e985b92992
Change-Id: Ic75f4cac5eb07ffaba8f97d10673d7d7e2b1762d
2492 lines
54 KiB
C
2492 lines
54 KiB
C
/* $NetBSD: regress.c,v 1.7 2013/04/12 17:50:27 christos Exp $ */
|
|
/*
|
|
* Copyright (c) 2003-2007 Niels Provos <provos@citi.umich.edu>
|
|
* Copyright (c) 2007-2012 Niels Provos and Nick Mathewson
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef WIN32
|
|
#include <winsock2.h>
|
|
#include <windows.h>
|
|
#endif
|
|
|
|
#include "event2/event-config.h"
|
|
#include <sys/cdefs.h>
|
|
__RCSID("$NetBSD: regress.c,v 1.7 2013/04/12 17:50:27 christos Exp $");
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#ifdef _EVENT_HAVE_SYS_TIME_H
|
|
#include <sys/time.h>
|
|
#endif
|
|
#include <sys/queue.h>
|
|
#ifndef WIN32
|
|
#include <sys/socket.h>
|
|
#include <sys/wait.h>
|
|
#include <signal.h>
|
|
#include <unistd.h>
|
|
#include <netdb.h>
|
|
#endif
|
|
#include <fcntl.h>
|
|
#include <signal.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
|
|
#include "event2/event.h"
|
|
#include "event2/event_struct.h"
|
|
#include "event2/event_compat.h"
|
|
#include "event2/tag.h"
|
|
#include "event2/buffer.h"
|
|
#include "event2/buffer_compat.h"
|
|
#include "event2/util.h"
|
|
#include "event-internal.h"
|
|
#include "evthread-internal.h"
|
|
#include "util-internal.h"
|
|
#include "log-internal.h"
|
|
|
|
#include "regress.h"
|
|
|
|
#ifndef WIN32
|
|
#include "regress.gen.h"
|
|
#endif
|
|
|
|
evutil_socket_t pair[2];
|
|
int test_ok;
|
|
int called;
|
|
struct event_base *global_base;
|
|
|
|
static char wbuf[4096];
|
|
static char rbuf[4096];
|
|
static int woff;
|
|
static int roff;
|
|
static int usepersist;
|
|
static struct timeval tset;
|
|
static struct timeval tcalled;
|
|
|
|
|
|
#define TEST1 "this is a test"
|
|
#define SECONDS 1
|
|
|
|
#ifndef SHUT_WR
|
|
#define SHUT_WR 1
|
|
#endif
|
|
|
|
#ifdef WIN32
|
|
#define write(fd,buf,len) send((fd),(buf),(int)(len),0)
|
|
#define read(fd,buf,len) recv((fd),(buf),(int)(len),0)
|
|
#endif
|
|
|
|
struct basic_cb_args
|
|
{
|
|
struct event_base *eb;
|
|
struct event *ev;
|
|
unsigned int callcount;
|
|
};
|
|
|
|
static void
|
|
simple_read_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
char buf[256];
|
|
int len;
|
|
|
|
len = read(fd, buf, sizeof(buf));
|
|
|
|
if (len) {
|
|
if (!called) {
|
|
if (event_add(arg, NULL) == -1)
|
|
exit(1);
|
|
}
|
|
} else if (called == 1)
|
|
test_ok = 1;
|
|
|
|
called++;
|
|
}
|
|
|
|
static void
|
|
basic_read_cb(evutil_socket_t fd, short event, void *data)
|
|
{
|
|
char buf[256];
|
|
int len;
|
|
struct basic_cb_args *arg = data;
|
|
|
|
len = read(fd, buf, sizeof(buf));
|
|
|
|
if (len < 0) {
|
|
tt_fail_perror("read (callback)");
|
|
} else {
|
|
switch (arg->callcount++) {
|
|
case 0: /* first call: expect to read data; cycle */
|
|
if (len > 0)
|
|
return;
|
|
|
|
tt_fail_msg("EOF before data read");
|
|
break;
|
|
|
|
case 1: /* second call: expect EOF; stop */
|
|
if (len > 0)
|
|
tt_fail_msg("not all data read on first cycle");
|
|
break;
|
|
|
|
default: /* third call: should not happen */
|
|
tt_fail_msg("too many cycles");
|
|
}
|
|
}
|
|
|
|
event_del(arg->ev);
|
|
event_base_loopexit(arg->eb, NULL);
|
|
}
|
|
|
|
static void
|
|
dummy_read_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
}
|
|
|
|
static void
|
|
simple_write_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
int len;
|
|
|
|
len = write(fd, TEST1, strlen(TEST1) + 1);
|
|
if (len == -1)
|
|
test_ok = 0;
|
|
else
|
|
test_ok = 1;
|
|
}
|
|
|
|
static void
|
|
multiple_write_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
struct event *ev = arg;
|
|
int len;
|
|
|
|
len = 128;
|
|
if (woff + len >= (int)sizeof(wbuf))
|
|
len = sizeof(wbuf) - woff;
|
|
|
|
len = write(fd, wbuf + woff, len);
|
|
if (len == -1) {
|
|
fprintf(stderr, "%s: write\n", __func__);
|
|
if (usepersist)
|
|
event_del(ev);
|
|
return;
|
|
}
|
|
|
|
woff += len;
|
|
|
|
if (woff >= (int)sizeof(wbuf)) {
|
|
shutdown(fd, SHUT_WR);
|
|
if (usepersist)
|
|
event_del(ev);
|
|
return;
|
|
}
|
|
|
|
if (!usepersist) {
|
|
if (event_add(ev, NULL) == -1)
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
static void
|
|
multiple_read_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
struct event *ev = arg;
|
|
int len;
|
|
|
|
len = read(fd, rbuf + roff, sizeof(rbuf) - roff);
|
|
if (len == -1)
|
|
fprintf(stderr, "%s: read\n", __func__);
|
|
if (len <= 0) {
|
|
if (usepersist)
|
|
event_del(ev);
|
|
return;
|
|
}
|
|
|
|
roff += len;
|
|
if (!usepersist) {
|
|
if (event_add(ev, NULL) == -1)
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
static void
|
|
timeout_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
struct timeval tv;
|
|
int diff;
|
|
|
|
evutil_gettimeofday(&tcalled, NULL);
|
|
if (evutil_timercmp(&tcalled, &tset, >))
|
|
evutil_timersub(&tcalled, &tset, &tv);
|
|
else
|
|
evutil_timersub(&tset, &tcalled, &tv);
|
|
|
|
diff = tv.tv_sec*1000 + tv.tv_usec/1000 - SECONDS * 1000;
|
|
if (diff < 0)
|
|
diff = -diff;
|
|
|
|
if (diff < 100)
|
|
test_ok = 1;
|
|
}
|
|
|
|
struct both {
|
|
struct event ev;
|
|
int nread;
|
|
};
|
|
|
|
static void
|
|
combined_read_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
struct both *both = arg;
|
|
char buf[128];
|
|
int len;
|
|
|
|
len = read(fd, buf, sizeof(buf));
|
|
if (len == -1)
|
|
fprintf(stderr, "%s: read\n", __func__);
|
|
if (len <= 0)
|
|
return;
|
|
|
|
both->nread += len;
|
|
if (event_add(&both->ev, NULL) == -1)
|
|
exit(1);
|
|
}
|
|
|
|
static void
|
|
combined_write_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
struct both *both = arg;
|
|
char buf[128];
|
|
int len;
|
|
|
|
len = sizeof(buf);
|
|
if (len > both->nread)
|
|
len = both->nread;
|
|
|
|
memset(buf, 'q', len);
|
|
|
|
len = write(fd, buf, len);
|
|
if (len == -1)
|
|
fprintf(stderr, "%s: write\n", __func__);
|
|
if (len <= 0) {
|
|
shutdown(fd, SHUT_WR);
|
|
return;
|
|
}
|
|
|
|
both->nread -= len;
|
|
if (event_add(&both->ev, NULL) == -1)
|
|
exit(1);
|
|
}
|
|
|
|
/* These macros used to replicate the work of the legacy test wrapper code */
|
|
#define setup_test(x) do { \
|
|
if (!in_legacy_test_wrapper) { \
|
|
TT_FAIL(("Legacy test %s not wrapped properly", x)); \
