f14fb60209
* Updating common/lib * Updating lib/csu * Updating lib/libc * Updating libexec/ld.elf_so * Corrected test on __minix in featuretest to actually follow the meaning of the comment. * Cleaned up _REENTRANT-related defintions. * Disabled -D_REENTRANT for libfetch * Removing some unneeded __NBSD_LIBC defines and tests Change-Id: Ic1394baef74d11b9f86b312f5ff4bbc3cbf72ce2
712 lines
18 KiB
C
712 lines
18 KiB
C
/* $NetBSD: hppa_reloc.c,v 1.42 2012/01/06 10:38:57 skrll Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2002, 2004 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Matt Fredette and Nick Hudson.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
#ifndef lint
|
|
__RCSID("$NetBSD: hppa_reloc.c,v 1.42 2012/01/06 10:38:57 skrll Exp $");
|
|
#endif /* not lint */
|
|
|
|
#include <stdlib.h>
|
|
#include <sys/types.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include "rtld.h"
|
|
#include "debug.h"
|
|
|
|
#ifdef RTLD_DEBUG_HPPA
|
|
#define hdbg(x) xprintf x
|
|
#else
|
|
#define hdbg(x) /* nothing */
|
|
#endif
|
|
|
|
caddr_t _rtld_bind(const Obj_Entry *, const Elf_Addr);
|
|
void _rtld_bind_start(void);
|
|
void __rtld_setup_hppa_pltgot(const Obj_Entry *, Elf_Addr *);
|
|
|
|
/*
|
|
* It is possible for the compiler to emit relocations for unaligned data.
|
|
* We handle this situation with these inlines.
|
|
*/
|
|
#define RELOC_ALIGNED_P(x) \
|
|
(((uintptr_t)(x) & (sizeof(void *) - 1)) == 0)
|
|
|
|
static inline Elf_Addr
|
|
load_ptr(void *where)
|
|
{
|
|
if (__predict_true(RELOC_ALIGNED_P(where)))
|
|
return *(Elf_Addr *)where;
|
|
else {
|
|
Elf_Addr res;
|
|
|
|
(void)memcpy(&res, where, sizeof(res));
|
|
return res;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
store_ptr(void *where, Elf_Addr val)
|
|
{
|
|
if (__predict_true(RELOC_ALIGNED_P(where)))
|
|
*(Elf_Addr *)where = val;
|
|
else
|
|
(void)memcpy(where, &val, sizeof(val));
|
|
}
|
|
|
|
static __inline void
|
|
fdc(void *addr)
|
|
{
|
|
__asm volatile("fdc %%r0(%%sr0, %0)" : : "r" (addr));
|
|
}
|
|
|
|
static __inline void
|
|
fic(void *addr)
|
|
{
|
|
__asm volatile("fic %%r0(%%sr0,%0)" : : "r" (addr));
|
|
}
|
|
|
|
static __inline void
|
|
sync(void)
|
|
{
|
|
__asm volatile("sync" : : : "memory");
|
|
}
|
|
|
|
#define PLT_STUB_MAGIC1 0x00c0ffee
|
|
#define PLT_STUB_MAGIC2 0xdeadbeef
|
|
|
|
#define PLT_STUB_INSN1 0x0e801081 /* ldw 0(%r20), %r1 */
|
|
#define PLT_STUB_INSN2 0xe820c000 /* bv %r0(%r1) */
|
|
|
|
/*
|
|
* In the runtime architecture (ABI), PLABEL function pointers are
|
|
* distinguished from normal function pointers by having the next-least-
|
|
* significant bit set. (This bit is referred to as the L field in HP
|
|
* documentation). The $$dyncall millicode is aware of this.
|
|
*/
|
|
#define RTLD_MAKE_PLABEL(plabel) (((Elf_Addr)(plabel)) | (1 << 1))
|
|
#define RTLD_IS_PLABEL(addr) (((Elf_Addr)(addr)) & (1 << 1))
|
|
#define RTLD_GET_PLABEL(addr) ((hppa_plabel *) (((Elf_Addr)addr) & ~3))
|
|
|
|
/*
|
|
* This is the PLABEL structure. The function PC and
|
|
* shared linkage members must come first, as they are
|
|
* the actual PLABEL.
