
/* no digits, fcvt style */
|
|
no_digits:
|
|
k = -1 - ndigits;
|
|
goto ret;
|
|
}
|
|
one_digit:
|
|
*s++ = '1';
|
|
k++;
|
|
goto ret;
|
|
}
|
|
if (leftright) {
|
|
if (m2 > 0) {
|
|
mhi = lshift(mhi, m2);
|
|
if (mhi == NULL)
|
|
return NULL;
|
|
}
|
|
|
|
/* Compute mlo -- check for special case
|
|
* that d is a normalized power of 2.
|
|
*/
|
|
|
|
mlo = mhi;
|
|
if (spec_case) {
|
|
mhi = Balloc(mhi->k);
|
|
if (mhi == NULL)
|
|
return NULL;
|
|
Bcopy(mhi, mlo);
|
|
mhi = lshift(mhi, Log2P);
|
|
if (mhi == NULL)
|
|
return NULL;
|
|
}
|
|
|
|
for(i = 1;;i++) {
|
|
dig = quorem(b,S) + '0';
|
|
/* Do we yet have the shortest decimal string
|
|
* that will round to d?
|
|
*/
|
|
j = cmp(b, mlo);
|
|
delta = diff(S, mhi);
|
|
if (delta == NULL)
|
|
return NULL;
|
|
jj1 = delta->sign ? 1 : cmp(b, delta);
|
|
Bfree(delta);
|
|
#ifndef ROUND_BIASED
|
|
if (jj1 == 0 && mode != 1 && !(word1(d) & 1)
|
|
#ifdef Honor_FLT_ROUNDS
|
|
&& rounding >= 1
|
|
#endif
|
|
) {
|
|
if (dig == '9')
|
|
goto round_9_up;
|
|
if (j > 0)
|
|
dig++;
|
|
#ifdef SET_INEXACT
|
|
else if (!b->x[0] && b->wds <= 1)
|
|
inexact = 0;
|
|
#endif
|
|
*s++ = dig;
|
|
goto ret;
|
|
}
|
|
#endif
|
|
if (j < 0 || (j == 0 && mode != 1
|
|
#ifndef ROUND_BIASED
|
|
&& !(word1(d) & 1)
|
|
#endif
|
|
)) {
|
|
if (!b->x[0] && b->wds <= 1) {
|
|
#ifdef SET_INEXACT
|
|
inexact = 0;
|
|
#endif
|
|
goto accept_dig;
|
|
}
|
|
#ifdef Honor_FLT_ROUNDS
|
|
if (mode > 1)
|
|
switch(rounding) {
|
|
case 0: goto accept_dig;
|
|
case 2: goto keep_dig;
|
|
}
|
|
#endif /*Honor_FLT_ROUNDS*/
|
|
if (jj1 > 0) {
|
|
b = lshift(b, 1);
|
|
if (b == NULL)
|
|
return NULL;
|
|
jj1 = cmp(b, S);
|
|
if ((jj1 > 0 || (jj1 == 0 && dig & 1))
|
|
&& dig++ == '9')
|
|
goto round_9_up;
|
|
}
|
|
accept_dig:
|
|
*s++ = dig;
|
|
goto ret;
|
|
}
|
|
if (jj1 > 0) {
|
|
#ifdef Honor_FLT_ROUNDS
|
|
if (!rounding)
|
|
goto accept_dig;
|
|
#endif
|
|
if (dig == '9') { /* possible if i == 1 */
|
|
round_9_up:
|
|
*s++ = '9';
|
|
goto roundoff;
|
|
}
|
|
*s++ = dig + 1;
|
|
goto ret;
|
|
}
|
|
#ifdef Honor_FLT_ROUNDS
|
|
keep_dig:
|
|
#endif
|
|
*s++ = dig;
|
|
if (i == ilim)
|
|
break;
|
|
b = multadd(b, 10, 0);
|
|
if (b == NULL)
|
|
return NULL;
|
|
if (mlo == mhi) {
|
|
mlo = mhi = multadd(mhi, 10, 0);
|
|
if (mlo == NULL)
|
|
return NULL;
|
|
}
|
|
else {
|
|
mlo = multadd(mlo, 10, 0);
|
|
if (mlo == NULL)
|
|
return NULL;
|
|
mhi = multadd(mhi, 10, 0);
|
|
if (mhi == NULL)
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
for(i = 1;; i++) {
|
|
*s++ = dig = quorem(b,S) + '0';
|
|
if (!b->x[0] && b->wds <= 1) {
|
|
#ifdef SET_INEXACT
|
|
inexact = 0;
|
|
#endif
|
|
goto ret;
|
|
}
|
|
if (i >= ilim)
|
|
break;
|
|
b = multadd(b, 10, 0);
|
|
if (b == NULL)
|
|
return NULL;
|
|
}
|
|
|
|
/* Round off last digit */
|
|
|
|
#ifdef Honor_FLT_ROUNDS
|
|
switch(rounding) {
|
|
case 0: goto trimzeros;
|
|
case 2: goto roundoff;
|
|
}
|
|
#endif
|
|
b = lshift(b, 1);
|
|
j = cmp(b, S);
|
|
if (j > 0 || (j == 0 && dig & 1)) {
|
|
roundoff:
|
|
while(*--s == '9')
|
|
if (s == s0) {
|
|
k++;
|
|
*s++ = '1';
|
|
goto ret;
|
|
}
|
|
++*s++;
|
|
}
|
|
else {
|
|
#ifdef Honor_FLT_ROUNDS
|
|
trimzeros:
|
|
#endif
|
|
while(*--s == '0');
|
|
s++;
|
|
}
|
|
ret:
|
|
Bfree(S);
|
|
if (mhi) {
|
|
if (mlo && mlo != mhi)
|
|
Bfree(mlo);
|
|
Bfree(mhi);
|
|
}
|
|
ret1:
|
|
#ifdef SET_INEXACT
|
|
if (inexact) {
|
|
if (!oldinexact) {
|
|
word0(d) = Exp_1 + (70 << Exp_shift);
|
|
word1(d) = 0;
|
|
dval(d) += 1.;
|
|
}
|
|
}
|
|
else if (!oldinexact)
|
|
clear_inexact();
|
|
#endif
|
|
Bfree(b);
|
|
if (s == s0) { /* don't return empty string */
|
|
*s++ = '0';
|
|
k = 0;
|
|
}
|
|
*s = 0;
|
|
*decpt = k + 1;
|
|
if (rve)
|
|
*rve = s;
|
|
return s0;
|
|
}
|