|
|
return; \
|
|
} \
|
|
} while (/*CONSTCOND*/0)
|
|
#define cleanup_test() setup_test("cleanup")
|
|
|
|
static void
|
|
test_simpleread(void)
|
|
{
|
|
struct event ev;
|
|
|
|
/* Very simple read test */
|
|
setup_test("Simple read: ");
|
|
|
|
if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
|
|
tt_fail_perror("write");
|
|
}
|
|
|
|
shutdown(pair[0], SHUT_WR);
|
|
|
|
event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev);
|
|
if (event_add(&ev, NULL) == -1)
|
|
exit(1);
|
|
event_dispatch();
|
|
|
|
cleanup_test();
|
|
}
|
|
|
|
static void
|
|
test_simplewrite(void)
|
|
{
|
|
struct event ev;
|
|
|
|
/* Very simple write test */
|
|
setup_test("Simple write: ");
|
|
|
|
event_set(&ev, pair[0], EV_WRITE, simple_write_cb, &ev);
|
|
if (event_add(&ev, NULL) == -1)
|
|
exit(1);
|
|
event_dispatch();
|
|
|
|
cleanup_test();
|
|
}
|
|
|
|
static void
|
|
simpleread_multiple_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
if (++called == 2)
|
|
test_ok = 1;
|
|
}
|
|
|
|
static void
|
|
test_simpleread_multiple(void)
|
|
{
|
|
struct event one, two;
|
|
|
|
/* Very simple read test */
|
|
setup_test("Simple read to multiple evens: ");
|
|
|
|
if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
|
|
tt_fail_perror("write");
|
|
}
|
|
|
|
shutdown(pair[0], SHUT_WR);
|
|
|
|
event_set(&one, pair[1], EV_READ, simpleread_multiple_cb, NULL);
|
|
if (event_add(&one, NULL) == -1)
|
|
exit(1);
|
|
event_set(&two, pair[1], EV_READ, simpleread_multiple_cb, NULL);
|
|
if (event_add(&two, NULL) == -1)
|
|
exit(1);
|
|
event_dispatch();
|
|
|
|
cleanup_test();
|
|
}
|
|
|
|
static int have_closed = 0;
|
|
static int premature_event = 0;
|
|
static void
|
|
simpleclose_close_fd_cb(evutil_socket_t s, short what, void *ptr)
|
|
{
|
|
evutil_socket_t **fds = ptr;
|
|
TT_BLATHER(("Closing"));
|
|
evutil_closesocket(*fds[0]);
|
|
evutil_closesocket(*fds[1]);
|
|
*fds[0] = -1;
|
|
*fds[1] = -1;
|
|
have_closed = 1;
|
|
}
|
|
|
|
static void
|
|
record_event_cb(evutil_socket_t s, short what, void *ptr)
|
|
{
|
|
short *whatp = ptr;
|
|
if (!have_closed)
|
|
premature_event = 1;
|
|
*whatp = what;
|
|
TT_BLATHER(("Recorded %d on socket %d", (int)what, (int)s));
|
|
}
|
|
|
|
static void
|
|
test_simpleclose(void *ptr)
|
|
{
|
|
/* Test that a close of FD is detected as a read and as a write. */
|
|
struct event_base *base = event_base_new();
|
|
evutil_socket_t pair1[2]={-1,-1}, pair2[2] = {-1, -1};
|
|
evutil_socket_t *to_close[2];
|
|
struct event *rev=NULL, *wev=NULL, *closeev=NULL;
|
|
struct timeval tv;
|
|
short got_read_on_close = 0, got_write_on_close = 0;
|
|
char buf[1024];
|
|
memset(buf, 99, sizeof(buf));
|
|
#ifdef WIN32
|
|
#define LOCAL_SOCKETPAIR_AF AF_INET
|
|
#else
|
|
#define LOCAL_SOCKETPAIR_AF AF_UNIX
|
|
#endif
|
|
if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair1)<0)
|
|
TT_DIE(("socketpair: %s", strerror(errno)));
|
|
if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair2)<0)
|
|
TT_DIE(("socketpair: %s", strerror(errno)));
|
|
if (evutil_make_socket_nonblocking(pair1[1]) < 0)
|
|
TT_DIE(("make_socket_nonblocking"));
|
|
if (evutil_make_socket_nonblocking(pair2[1]) < 0)
|
|
TT_DIE(("make_socket_nonblocking"));
|
|
|
|
/** Stuff pair2[1] full of data, until write fails */
|
|
while (1) {
|
|
int r = write(pair2[1], buf, sizeof(buf));
|
|
if (r<0) {
|
|
int err = evutil_socket_geterror(pair2[1]);
|
|
if (! EVUTIL_ERR_RW_RETRIABLE(err))
|
|
TT_DIE(("write failed strangely: %s",
|
|
evutil_socket_error_to_string(err)));
|
|
break;
|
|
}
|
|
}
|
|
to_close[0] = &pair1[0];
|
|
to_close[1] = &pair2[0];
|
|
|
|
closeev = event_new(base, -1, EV_TIMEOUT, simpleclose_close_fd_cb,
|
|
to_close);
|
|
rev = event_new(base, pair1[1], EV_READ, record_event_cb,
|
|
&got_read_on_close);
|
|
TT_BLATHER(("Waiting for read on %d", (int)pair1[1]));
|
|
wev = event_new(base, pair2[1], EV_WRITE, record_event_cb,
|
|
&got_write_on_close);
|
|
TT_BLATHER(("Waiting for write on %d", (int)pair2[1]));
|
|
tv.tv_sec = 0;
|
|
tv.tv_usec = 100*1000; /* Close pair1[0] after a little while, and make
|
|
* sure we get a read event. */
|
|
event_add(closeev, &tv);
|
|
event_add(rev, NULL);
|
|
event_add(wev, NULL);
|
|
/* Don't let the test go on too long. */
|
|
tv.tv_sec = 0;
|
|
tv.tv_usec = 200*1000;
|
|
event_base_loopexit(base, &tv);
|
|
event_base_loop(base, 0);
|
|
|
|
tt_int_op(got_read_on_close, ==, EV_READ);
|
|
tt_int_op(got_write_on_close, ==, EV_WRITE);
|
|
tt_int_op(premature_event, ==, 0);
|
|
|
|
end:
|
|
if (pair1[0] >= 0)
|
|
evutil_closesocket(pair1[0]);
|
|
if (pair1[1] >= 0)
|
|
evutil_closesocket(pair1[1]);
|
|
if (pair2[0] >= 0)
|
|
evutil_closesocket(pair2[0]);
|
|
if (pair2[1] >= 0)
|
|
evutil_closesocket(pair2[1]);
|
|
if (rev)
|
|
event_free(rev);
|
|
if (wev)
|
|
event_free(wev);
|
|
if (closeev)
|
|
event_free(closeev);
|
|
if (base)
|
|
event_base_free(base);
|
|
}
|
|
|
|
|
|
static void
|
|
test_multiple(void)
|
|
{
|
|
struct event ev, ev2;
|
|
int i;
|
|
|
|
/* Multiple read and write test */
|
|
setup_test("Multiple read/write: ");
|
|
memset(rbuf, 0, sizeof(rbuf));
|
|
for (i = 0; i < (int)sizeof(wbuf); i++)
|
|
wbuf[i] = i;
|
|
|
|
roff = woff = 0;
|
|
usepersist = 0;
|
|
|
|
event_set(&ev, pair[0], EV_WRITE, multiple_write_cb, &ev);
|
|
if (event_add(&ev, NULL) == -1)
|
|
exit(1);
|
|
event_set(&ev2, pair[1], EV_READ, multiple_read_cb, &ev2);
|
|
if (event_add(&ev2, NULL) == -1)
|
|
exit(1);
|
|
event_dispatch();
|
|
|
|
if (roff == woff)
|
|
test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0;
|
|
|
|
cleanup_test();
|
|
}
|
|
|
|
static void
|
|
test_persistent(void)
|
|
{
|
|
struct event ev, ev2;
|
|
int i;
|
|
|
|
/* Multiple read and write test with persist */
|
|
setup_test("Persist read/write: ");
|
|
memset(rbuf, 0, sizeof(rbuf));
|
|
for (i = 0; i < (int)sizeof(wbuf); i++)
|
|
wbuf[i] = i;
|
|
|
|
roff = woff = 0;
|
|
usepersist = 1;
|
|
|
|
event_set(&ev, pair[0], EV_WRITE|EV_PERSIST, multiple_write_cb, &ev);
|
|
if (event_add(&ev, NULL) == -1)
|
|
exit(1);
|
|
event_set(&ev2, pair[1], EV_READ|EV_PERSIST, multiple_read_cb, &ev2);
|
|
if (event_add(&ev2, NULL) == -1)
|
|
exit(1);
|
|