|
|
*/
|
|
typedef struct _hppa_plabel {
|
|
Elf_Addr hppa_plabel_pc;
|
|
Elf_Addr hppa_plabel_sl;
|
|
SLIST_ENTRY(_hppa_plabel) hppa_plabel_next;
|
|
} hppa_plabel;
|
|
|
|
/*
|
|
* For now allocated PLABEL structures are tracked on a
|
|
* singly linked list. This maybe should be revisited.
|
|
*/
|
|
static SLIST_HEAD(hppa_plabel_head, _hppa_plabel) hppa_plabel_list
|
|
= SLIST_HEAD_INITIALIZER(hppa_plabel_list);
|
|
|
|
/*
|
|
* Because I'm hesitant to use NEW while relocating self,
|
|
* this is a small pool of preallocated PLABELs.
|
|
*/
|
|
#define HPPA_PLABEL_PRE (32)
|
|
static hppa_plabel hppa_plabel_pre[HPPA_PLABEL_PRE];
|
|
static int hppa_plabel_pre_next = 0;
|
|
|
|
void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
|
|
int _rtld_relocate_plt_objects(const Obj_Entry *);
|
|
static inline int _rtld_relocate_plt_object(const Obj_Entry *,
|
|
const Elf_Rela *, Elf_Addr *);
|
|
|
|
/*
|
|
* This bootstraps the dynamic linker by relocating its GOT.
|
|
* On the hppa, unlike on other architectures, static strings
|
|
* are found through the GOT. Static strings are essential
|
|
* for RTLD_DEBUG, and I suspect they're used early even when
|
|
* !defined(RTLD_DEBUG), making relocating the GOT essential.
|
|
*
|
|
* It gets worse. Relocating the GOT doesn't mean just walking
|
|
* it and adding the relocbase to all of the entries. You must
|
|
* find and use the GOT relocations, since those RELA relocations
|
|
* have the necessary addends - the GOT comes initialized as
|
|
* zeroes.
|
|
*/
|
|
void
|
|
_rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
|
|
{
|
|
const Elf_Rela *relafirst, *rela, *relalim;
|
|
Elf_Addr relasz;
|
|
void *where;
|
|
Elf_Addr *pltgot;
|
|
const Elf_Rela *plabel_relocs[HPPA_PLABEL_PRE];
|
|
int nplabel_relocs = 0;
|
|
int i;
|
|
const Elf_Sym *symtab, *sym;
|
|
unsigned long symnum;
|
|
hppa_plabel *plabel;
|
|
|
|
/*
|
|
* Process the DYNAMIC section, looking for the non-PLT relocations.
|
|
*/
|
|
relafirst = NULL;
|
|
relasz = 0;
|
|
symtab = NULL;
|
|
pltgot = NULL;
|
|
for (; dynp->d_tag != DT_NULL; ++dynp) {
|
|
switch (dynp->d_tag) {
|
|
|
|
case DT_RELA:
|
|
relafirst = (const Elf_Rela *)
|
|
(relocbase + dynp->d_un.d_ptr);
|
|
break;
|
|
|
|
case DT_RELASZ:
|
|
relasz = dynp->d_un.d_val;
|
|
break;
|
|
|
|
case DT_SYMTAB:
|
|
symtab = (const Elf_Sym *)
|
|
(relocbase + dynp->d_un.d_ptr);
|
|
break;
|
|
|
|
case DT_PLTGOT:
|
|
pltgot = (Elf_Addr *)
|
|
(relocbase + dynp->d_un.d_ptr);
|
|
break;
|
|
}
|
|
}
|
|
relalim = (const Elf_Rela *)((const char *)relafirst + relasz);
|
|
|
|
for (rela = relafirst; rela < relalim; rela++) {
|
|
symnum = ELF_R_SYM(rela->r_info);
|
|
where = (void *)(relocbase + rela->r_offset);
|
|
|
|
switch (ELF_R_TYPE(rela->r_info)) {
|
|
case R_TYPE(DIR32):
|
|
if (symnum == 0)
|
|
store_ptr(where,
|
|
relocbase + rela->r_addend);
|
|
else {
|
|
sym = symtab + symnum;
|
|
store_ptr(where,
|
|
relocbase + rela->r_addend + sym->st_value);
|
|
}
|
|
break;
|
|
|
|
case R_TYPE(PLABEL32):
|
|
/*
|
|
* PLABEL32 relocation processing is done in two phases
|
|
*
|
|
* i) local function relocations (symbol number == 0)
|
|
* can be resolved immediately.
|
|
*
|
|
* ii) external function relocations are deferred until
|
|
* we finish all other relocations so that global
|
|
* data isn't accessed until all other non-PLT
|
|
* relocations have been done.
|
|
*/
|
|
if (symnum == 0)
|
|
*((Elf_Addr *)where) =
|
|
relocbase + rela->r_addend;
|
|
else
|
|
plabel_relocs[nplabel_relocs++] = rela;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(nplabel_relocs < HPPA_PLABEL_PRE);
|
|
for (i = 0; i < nplabel_relocs; i++) {
|
|
rela = plabel_relocs[i];
|
|
where = (void *)(relocbase + rela->r_offset);
|
|
sym = symtab + ELF_R_SYM(rela->r_info);
|
|
|
|
plabel = &hppa_plabel_pre[hppa_plabel_pre_next++];
|
|
|
|
plabel->hppa_plabel_pc = (Elf_Addr)
|
|
(relocbase + sym->st_value + rela->r_addend);
|
|
plabel->hppa_plabel_sl = (Elf_Addr)pltgot;
|
|
|
|
SLIST_INSERT_HEAD(&hppa_plabel_list, plabel, hppa_plabel_next);
|
|
*((Elf_Addr *)where) = (Elf_Addr)(RTLD_MAKE_PLABEL(plabel));
|
|
}
|
|
|
|
#if defined(RTLD_DEBUG_HPPA)
|
|
for (rela = relafirst; rela < relalim; rela++) {
|
|
where = (void *)(relocbase + rela->r_offset);
|
|
|
|
switch (ELF_R_TYPE(rela->r_info)) {
|
|
case R_TYPE(DIR32):
|
|
hdbg(("DIR32 rela @%p(%p) -> %p(%p)\n",
|
|
(void *)rela->r_offset,
|
|
(void *)where,
|
|
(void *)rela->r_addend,
|
|
(void *)*((Elf_Addr *)where) ));
|
|
break;
|
|
|
|
case R_TYPE(PLABEL32):
|
|
symnum = ELF_R_SYM(rela->r_info);
|
|
if (symnum == 0) {
|
|
hdbg(("PLABEL rela @%p(%p) -> %p(%p)\n",
|
|
(void *)rela->r_offset,
|
|
(void *)where,
|
|
(void *)rela->r_addend,
|
|
(void *)*((Elf_Addr *)where) ));
|
|
} else {
|
|
sym = symtab + symnum;
|
|
|
|
hdbg(("PLABEL32 rela @%p(%p), symnum=%ld(%p) -> %p(%p)\n",
|
|
(void *)rela->r_offset,
|
|
(void *)where,
|
|
symnum,
|
|
(void *)sym->st_value,
|
|
(void *)rela->r_addend,
|
|
(void *)*((Elf_Addr *)where) ));
|
|
}
|
|
break;
|
|
default:
|
|
hdbg(("rela XXX reloc\n"));
|
|
break;
|
|
}
|
|
}
|
|
#endif /* RTLD_DEBUG_HPPA */
|
|
}
|
|
|
|
/*
|
|
* This allocates a PLABEL. If called with a non-NULL def, the
|
|
* plabel is for the function associated with that definition
|
|
* in the defining object defobj, plus the given addend. If
|
|
* called with a NULL def, the plabel is for the function at
|
|
* the (unrelocated) address in addend in the object defobj.