event_dispatch();
|
|
|
|
if (roff == woff)
|
|
test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0;
|
|
|
|
cleanup_test();
|
|
}
|
|
|
|
static void
|
|
test_combined(void)
|
|
{
|
|
struct both r1, r2, w1, w2;
|
|
|
|
setup_test("Combined read/write: ");
|
|
memset(&r1, 0, sizeof(r1));
|
|
memset(&r2, 0, sizeof(r2));
|
|
memset(&w1, 0, sizeof(w1));
|
|
memset(&w2, 0, sizeof(w2));
|
|
|
|
w1.nread = 4096;
|
|
w2.nread = 8192;
|
|
|
|
event_set(&r1.ev, pair[0], EV_READ, combined_read_cb, &r1);
|
|
event_set(&w1.ev, pair[0], EV_WRITE, combined_write_cb, &w1);
|
|
event_set(&r2.ev, pair[1], EV_READ, combined_read_cb, &r2);
|
|
event_set(&w2.ev, pair[1], EV_WRITE, combined_write_cb, &w2);
|
|
tt_assert(event_add(&r1.ev, NULL) != -1);
|
|
tt_assert(!event_add(&w1.ev, NULL));
|
|
tt_assert(!event_add(&r2.ev, NULL));
|
|
tt_assert(!event_add(&w2.ev, NULL));
|
|
event_dispatch();
|
|
|
|
if (r1.nread == 8192 && r2.nread == 4096)
|
|
test_ok = 1;
|
|
|
|
end:
|
|
cleanup_test();
|
|
}
|
|
|
|
static void
|
|
test_simpletimeout(void)
|
|
{
|
|
struct timeval tv;
|
|
struct event ev;
|
|
|
|
setup_test("Simple timeout: ");
|
|
|
|
tv.tv_usec = 0;
|
|
tv.tv_sec = SECONDS;
|
|
evtimer_set(&ev, timeout_cb, NULL);
|
|
evtimer_add(&ev, &tv);
|
|
|
|
evutil_gettimeofday(&tset, NULL);
|
|
event_dispatch();
|
|
|
|
cleanup_test();
|
|
}
|
|
|
|
static void
|
|
periodic_timeout_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
int *count = arg;
|
|
|
|
(*count)++;
|
|
if (*count == 6) {
|
|
/* call loopexit only once - on slow machines(?), it is
|
|
* apparently possible for this to get called twice. */
|
|
test_ok = 1;
|
|
event_base_loopexit(global_base, NULL);
|
|
}
|
|
}
|
|
|
|
static void
|
|
test_persistent_timeout(void)
|
|
{
|
|
struct timeval tv;
|
|
struct event ev;
|
|
int count = 0;
|
|
|
|
evutil_timerclear(&tv);
|
|
tv.tv_usec = 10000;
|
|
|
|
event_assign(&ev, global_base, -1, EV_TIMEOUT|EV_PERSIST,
|
|
periodic_timeout_cb, &count);
|
|
event_add(&ev, &tv);
|
|
|
|
event_dispatch();
|
|
|
|
event_del(&ev);
|
|
}
|
|
|
|
static void
|
|
test_persistent_timeout_jump(void *ptr)
|
|
{
|
|
struct basic_test_data *data = ptr;
|
|
struct event ev;
|
|
int count = 0;
|
|
struct timeval msec100 = { 0, 100 * 1000 };
|
|
struct timeval msec50 = { 0, 50 * 1000 };
|
|
|
|
event_assign(&ev, data->base, -1, EV_PERSIST, periodic_timeout_cb, &count);
|
|
event_add(&ev, &msec100);
|
|
/* Wait for a bit */
|
|
#ifdef _WIN32
|
|
Sleep(1000);
|
|
#else
|
|
sleep(1);
|
|
#endif
|
|
event_base_loopexit(data->base, &msec50);
|
|
event_base_dispatch(data->base);
|
|
tt_int_op(count, ==, 1);
|
|
|
|
end:
|
|
event_del(&ev);
|
|
}
|
|
|
|
struct persist_active_timeout_called {
|
|
int n;
|
|
short events[16];
|
|
struct timeval tvs[16];
|
|
};
|
|
|
|
static void
|
|
activate_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
struct event *ev = arg;
|
|
event_active(ev, EV_READ, 1);
|
|
}
|
|
|
|
static void
|
|
persist_active_timeout_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
struct persist_active_timeout_called *c = arg;
|
|
if (c->n < 15) {
|
|
c->events[c->n] = event;
|
|
evutil_gettimeofday(&c->tvs[c->n], NULL);
|
|
++c->n;
|
|
}
|
|
}
|
|
|
|
static void
|
|
test_persistent_active_timeout(void *ptr)
|
|
{
|
|
struct timeval tv, tv2, tv_exit, start;
|
|
struct event ev;
|
|
struct persist_active_timeout_called res;
|
|
|
|
struct basic_test_data *data = ptr;
|
|
struct event_base *base = data->base;
|
|
|
|
memset(&res, 0, sizeof(res));
|
|
|
|
tv.tv_sec = 0;
|
|
tv.tv_usec = 200 * 1000;
|
|
event_assign(&ev, base, -1, EV_TIMEOUT|EV_PERSIST,
|
|
persist_active_timeout_cb, &res);
|
|
event_add(&ev, &tv);
|
|
|
|
tv2.tv_sec = 0;
|
|
tv2.tv_usec = 100 * 1000;
|
|
event_base_once(base, -1, EV_TIMEOUT, activate_cb, &ev, &tv2);
|
|
|
|
tv_exit.tv_sec = 0;
|
|
tv_exit.tv_usec = 600 * 1000;
|
|
event_base_loopexit(base, &tv_exit);
|
|
|
|
event_base_assert_ok(base);
|
|
evutil_gettimeofday(&start, NULL);
|
|
|
|
event_base_dispatch(base);
|
|
event_base_assert_ok(base);
|
|
|
|
tt_int_op(res.n, ==, 3);
|
|
tt_int_op(res.events[0], ==, EV_READ);
|
|
tt_int_op(res.events[1], ==, EV_TIMEOUT);
|
|
tt_int_op(res.events[2], ==, EV_TIMEOUT);
|
|
test_timeval_diff_eq(&start, &res.tvs[0], 100);
|
|
test_timeval_diff_eq(&start, &res.tvs[1], 300);
|
|
test_timeval_diff_eq(&start, &res.tvs[2], 500);
|
|
end:
|
|
event_del(&ev);
|
|
}
|
|
|
|
struct common_timeout_info {
|
|
struct event ev;
|
|
struct timeval called_at;
|
|
int which;
|
|
int count;
|
|
};
|
|
|
|
static void
|
|
common_timeout_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
struct common_timeout_info *ti = arg;
|
|
++ti->count;
|
|
evutil_gettimeofday(&ti->called_at, NULL);
|
|
if (ti->count >= 6)
|
|
event_del(&ti->ev);
|
|
}
|
|
|
|
static void
|
|
test_common_timeout(void *ptr)
|
|
{
|
|
struct basic_test_data *data = ptr;
|
|
|
|
struct event_base *base = data->base;
|
|
int i;
|
|
struct common_timeout_info info[100];
|
|
|
|
struct timeval now;
|
|
struct timeval tmp_100_ms = { 0, 100*1000 };
|
|
struct timeval tmp_200_ms = { 0, 200*1000 };
|
|
|
|
const struct timeval *ms_100, *ms_200;
|
|
|
|
ms_100 = event_base_init_common_timeout(base, &tmp_100_ms);
|
|
ms_200 = event_base_init_common_timeout(base, &tmp_200_ms);
|
|
tt_assert(ms_100);
|
|
tt_assert(ms_200);
|
|
tt_ptr_op(event_base_init_common_timeout(base, &tmp_200_ms),
|
|
==, ms_200);
|
|
tt_int_op(ms_100->tv_sec, ==, 0);
|
|
tt_int_op(ms_200->tv_sec, ==, 0);
|
|
tt_int_op(ms_100->tv_usec, ==, 100000|0x50000000);
|
|
tt_int_op(ms_200->tv_usec, ==, 200000|0x50100000);
|
|
|
|
memset(info, 0, sizeof(info));
|
|
|
|
for (i=0; i<100; ++i) {
|
|
info[i].which = i;
|
|
event_assign(&info[i].ev, base, -1, EV_TIMEOUT|EV_PERSIST,
|
|
common_timeout_cb, &info[i]);
|
|
if (i % 2) {
|
|
event_add(&info[i].ev, ms_100);
|
|
} else {
|
|
event_add(&info[i].ev, ms_200);
|
|
}
|
|
}
|
|
|
|
event_base_assert_ok(base);
|
|
event_base_dispatch(base);
|
|
|
|
evutil_gettimeofday(&now, NULL);
|
|
event_base_assert_ok(base);
|
|
|
|
for (i=0; i<10; ++i) {
|
|
struct timeval tmp;
|
|
int ms_diff;
|
|
tt_int_op(info[i].count, ==, 6);
|
|
evutil_timersub(&now, &info[i].called_at, &tmp);