|
|
*/
|
|
Elf_Addr
|
|
_rtld_function_descriptor_alloc(const Obj_Entry *defobj, const Elf_Sym *def,
|
|
Elf_Addr addend)
|
|
{
|
|
Elf_Addr func_pc, func_sl;
|
|
hppa_plabel *plabel;
|
|
|
|
if (def != NULL) {
|
|
|
|
/*
|
|
* We assume that symbols of type STT_NOTYPE
|
|
* are undefined. Return NULL for these.
|
|
*/
|
|
if (ELF_ST_TYPE(def->st_info) == STT_NOTYPE)
|
|
return (Elf_Addr)NULL;
|
|
|
|
/* Otherwise assert that this symbol must be a function. */
|
|
assert(ELF_ST_TYPE(def->st_info) == STT_FUNC);
|
|
|
|
func_pc = (Elf_Addr)(defobj->relocbase + def->st_value +
|
|
addend);
|
|
} else
|
|
func_pc = (Elf_Addr)(defobj->relocbase + addend);
|
|
|
|
/*
|
|
* Search the existing PLABELs for one matching
|
|
* this function. If there is one, return it.
|
|
*/
|
|
func_sl = (Elf_Addr)(defobj->pltgot);
|
|
SLIST_FOREACH(plabel, &hppa_plabel_list, hppa_plabel_next)
|
|
if (plabel->hppa_plabel_pc == func_pc &&
|
|
plabel->hppa_plabel_sl == func_sl)
|
|
return RTLD_MAKE_PLABEL(plabel);
|
|
|
|
/*
|
|
* Once we've used up the preallocated set, we start
|
|
* using NEW to allocate plabels.
|
|
*/
|
|
if (hppa_plabel_pre_next < HPPA_PLABEL_PRE)
|
|
plabel = &hppa_plabel_pre[hppa_plabel_pre_next++];
|
|
else {
|
|
plabel = NEW(hppa_plabel);
|
|
if (plabel == NULL)
|
|
return (Elf_Addr)-1;
|
|
}
|
|
|
|
/* Fill the new entry and insert it on the list. */
|
|
plabel->hppa_plabel_pc = func_pc;
|
|
plabel->hppa_plabel_sl = func_sl;
|
|
SLIST_INSERT_HEAD(&hppa_plabel_list, plabel, hppa_plabel_next);
|
|
|
|
return RTLD_MAKE_PLABEL(plabel);
|
|
}
|
|
|
|
/*
|
|
* If a pointer is a PLABEL, this unwraps it.
|
|
*/
|
|
const void *
|
|
_rtld_function_descriptor_function(const void *addr)
|
|
{
|
|
return (RTLD_IS_PLABEL(addr) ?
|
|
(const void *) RTLD_GET_PLABEL(addr)->hppa_plabel_pc :
|
|
addr);
|
|
}
|
|
|
|
/* This sets up an object's GOT. */
|
|
void
|
|
_rtld_setup_pltgot(const Obj_Entry *obj)
|
|
{
|
|
Elf_Word *got = obj->pltgot;
|
|
|
|
assert(got[-2] == PLT_STUB_MAGIC1);
|
|
assert(got[-1] == PLT_STUB_MAGIC2);
|
|
|
|
__rtld_setup_hppa_pltgot(obj, got);
|
|
|
|
fdc(&got[-2]);
|
|
fdc(&got[-1]);
|
|
fdc(&got[1]);
|
|
sync();
|
|
fic(&got[-2]);
|
|
fic(&got[-1]);
|
|
fic(&got[1]);
|
|
sync();
|
|
|
|
/*
|
|
* libc makes use of %t1 (%r22) to pass errno values to __cerror. Fixup
|
|
* the PLT stub to not use %r22.
|
|
*/
|
|
got[-7] = PLT_STUB_INSN1;
|
|
got[-6] = PLT_STUB_INSN2;
|
|
fdc(&got[-7]);
|
|
fdc(&got[-6]);
|
|
sync();
|
|
fic(&got[-7]);
|
|
fic(&got[-6]);
|
|
sync();
|
|
}
|
|
|
|
int
|
|
_rtld_relocate_nonplt_objects(Obj_Entry *obj)
|
|
{
|
|
const Elf_Rela *rela;
|
|
|
|
for (rela = obj->rela; rela < obj->relalim; rela++) {
|
|
Elf_Addr *where;
|
|
const Elf_Sym *def;
|
|
const Obj_Entry *defobj;
|
|
Elf_Addr tmp;
|
|
unsigned long symnum;
|
|
|
|
where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
|
|
symnum = ELF_R_SYM(rela->r_info);
|
|
|
|
switch (ELF_R_TYPE(rela->r_info)) {
|
|
case R_TYPE(NONE):
|
|
break;
|
|
|
|
case R_TYPE(DIR32):
|
|
if (symnum) {
|
|
/*
|
|
* This is either a DIR32 against a symbol
|
|
* (def->st_name != 0), or against a local
|
|
* section (def->st_name == 0).
|
|
*/
|
|
def = obj->symtab + symnum;
|
|
defobj = obj;
|
|
if (def->st_name != 0)
|
|
def = _rtld_find_symdef(symnum, obj,
|
|
&defobj, false);
|
|
if (def == NULL)
|
|
return -1;
|
|
|
|
tmp = (Elf_Addr)(defobj->relocbase +
|
|
def->st_value + rela->r_addend);
|
|
|
|
if (load_ptr(where) != tmp)
|
|
store_ptr(where, tmp);
|
|
rdbg(("DIR32 %s in %s --> %p in %s",
|
|
obj->strtab + obj->symtab[symnum].st_name,
|
|
obj->path, (void *)load_ptr(where),
|
|
defobj->path));
|
|
} else {
|
|
tmp = (Elf_Addr)(obj->relocbase +
|
|
rela->r_addend);
|
|
|
|
if (load_ptr(where) != tmp)
|
|
store_ptr(where, tmp);
|
|
rdbg(("DIR32 in %s --> %p", obj->path,
|
|
(void *)load_ptr(where)));
|
|
}
|
|
break;
|
|
|
|
case R_TYPE(PLABEL32):
|
|
if (symnum) {
|
|
def = _rtld_find_symdef(symnum, obj, &defobj,
|
|
false);
|
|
if (def == NULL)
|
|
return -1;
|
|
|
|
tmp = _rtld_function_descriptor_alloc(defobj,
|
|
def, rela->r_addend);
|
|
if (tmp == (Elf_Addr)-1)
|
|
return -1;
|
|
|
|
if (*where != tmp)
|
|
*where = tmp;
|
|
rdbg(("PLABEL32 %s in %s --> %p in %s",
|
|
obj->strtab + obj->symtab[symnum].st_name,
|
|
obj->path, (void *)*where, defobj->path));
|
|
} else {
|
|
/*
|
|
* This is a PLABEL for a static function, and
|
|
* the dynamic linker has both allocated a PLT
|
|
* entry for this function and told us where it
|
|
* is. We can safely use the PLT entry as the
|
|
* PLABEL because there should be no other
|
|
* PLABEL reloc referencing this function.
|
|
* This object should also have an IPLT
|
|
* relocation to initialize the PLT entry.
|
|
*
|
|
* The dynamic linker should also have ensured
|
|
* that the addend has the
|
|
* next-least-significant bit set; the
|
|
* $$dyncall millicode uses this to distinguish
|
|
* a PLABEL pointer from a plain function
|
|
* pointer.