|
|
ms_diff = tmp.tv_usec/1000 + tmp.tv_sec*1000;
|
|
if (i % 2) {
|
|
tt_int_op(ms_diff, >, 500);
|
|
tt_int_op(ms_diff, <, 700);
|
|
} else {
|
|
tt_int_op(ms_diff, >, -100);
|
|
tt_int_op(ms_diff, <, 100);
|
|
}
|
|
}
|
|
|
|
/* Make sure we can free the base with some events in. */
|
|
for (i=0; i<100; ++i) {
|
|
if (i % 2) {
|
|
event_add(&info[i].ev, ms_100);
|
|
} else {
|
|
event_add(&info[i].ev, ms_200);
|
|
}
|
|
}
|
|
|
|
end:
|
|
event_base_free(data->base); /* need to do this here before info is
|
|
* out-of-scope */
|
|
data->base = NULL;
|
|
}
|
|
|
|
#ifndef WIN32
|
|
static void signal_cb(evutil_socket_t fd, short event, void *arg);
|
|
|
|
#define current_base event_global_current_base_
|
|
extern struct event_base *current_base;
|
|
|
|
static void
|
|
child_signal_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
struct timeval tv;
|
|
int *pint = arg;
|
|
|
|
*pint = 1;
|
|
|
|
tv.tv_usec = 500000;
|
|
tv.tv_sec = 0;
|
|
event_loopexit(&tv);
|
|
}
|
|
|
|
static void
|
|
test_fork(void)
|
|
{
|
|
int status, got_sigchld = 0;
|
|
struct event ev, sig_ev;
|
|
pid_t pid;
|
|
|
|
setup_test("After fork: ");
|
|
|
|
tt_assert(current_base);
|
|
evthread_make_base_notifiable(current_base);
|
|
|
|
if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
|
|
tt_fail_perror("write");
|
|
}
|
|
|
|
event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev);
|
|
if (event_add(&ev, NULL) == -1)
|
|
exit(1);
|
|
|
|
evsignal_set(&sig_ev, SIGCHLD, child_signal_cb, &got_sigchld);
|
|
evsignal_add(&sig_ev, NULL);
|
|
|
|
event_base_assert_ok(current_base);
|
|
TT_BLATHER(("Before fork"));
|
|
if ((pid = regress_fork()) == 0) {
|
|
/* in the child */
|
|
TT_BLATHER(("In child, before reinit"));
|
|
event_base_assert_ok(current_base);
|
|
if (event_reinit(current_base) == -1) {
|
|
fprintf(stdout, "FAILED (reinit)\n");
|
|
exit(1);
|
|
}
|
|
TT_BLATHER(("After reinit"));
|
|
event_base_assert_ok(current_base);
|
|
TT_BLATHER(("After assert-ok"));
|
|
|
|
evsignal_del(&sig_ev);
|
|
|
|
called = 0;
|
|
|
|
event_dispatch();
|
|
|
|
event_base_free(current_base);
|
|
|
|
/* we do not send an EOF; simple_read_cb requires an EOF
|
|
* to set test_ok. we just verify that the callback was
|
|
* called. */
|
|
exit(test_ok != 0 || called != 2 ? -2 : 76);
|
|
}
|
|
|
|
/* wait for the child to read the data */
|
|
sleep(1);
|
|
|
|
if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
|
|
tt_fail_perror("write");
|
|
}
|
|
|
|
TT_BLATHER(("Before waitpid"));
|
|
if (waitpid(pid, &status, 0) == -1) {
|
|
fprintf(stdout, "FAILED (fork)\n");
|
|
exit(1);
|
|
}
|
|
TT_BLATHER(("After waitpid"));
|
|
|
|
if (WEXITSTATUS(status) != 76) {
|
|
fprintf(stdout, "FAILED (exit): %d\n", WEXITSTATUS(status));
|
|
exit(1);
|
|
}
|
|
|
|
/* test that the current event loop still works */
|
|
if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
|
|
fprintf(stderr, "%s: write\n", __func__);
|
|
}
|
|
|
|
shutdown(pair[0], SHUT_WR);
|
|
|
|
event_dispatch();
|
|
|
|
if (!got_sigchld) {
|
|
fprintf(stdout, "FAILED (sigchld)\n");
|
|
exit(1);
|
|
}
|
|
|
|
evsignal_del(&sig_ev);
|
|
|
|
end:
|
|
cleanup_test();
|
|
}
|
|
|
|
static void
|
|
signal_cb_sa(int sig)
|
|
{
|
|
test_ok = 2;
|
|
}
|
|
|
|
static void
|
|
signal_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
struct event *ev = arg;
|
|
|
|
evsignal_del(ev);
|
|
test_ok = 1;
|
|
}
|
|
|
|
static void
|
|
test_simplesignal(void)
|
|
{
|
|
struct event ev;
|
|
struct itimerval itv;
|
|
|
|
setup_test("Simple signal: ");
|
|
evsignal_set(&ev, SIGALRM, signal_cb, &ev);
|
|
evsignal_add(&ev, NULL);
|
|
/* find bugs in which operations are re-ordered */
|
|
evsignal_del(&ev);
|
|
evsignal_add(&ev, NULL);
|
|
|
|
memset(&itv, 0, sizeof(itv));
|
|
itv.it_value.tv_sec = 1;
|
|
if (setitimer(ITIMER_REAL, &itv, NULL) == -1)
|
|
goto skip_simplesignal;
|
|
|
|
event_dispatch();
|
|
skip_simplesignal:
|
|
if (evsignal_del(&ev) == -1)
|
|
test_ok = 0;
|
|
|
|
cleanup_test();
|
|
}
|
|
|
|
static void
|
|
test_multiplesignal(void)
|
|
{
|
|
struct event ev_one, ev_two;
|
|
struct itimerval itv;
|
|
|
|
setup_test("Multiple signal: ");
|
|
|
|
evsignal_set(&ev_one, SIGALRM, signal_cb, &ev_one);
|
|
evsignal_add(&ev_one, NULL);
|
|
|
|
evsignal_set(&ev_two, SIGALRM, signal_cb, &ev_two);
|
|
evsignal_add(&ev_two, NULL);
|
|
|
|
memset(&itv, 0, sizeof(itv));
|
|
itv.it_value.tv_sec = 1;
|
|
if (setitimer(ITIMER_REAL, &itv, NULL) == -1)
|
|
goto skip_simplesignal;
|
|
|
|
event_dispatch();
|
|
|
|
skip_simplesignal:
|
|
if (evsignal_del(&ev_one) == -1)
|
|
test_ok = 0;
|
|
if (evsignal_del(&ev_two) == -1)
|
|
test_ok = 0;
|
|
|
|
cleanup_test();
|
|
}
|
|
|
|
static void
|
|
test_immediatesignal(void)
|
|
{
|
|
struct event ev;
|
|
|
|
test_ok = 0;
|
|
evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
|
|
evsignal_add(&ev, NULL);
|
|
raise(SIGUSR1);
|
|
event_loop(EVLOOP_NONBLOCK);
|
|
evsignal_del(&ev);
|
|
cleanup_test();
|
|
}
|
|
|
|
static void
|
|
test_signal_dealloc(void)
|
|
{
|
|
/* make sure that evsignal_event is event_del'ed and pipe closed */
|
|
struct event ev;
|
|
struct event_base *base = event_init();
|
|
evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
|
|
evsignal_add(&ev, NULL);
|
|
evsignal_del(&ev);
|
|
event_base_free(base);
|
|
/* If we got here without asserting, we're fine. */
|
|
test_ok = 1;
|
|
cleanup_test();
|
|
}
|
|
|
|
static void
|
|
test_signal_pipeloss(void)
|
|
{
|
|
/* make sure that the base1 pipe is closed correctly. */
|
|
struct event_base *base1, *base2;
|
|
int pipe1;
|
|
test_ok = 0;
|
|
base1 = event_init();
|
|
pipe1 = base1->sig.ev_signal_pair[0];
|
|
base2 = event_init();
|
|
event_base_free(base2);
|
|
event_base_free(base1);
|
|
if (close(pipe1) != -1 || errno!=EBADF) {
|
|
/* fd must be closed, so second close gives -1, EBADF */
|
|
printf("signal pipe not closed. ");
|
|
test_ok = 0;
|
|
} else {
|
|
test_ok = 1;
|
|
}
|
|
cleanup_test();
|
|
}
|
|
|
|
/*
|
|
* make two bases to catch signals, use both of them. this only works
|
|
* for event mechanisms that use our signal pipe trick. kqueue handles
|
|
* signals internally, and all interested kqueues get all the signals.