|
|
*/
|
|
tmp = (Elf_Addr)
|
|
(obj->relocbase + rela->r_addend);
|
|
|
|
if (*where != tmp)
|
|
*where = tmp;
|
|
rdbg(("PLABEL32 in %s --> %p", obj->path,
|
|
(void *)*where));
|
|
}
|
|
break;
|
|
|
|
case R_TYPE(COPY):
|
|
/*
|
|
* These are deferred until all other relocations have
|
|
* been done. All we do here is make sure that the
|
|
* COPY relocation is not in a shared library. They
|
|
* are allowed only in executable files.
|
|
*/
|
|
if (obj->isdynamic) {
|
|
_rtld_error(
|
|
"%s: Unexpected R_COPY relocation in shared library",
|
|
obj->path);
|
|
return -1;
|
|
}
|
|
rdbg(("COPY (avoid in main)"));
|
|
break;
|
|
|
|
case R_TYPE(TLS_TPREL32):
|
|
def = _rtld_find_symdef(symnum, obj, &defobj, false);
|
|
if (def == NULL)
|
|
return -1;
|
|
|
|
if (!defobj->tls_done && _rtld_tls_offset_allocate(obj))
|
|
return -1;
|
|
|
|
*where = (Elf_Addr)(defobj->tlsoffset + def->st_value +
|
|
rela->r_addend + sizeof(struct tls_tcb));
|
|
|
|
rdbg(("TPREL32 %s in %s --> %p in %s",
|
|
obj->strtab + obj->symtab[symnum].st_name,
|
|
obj->path, (void *)*where, defobj->path));
|
|
break;
|
|
|
|
case R_TYPE(TLS_DTPMOD32):
|
|
def = _rtld_find_symdef(symnum, obj, &defobj, false);
|
|
if (def == NULL)
|
|
return -1;
|
|
|
|
*where = (Elf_Addr)(defobj->tlsindex);
|
|
|
|
rdbg(("TLS_DTPMOD32 %s in %s --> %p",
|
|
obj->strtab + obj->symtab[symnum].st_name,
|
|
obj->path, (void *)*where));
|
|
|
|
break;
|
|
|
|
case R_TYPE(TLS_DTPOFF32):
|
|
def = _rtld_find_symdef(symnum, obj, &defobj, false);
|
|
if (def == NULL)
|
|
return -1;
|
|
|
|
*where = (Elf_Addr)(def->st_value);
|
|
|
|
rdbg(("TLS_DTPOFF32 %s in %s --> %p",
|
|
obj->strtab + obj->symtab[symnum].st_name,
|
|
obj->path, (void *)*where));
|
|
|
|
break;
|
|
|
|
default:
|
|
rdbg(("sym = %lu, type = %lu, offset = %p, "
|
|
"addend = %p, contents = %p, symbol = %s",
|
|
symnum, (u_long)ELF_R_TYPE(rela->r_info),
|
|
(void *)rela->r_offset, (void *)rela->r_addend,
|
|
(void *)load_ptr(where),
|
|
obj->strtab + obj->symtab[symnum].st_name));
|
|
_rtld_error("%s: Unsupported relocation type %ld "
|
|
"in non-PLT relocations",
|
|
obj->path, (u_long) ELF_R_TYPE(rela->r_info));
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
_rtld_relocate_plt_lazy(const Obj_Entry *obj)
|
|
{
|
|
const Elf_Rela *rela;
|
|
|
|
for (rela = obj->pltrela; rela < obj->pltrelalim; rela++) {
|
|
Elf_Addr *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
|
|
Elf_Addr func_pc, func_sl;
|
|
|
|
assert(ELF_R_TYPE(rela->r_info) == R_TYPE(IPLT));
|
|
|
|
/*
|
|
* If this is an IPLT reloc for a static function,
|
|
* fully resolve the PLT entry now.
|
|
*/
|
|
if (ELF_R_SYM(rela->r_info) == 0) {
|
|
func_pc = (Elf_Addr)(obj->relocbase + rela->r_addend);
|
|
func_sl = (Elf_Addr)(obj->pltgot);
|
|
}
|
|
|
|
/*
|
|
* Otherwise set up for lazy binding.