|
|
*/
|
|
static void
|
|
test_signal_switchbase(void)
|
|
{
|
|
struct event ev1, ev2;
|
|
struct event_base *base1, *base2;
|
|
int is_kqueue;
|
|
test_ok = 0;
|
|
base1 = event_init();
|
|
base2 = event_init();
|
|
is_kqueue = !strcmp(event_get_method(),"kqueue");
|
|
evsignal_set(&ev1, SIGUSR1, signal_cb, &ev1);
|
|
evsignal_set(&ev2, SIGUSR1, signal_cb, &ev2);
|
|
if (event_base_set(base1, &ev1) ||
|
|
event_base_set(base2, &ev2) ||
|
|
event_add(&ev1, NULL) ||
|
|
event_add(&ev2, NULL)) {
|
|
fprintf(stderr, "%s: cannot set base, add\n", __func__);
|
|
exit(1);
|
|
}
|
|
|
|
tt_ptr_op(event_get_base(&ev1), ==, base1);
|
|
tt_ptr_op(event_get_base(&ev2), ==, base2);
|
|
|
|
test_ok = 0;
|
|
/* can handle signal before loop is called */
|
|
raise(SIGUSR1);
|
|
event_base_loop(base2, EVLOOP_NONBLOCK);
|
|
if (is_kqueue) {
|
|
if (!test_ok)
|
|
goto end;
|
|
test_ok = 0;
|
|
}
|
|
event_base_loop(base1, EVLOOP_NONBLOCK);
|
|
if (test_ok && !is_kqueue) {
|
|
test_ok = 0;
|
|
|
|
/* set base1 to handle signals */
|
|
event_base_loop(base1, EVLOOP_NONBLOCK);
|
|
raise(SIGUSR1);
|
|
event_base_loop(base1, EVLOOP_NONBLOCK);
|
|
event_base_loop(base2, EVLOOP_NONBLOCK);
|
|
}
|
|
end:
|
|
event_base_free(base1);
|
|
event_base_free(base2);
|
|
cleanup_test();
|
|
}
|
|
|
|
/*
|
|
* assert that a signal event removed from the event queue really is
|
|
* removed - with no possibility of it's parent handler being fired.
|
|
*/
|
|
static void
|
|
test_signal_assert(void)
|
|
{
|
|
struct event ev;
|
|
struct event_base *base = event_init();
|
|
test_ok = 0;
|
|
/* use SIGCONT so we don't kill ourselves when we signal to nowhere */
|
|
evsignal_set(&ev, SIGCONT, signal_cb, &ev);
|
|
evsignal_add(&ev, NULL);
|
|
/*
|
|
* if evsignal_del() fails to reset the handler, it's current handler
|
|
* will still point to evsig_handler().
|
|
*/
|
|
evsignal_del(&ev);
|
|
|
|
raise(SIGCONT);
|
|
#if 0
|
|
/* only way to verify we were in evsig_handler() */
|
|
/* XXXX Now there's no longer a good way. */
|
|
if (base->sig.evsig_caught)
|
|
test_ok = 0;
|
|
else
|
|
test_ok = 1;
|
|
#else
|
|
test_ok = 1;
|
|
#endif
|
|
|
|
event_base_free(base);
|
|
cleanup_test();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* assert that we restore our previous signal handler properly.
|
|
*/
|
|
static void
|
|
test_signal_restore(void)
|
|
{
|
|
struct event ev;
|
|
struct event_base *base = event_init();
|
|
#ifdef _EVENT_HAVE_SIGACTION
|
|
struct sigaction sa;
|
|
#endif
|
|
|
|
test_ok = 0;
|
|
#ifdef _EVENT_HAVE_SIGACTION
|
|
sa.sa_handler = signal_cb_sa;
|
|
sa.sa_flags = 0x0;
|
|
sigemptyset(&sa.sa_mask);
|
|
if (sigaction(SIGUSR1, &sa, NULL) == -1)
|
|
goto out;
|
|
#else
|
|
if (signal(SIGUSR1, signal_cb_sa) == SIG_ERR)
|
|
goto out;
|
|
#endif
|
|
evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
|
|
evsignal_add(&ev, NULL);
|
|
evsignal_del(&ev);
|
|
|
|
raise(SIGUSR1);
|
|
/* 1 == signal_cb, 2 == signal_cb_sa, we want our previous handler */
|
|
if (test_ok != 2)
|
|
test_ok = 0;
|
|
out:
|
|
event_base_free(base);
|
|
cleanup_test();
|
|
return;
|
|
}
|
|
|
|
static void
|
|
signal_cb_swp(int sig, short event, void *arg)
|
|
{
|
|
called++;
|
|
if (called < 5)
|
|
raise(sig);
|
|
else
|
|
event_loopexit(NULL);
|
|
}
|
|
static void
|
|
timeout_cb_swp(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
if (called == -1) {
|
|
struct timeval tv = {5, 0};
|
|
|
|
called = 0;
|
|
evtimer_add((struct event *)arg, &tv);
|
|
raise(SIGUSR1);
|
|
return;
|
|
}
|
|
test_ok = 0;
|
|
event_loopexit(NULL);
|
|
}
|
|
|
|
static void
|
|
test_signal_while_processing(void)
|
|
{
|
|
struct event_base *base = event_init();
|
|
struct event ev, ev_timer;
|
|
struct timeval tv = {0, 0};
|
|
|
|
setup_test("Receiving a signal while processing other signal: ");
|
|
|
|
called = -1;
|
|
test_ok = 1;
|
|
signal_set(&ev, SIGUSR1, signal_cb_swp, NULL);
|
|
signal_add(&ev, NULL);
|
|
evtimer_set(&ev_timer, timeout_cb_swp, &ev_timer);
|
|
evtimer_add(&ev_timer, &tv);
|
|
event_dispatch();
|
|
|
|
event_base_free(base);
|
|
cleanup_test();
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
test_free_active_base(void *ptr)
|
|
{
|
|
struct basic_test_data *data = ptr;
|
|
struct event_base *base1;
|
|
struct event ev1;
|
|
|
|
base1 = event_init();
|
|
if (base1) {
|
|
event_assign(&ev1, base1, data->pair[1], EV_READ,
|
|
dummy_read_cb, NULL);
|
|
event_add(&ev1, NULL);
|
|
event_base_free(base1); /* should not crash */
|
|
} else {
|
|
tt_fail_msg("failed to create event_base for test");
|
|
}
|
|
|
|
base1 = event_init();
|
|
tt_assert(base1);
|
|
event_assign(&ev1, base1, 0, 0, dummy_read_cb, NULL);
|
|
event_active(&ev1, EV_READ, 1);
|
|
event_base_free(base1);
|
|
end:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_manipulate_active_events(void *ptr)
|
|
{
|
|
struct basic_test_data *data = ptr;
|
|
struct event_base *base = data->base;
|
|
struct event ev1;
|
|
|
|
event_assign(&ev1, base, -1, EV_TIMEOUT, dummy_read_cb, NULL);
|
|
|
|
/* Make sure an active event is pending. */
|
|
event_active(&ev1, EV_READ, 1);
|
|
tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL),
|
|
==, EV_READ);
|
|
|
|
/* Make sure that activating an event twice works. */
|
|
event_active(&ev1, EV_WRITE, 1);
|
|
tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL),
|
|
==, EV_READ|EV_WRITE);
|
|
|
|
end:
|
|
event_del(&ev1);
|
|
}
|
|
|
|
static void
|
|
test_bad_assign(void *ptr)
|
|
{
|
|
struct event ev;
|
|
int r;
|
|
/* READ|SIGNAL is not allowed */
|
|
r = event_assign(&ev, NULL, -1, EV_SIGNAL|EV_READ, dummy_read_cb, NULL);
|
|
tt_int_op(r,==,-1);
|
|
|
|
end:
|
|
;
|
|
}
|
|
|
|
static int reentrant_cb_run = 0;
|
|
|
|
static void
|
|
bad_reentrant_run_loop_cb(evutil_socket_t fd, short what, void *ptr)
|
|
{
|
|
struct event_base *base = ptr;
|
|
int r;
|
|
reentrant_cb_run = 1;
|
|
/* This reentrant call to event_base_loop should be detected and
|
|
* should fail */
|
|
r = event_base_loop(base, 0);
|
|
tt_int_op(r, ==, -1);
|
|
end:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_bad_reentrant(void *ptr)
|
|
{
|
|
struct basic_test_data *data = ptr;
|
|
struct event_base *base = data->base;
|
|
struct event ev;
|
|
int r;
|
|
event_assign(&ev, base, -1,
|
|
0, bad_reentrant_run_loop_cb, base);
|
|
|
|
event_active(&ev, EV_WRITE, 1);
|
|
r = event_base_loop(base, 0);
|
|
tt_int_op(r, ==, 1);
|
|
tt_int_op(reentrant_cb_run, ==, 1);
|
|
end:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_event_base_new(void *ptr)
|
|
{
|
|
struct basic_test_data *data = ptr;
|
|
struct event_base *base = 0;
|
|
struct event ev1;
|
|
struct basic_cb_args args;
|
|
|
|
int towrite = (int)strlen(TEST1)+1;
|
|
int len = write(data->pair[0], TEST1, towrite);
|
|
|
|
if (len < 0)
|
|
tt_abort_perror("initial write");
|
|
else if (len != towrite)
|
|
tt_abort_printf(("initial write fell short (%d of %d bytes)",
|
|
len, towrite));
|
|
|
|
if (shutdown(data->pair[0], SHUT_WR))
|
|
tt_abort_perror("initial write shutdown");
|
|
|
|
base = event_base_new();
|
|
if (!base)
|
|
tt_abort_msg("failed to create event base");
|
|
|
|
args.eb = base;
|
|
args.ev = &ev1;
|
|
args.callcount = 0;
|
|
event_assign(&ev1, base, data->pair[1],
|
|
EV_READ|EV_PERSIST, basic_read_cb, &args);
|
|
|
|
if (event_add(&ev1, NULL))
|
|
tt_abort_perror("initial event_add");
|
|
|
|
if (event_base_loop(base, 0))
|
|
tt_abort_msg("unsuccessful exit from event loop");
|
|
|
|
end:
|
|
if (base)
|
|
event_base_free(base);
|
|
}
|
|
|
|
static void
|
|
test_loopexit(void)
|
|
{
|
|
struct timeval tv, tv_start, tv_end;
|
|
struct event ev;
|
|
|
|
setup_test("Loop exit: ");
|
|
|
|
tv.tv_usec = 0;
|
|
tv.tv_sec = 60*60*24;
|
|
evtimer_set(&ev, timeout_cb, NULL);
|
|
evtimer_add(&ev, &tv);
|
|
|
|
tv.tv_usec = 0;
|
|
tv.tv_sec = SECONDS;
|
|
event_loopexit(&tv);
|
|
|
|
evutil_gettimeofday(&tv_start, NULL);
|
|
event_dispatch();
|
|
evutil_gettimeofday(&tv_end, NULL);
|
|
evutil_timersub(&tv_end, &tv_start, &tv_end);
|
|
|
|
evtimer_del(&ev);
|
|
|
|
tt_assert(event_base_got_exit(global_base));
|
|
tt_assert(!event_base_got_break(global_base));
|
|
|
|
if (tv.tv_sec < 2)
|
|
test_ok = 1;
|
|
|
|
end:
|
|
cleanup_test();
|
|
}
|
|
|
|
static void
|
|
test_loopexit_multiple(void)
|
|
{
|
|
struct timeval tv;
|
|
struct event_base *base;
|
|
|
|
setup_test("Loop Multiple exit: ");
|
|
|
|
base = event_base_new();
|
|
|
|
tv.tv_usec = 0;
|
|
tv.tv_sec = 1;
|
|
event_base_loopexit(base, &tv);
|
|
|
|
tv.tv_usec = 0;
|
|
tv.tv_sec = 2;
|
|
event_base_loopexit(base, &tv);
|
|
|
|
event_base_dispatch(base);
|
|
|
|
tt_assert(event_base_got_exit(base));
|
|
tt_assert(!event_base_got_break(base));
|
|
|
|
event_base_free(base);
|
|
|
|
test_ok = 1;
|
|
|
|
end:
|
|
cleanup_test();
|
|
}
|
|
|
|
static void
|
|
break_cb(evutil_socket_t fd, short events, void *arg)
|
|
{
|
|
test_ok = 1;
|
|
event_loopbreak();
|
|
}
|
|
|
|
static void
|
|
fail_cb(evutil_socket_t fd, short events, void *arg)
|
|
{
|
|
test_ok = 0;
|
|
}
|
|
|
|
static void
|
|
test_loopbreak(void)
|
|
{
|
|
struct event ev1, ev2;
|
|
struct timeval tv;
|
|
|
|
setup_test("Loop break: ");
|
|
|
|
tv.tv_sec = 0;
|
|
tv.tv_usec = 0;
|
|
evtimer_set(&ev1, break_cb, NULL);
|
|
evtimer_add(&ev1, &tv);
|
|
evtimer_set(&ev2, fail_cb, NULL);
|
|
evtimer_add(&ev2, &tv);
|
|
|
|
event_dispatch();
|
|
|
|
tt_assert(!event_base_got_exit(global_base));
|
|
tt_assert(event_base_got_break(global_base));
|
|
|
|
evtimer_del(&ev1);
|
|
evtimer_del(&ev2);
|
|
|
|
end:
|
|
cleanup_test();
|
|
}
|
|
|
|
static struct event *readd_test_event_last_added = NULL;
|
|
static void
|
|
re_add_read_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
char buf[256];
|
|
struct event *ev_other = arg;
|
|
readd_test_event_last_added = ev_other;
|
|
|
|
if (read(fd, buf, sizeof(buf)) < 0) {
|
|
tt_fail_perror("read");
|
|
}
|
|
|
|
event_add(ev_other, NULL);
|
|
++test_ok;
|
|
}
|
|
|
|
static void
|
|
test_nonpersist_readd(void)
|
|
{
|
|
struct event ev1, ev2;
|
|
|
|
setup_test("Re-add nonpersistent events: ");
|
|
event_set(&ev1, pair[0], EV_READ, re_add_read_cb, &ev2);
|
|
event_set(&ev2, pair[1], EV_READ, re_add_read_cb, &ev1);
|
|
|
|
if (write(pair[0], "Hello", 5) < 0) {
|
|
tt_fail_perror("write(pair[0])");
|
|
}
|
|
|
|
if (write(pair[1], "Hello", 5) < 0) {
|
|
tt_fail_perror("write(pair[1])\n");
|
|
}
|
|
|
|
if (event_add(&ev1, NULL) == -1 ||
|
|
event_add(&ev2, NULL) == -1) {
|
|
test_ok = 0;
|
|
}
|
|
if (test_ok != 0)
|
|
exit(1);
|
|
event_loop(EVLOOP_ONCE);
|
|
if (test_ok != 2)
|
|
exit(1);
|
|
/* At this point, we executed both callbacks. Whichever one got
|
|
* called first added the second, but the second then immediately got
|
|
* deleted before its callback was called. At this point, though, it
|
|
* re-added the first.