|
|
*/
|
|
else {
|
|
/*
|
|
* This function pointer points to the PLT
|
|
* stub added by the linker, and instead of
|
|
* a shared linkage value, we stash this
|
|
* relocation's offset. The PLT stub has
|
|
* already been set up to transfer to
|
|
* _rtld_bind_start.
|
|
*/
|
|
func_pc = ((Elf_Addr)(obj->pltgot)) - 16;
|
|
func_sl = (Elf_Addr)
|
|
((const char *)rela - (const char *)(obj->pltrela));
|
|
}
|
|
rdbg(("lazy bind %s(%p) --> old=(%p,%p) new=(%p,%p)",
|
|
obj->path,
|
|
(void *)where,
|
|
(void *)where[0], (void *)where[1],
|
|
(void *)func_pc, (void *)func_sl));
|
|
|
|
/*
|
|
* Fill this PLT entry and return.
|
|
*/
|
|
where[0] = func_pc;
|
|
where[1] = func_sl;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
_rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela,
|
|
Elf_Addr *tp)
|
|
{
|
|
Elf_Word *where = (Elf_Word *)(obj->relocbase + rela->r_offset);
|
|
const Elf_Sym *def;
|
|
const Obj_Entry *defobj;
|
|
Elf_Addr func_pc, func_sl;
|
|
unsigned long info = rela->r_info;
|
|
|
|
assert(ELF_R_TYPE(info) == R_TYPE(IPLT));
|
|
|
|
if (ELF_R_SYM(info) == 0) {
|
|
func_pc = (Elf_Addr)(obj->relocbase + rela->r_addend);
|
|
func_sl = (Elf_Addr)(obj->pltgot);
|
|
} else {
|
|
def = _rtld_find_plt_symdef(ELF_R_SYM(info), obj, &defobj,
|
|
tp != NULL);
|
|
if (__predict_false(def == NULL))
|
|
return -1;
|
|
if (__predict_false(def == &_rtld_sym_zero))
|
|
return 0;
|
|
|
|
func_pc = (Elf_Addr)(defobj->relocbase + def->st_value +
|
|
rela->r_addend);
|
|
func_sl = (Elf_Addr)(defobj->pltgot);
|
|
|
|
rdbg(("bind now/fixup in %s --> old=(%p,%p) new=(%p,%p)",
|
|
defobj->strtab + def->st_name,
|
|
(void *)where[0], (void *)where[1],
|
|
(void *)func_pc, (void *)func_sl));
|
|
}
|
|
/*
|
|
* Fill this PLT entry and return.
|
|
*/
|
|
if (where[0] != func_pc)
|
|
where[0] = func_pc;
|
|
if (where[1] != func_sl)
|
|
where[1] = func_sl;
|
|
|
|
if (tp)
|
|
*tp = (Elf_Addr)where;
|
|
|
|
return 0;
|
|
}
|
|
|
|
caddr_t
|
|
_rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
|
|
{
|
|
const Elf_Rela *rela;
|
|
Elf_Addr new_value = 0; /* XXX gcc */
|
|
int err;
|
|
|
|
rela = (const Elf_Rela *)((const char *)obj->pltrela + reloff);
|
|
|
|
assert(ELF_R_SYM(rela->r_info) != 0);
|
|
|
|
_rtld_shared_enter();
|
|
err = _rtld_relocate_plt_object(obj, rela, &new_value);
|
|
if (err)
|
|
_rtld_die();
|
|
_rtld_shared_exit();
|
|
|
|
return (caddr_t)new_value;
|
|
}
|
|
|
|
int
|
|
_rtld_relocate_plt_objects(const Obj_Entry *obj)
|
|
{
|
|
const Elf_Rela *rela = obj->pltrela;
|
|
|
|
for (; rela < obj->pltrelalim; rela++) {
|
|
if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|