|
|
*/
|
|
if (!readd_test_event_last_added) {
|
|
test_ok = 0;
|
|
} else if (readd_test_event_last_added == &ev1) {
|
|
if (!event_pending(&ev1, EV_READ, NULL) ||
|
|
event_pending(&ev2, EV_READ, NULL))
|
|
test_ok = 0;
|
|
} else {
|
|
if (event_pending(&ev1, EV_READ, NULL) ||
|
|
!event_pending(&ev2, EV_READ, NULL))
|
|
test_ok = 0;
|
|
}
|
|
|
|
event_del(&ev1);
|
|
event_del(&ev2);
|
|
|
|
cleanup_test();
|
|
}
|
|
|
|
struct test_pri_event {
|
|
struct event ev;
|
|
int count;
|
|
};
|
|
|
|
static void
|
|
test_priorities_cb(evutil_socket_t fd, short what, void *arg)
|
|
{
|
|
struct test_pri_event *pri = arg;
|
|
struct timeval tv;
|
|
|
|
if (pri->count == 3) {
|
|
event_loopexit(NULL);
|
|
return;
|
|
}
|
|
|
|
pri->count++;
|
|
|
|
evutil_timerclear(&tv);
|
|
event_add(&pri->ev, &tv);
|
|
}
|
|
|
|
static void
|
|
test_priorities_impl(int npriorities)
|
|
{
|
|
struct test_pri_event one, two;
|
|
struct timeval tv;
|
|
|
|
TT_BLATHER(("Testing Priorities %d: ", npriorities));
|
|
|
|
event_base_priority_init(global_base, npriorities);
|
|
|
|
memset(&one, 0, sizeof(one));
|
|
memset(&two, 0, sizeof(two));
|
|
|
|
timeout_set(&one.ev, test_priorities_cb, &one);
|
|
if (event_priority_set(&one.ev, 0) == -1) {
|
|
fprintf(stderr, "%s: failed to set priority", __func__);
|
|
exit(1);
|
|
}
|
|
|
|
timeout_set(&two.ev, test_priorities_cb, &two);
|
|
if (event_priority_set(&two.ev, npriorities - 1) == -1) {
|
|
fprintf(stderr, "%s: failed to set priority", __func__);
|
|
exit(1);
|
|
}
|
|
|
|
evutil_timerclear(&tv);
|
|
|
|
if (event_add(&one.ev, &tv) == -1)
|
|
exit(1);
|
|
if (event_add(&two.ev, &tv) == -1)
|
|
exit(1);
|
|
|
|
event_dispatch();
|
|
|
|
event_del(&one.ev);
|
|
event_del(&two.ev);
|
|
|
|
if (npriorities == 1) {
|
|
if (one.count == 3 && two.count == 3)
|
|
test_ok = 1;
|
|
} else if (npriorities == 2) {
|
|
/* Two is called once because event_loopexit is priority 1 */
|
|
if (one.count == 3 && two.count == 1)
|
|
test_ok = 1;
|
|
} else {
|
|
if (one.count == 3 && two.count == 0)
|
|
test_ok = 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
test_priorities(void)
|
|
{
|
|
test_priorities_impl(1);
|
|
if (test_ok)
|
|
test_priorities_impl(2);
|
|
if (test_ok)
|
|
test_priorities_impl(3);
|
|
}
|
|
|
|
/* priority-active-inversion: activate a higher-priority event, and make sure
|
|
* it keeps us from running a lower-priority event first. */
|
|
static int n_pai_calls = 0;
|
|
static struct event pai_events[3];
|
|
|
|
static void
|
|
prio_active_inversion_cb(evutil_socket_t fd, short what, void *arg)
|
|
{
|
|
int *call_order = arg;
|
|
*call_order = n_pai_calls++;
|
|
if (n_pai_calls == 1) {
|
|
/* This should activate later, even though it shares a
|
|
priority with us. */
|
|
event_active(&pai_events[1], EV_READ, 1);
|
|
/* This should activate next, since its priority is higher,
|
|
even though we activated it second. */
|
|
event_active(&pai_events[2], EV_TIMEOUT, 1);
|
|
}
|
|
}
|
|
|
|
static void
|
|
test_priority_active_inversion(void *data_)
|
|
{
|
|
struct basic_test_data *data = data_;
|
|
struct event_base *base = data->base;
|
|
int call_order[3];
|
|
int i;
|
|
tt_int_op(event_base_priority_init(base, 8), ==, 0);
|
|
|
|
n_pai_calls = 0;
|
|
memset(call_order, 0, sizeof(call_order));
|
|
|
|
for (i=0;i<3;++i) {
|
|
event_assign(&pai_events[i], data->base, -1, 0,
|
|
prio_active_inversion_cb, &call_order[i]);
|
|
}
|
|
|
|
event_priority_set(&pai_events[0], 4);
|
|
event_priority_set(&pai_events[1], 4);
|
|
event_priority_set(&pai_events[2], 0);
|
|
|
|
event_active(&pai_events[0], EV_WRITE, 1);
|
|
|
|
event_base_dispatch(base);
|
|
tt_int_op(n_pai_calls, ==, 3);
|
|
tt_int_op(call_order[0], ==, 0);
|
|
tt_int_op(call_order[1], ==, 2);
|
|
tt_int_op(call_order[2], ==, 1);
|
|
end:
|
|
;
|
|
}
|
|
|
|
|
|
static void
|
|
test_multiple_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
if (event & EV_READ)
|
|
test_ok |= 1;
|
|
else if (event & EV_WRITE)
|
|
test_ok |= 2;
|
|
}
|
|
|
|
static void
|
|
test_multiple_events_for_same_fd(void)
|
|
{
|
|
struct event e1, e2;
|
|
|
|
setup_test("Multiple events for same fd: ");
|
|
|
|
event_set(&e1, pair[0], EV_READ, test_multiple_cb, NULL);
|
|
event_add(&e1, NULL);
|
|
event_set(&e2, pair[0], EV_WRITE, test_multiple_cb, NULL);
|
|
event_add(&e2, NULL);
|
|
event_loop(EVLOOP_ONCE);
|
|
event_del(&e2);
|
|
|
|
if (write(pair[1], TEST1, strlen(TEST1)+1) < 0) {
|
|
tt_fail_perror("write");
|
|
}
|
|
|
|
event_loop(EVLOOP_ONCE);
|
|
event_del(&e1);
|
|
|
|
if (test_ok != 3)
|
|
test_ok = 0;
|
|
|
|
cleanup_test();
|
|
}
|
|
|
|
int evtag_decode_int(ev_uint32_t *pnumber, struct evbuffer *evbuf);
|
|
int evtag_decode_int64(ev_uint64_t *pnumber, struct evbuffer *evbuf);
|
|
int evtag_encode_tag(struct evbuffer *evbuf, ev_uint32_t number);
|
|
int evtag_decode_tag(ev_uint32_t *pnumber, struct evbuffer *evbuf);
|
|
|
|
static void
|
|
read_once_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
char buf[256];
|
|
int len;
|
|
|
|
len = read(fd, buf, sizeof(buf));
|
|
|
|
if (called) {
|
|
test_ok = 0;
|
|
} else if (len) {
|
|
/* Assumes global pair[0] can be used for writing */
|
|
if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
|
|
tt_fail_perror("write");
|
|
test_ok = 0;
|
|
} else {
|
|
test_ok = 1;
|
|
}
|
|
}
|
|
|
|
called++;
|
|
}
|
|
|
|
static void
|
|
test_want_only_once(void)
|
|
{
|
|
struct event ev;
|
|
struct timeval tv;
|
|
|
|
/* Very simple read test */
|
|
setup_test("Want read only once: ");
|
|
|
|
if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
|
|
tt_fail_perror("write");
|
|
}
|
|
|
|
/* Setup the loop termination */
|
|
evutil_timerclear(&tv);
|
|
tv.tv_sec = 1;
|
|
event_loopexit(&tv);
|
|
|
|
event_set(&ev, pair[1], EV_READ, read_once_cb, &ev);
|
|
if (event_add(&ev, NULL) == -1)
|
|
exit(1);
|
|
event_dispatch();
|
|
|
|
cleanup_test();
|
|
}
|
|
|
|
#define TEST_MAX_INT 6
|
|
|
|
static void
|
|
evtag_int_test(void *ptr)
|
|
{
|
|
struct evbuffer *tmp = evbuffer_new();
|
|
ev_uint32_t integers[TEST_MAX_INT] = {
|
|
0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000
|
|
};
|
|
ev_uint32_t integer;
|
|
ev_uint64_t big_int;
|
|
int i;
|
|
|
|
evtag_init();
|
|
|
|
for (i = 0; i < TEST_MAX_INT; i++) {
|
|
int oldlen, newlen;
|
|
oldlen = (int)EVBUFFER_LENGTH(tmp);
|
|
evtag_encode_int(tmp, integers[i]);
|
|
newlen = (int)EVBUFFER_LENGTH(tmp);
|
|
TT_BLATHER(("encoded 0x%08x with %d bytes",
|
|
(unsigned)integers[i], newlen - oldlen));
|
|
big_int = integers[i];
|
|
big_int *= 1000000000; /* 1 billion */
|
|
evtag_encode_int64(tmp, big_int);
|
|
}
|
|
|
|
for (i = 0; i < TEST_MAX_INT; i++) {
|
|
tt_int_op(evtag_decode_int(&integer, tmp), !=, -1);
|
|
tt_uint_op(integer, ==, integers[i]);
|
|
tt_int_op(evtag_decode_int64(&big_int, tmp), !=, -1);
|
|
tt_assert((big_int / 1000000000) == integers[i]);
|
|
}
|
|
|
|
tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0);
|
|
end:
|
|
evbuffer_free(tmp);
|
|
}
|
|
|
|
static void
|
|
evtag_fuzz(void *ptr)
|
|
{
|
|
u_char buffer[4096];
|
|
struct evbuffer *tmp = evbuffer_new();
|
|
struct timeval tv;
|
|
int i, j;
|
|
|
|
int not_failed = 0;
|
|
|
|
evtag_init();
|
|
|
|
for (j = 0; j < 100; j++) {
|
|
for (i = 0; i < (int)sizeof(buffer); i++)
|
|
buffer[i] = rand();
|
|
evbuffer_drain(tmp, -1);
|
|
evbuffer_add(tmp, buffer, sizeof(buffer));
|
|
|
|
if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1)
|
|
not_failed++;
|
|
}
|
|
|
|
/* The majority of decodes should fail */
|
|
tt_int_op(not_failed, <, 10);
|
|
|
|
/* Now insert some corruption into the tag length field */
|
|
evbuffer_drain(tmp, -1);
|
|
evutil_timerclear(&tv);
|
|
tv.tv_sec = 1;
|
|
evtag_marshal_timeval(tmp, 0, &tv);
|
|
evbuffer_add(tmp, buffer, sizeof(buffer));
|
|
|
|
((char *)EVBUFFER_DATA(tmp))[1] = '\xff';
|
|
if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1) {
|
|
tt_abort_msg("evtag_unmarshal_timeval should have failed");
|
|
}
|
|
|
|
end:
|
|
evbuffer_free(tmp);
|
|
}
|
|
|
|
static void
|
|
evtag_tag_encoding(void *ptr)
|
|
{
|
|
struct evbuffer *tmp = evbuffer_new();
|
|
ev_uint32_t integers[TEST_MAX_INT] = {
|
|
0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000
|
|
};
|
|
ev_uint32_t integer;
|
|
int i;
|
|
|
|
evtag_init();
|
|
|
|
for (i = 0; i < TEST_MAX_INT; i++) {
|
|
int oldlen, newlen;
|
|
oldlen = (int)EVBUFFER_LENGTH(tmp);
|
|
evtag_encode_tag(tmp, integers[i]);
|
|
newlen = (int)EVBUFFER_LENGTH(tmp);
|
|
TT_BLATHER(("encoded 0x%08x with %d bytes",
|
|
(unsigned)integers[i], newlen - oldlen));
|
|
}
|
|
|
|
for (i = 0; i < TEST_MAX_INT; i++) {
|
|
tt_int_op(evtag_decode_tag(&integer, tmp), !=, -1);
|
|
tt_uint_op(integer, ==, integers[i]);
|
|
}
|
|
|
|
tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0);
|
|
|
|
end:
|
|
evbuffer_free(tmp);
|
|
}
|
|
|
|
static void
|
|
evtag_test_peek(void *ptr)
|
|
{
|
|
struct evbuffer *tmp = evbuffer_new();
|
|
ev_uint32_t u32;
|
|
|
|
evtag_marshal_int(tmp, 30, 0);
|
|
evtag_marshal_string(tmp, 40, "Hello world");
|
|
|
|
tt_int_op(evtag_peek(tmp, &u32), ==, 1);
|
|
tt_int_op(u32, ==, 30);
|
|
tt_int_op(evtag_peek_length(tmp, &u32), ==, 0);
|
|
tt_int_op(u32, ==, 1+1+1);
|
|
tt_int_op(evtag_consume(tmp), ==, 0);
|
|
|
|
tt_int_op(evtag_peek(tmp, &u32), ==, 1);
|
|
tt_int_op(u32, ==, 40);
|
|
tt_int_op(evtag_peek_length(tmp, &u32), ==, 0);
|
|
tt_int_op(u32, ==, 1+1+11);
|
|
tt_int_op(evtag_payload_length(tmp, &u32), ==, 0);
|
|
tt_int_op(u32, ==, 11);
|
|
|
|
end:
|
|
evbuffer_free(tmp);
|
|
}
|
|
|
|
|
|
static void
|
|
test_methods(void *ptr)
|
|
{
|
|
const char **methods = event_get_supported_methods();
|
|
struct event_config *cfg = NULL;
|
|
struct event_base *base = NULL;
|
|
const char *backend;
|
|
int n_methods = 0;
|
|
|
|
tt_assert(methods);
|
|
|
|
backend = methods[0];
|
|
while (*methods != NULL) {
|
|
TT_BLATHER(("Support method: %s", *methods));
|
|
++methods;
|
|
++n_methods;
|
|
}
|
|
|
|
cfg = event_config_new();
|
|
assert(cfg != NULL);
|
|
|
|
tt_int_op(event_config_avoid_method(cfg, backend), ==, 0);
|
|
event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV);
|
|
|
|
base = event_base_new_with_config(cfg);
|
|
if (n_methods > 1) {
|
|
tt_assert(base);
|
|
tt_str_op(backend, !=, event_base_get_method(base));
|
|
} else {
|
|
tt_assert(base == NULL);
|
|
}
|
|
|
|
end:
|
|
if (base)
|
|
event_base_free(base);
|
|
if (cfg)
|
|
event_config_free(cfg);
|
|
}
|
|
|
|
static void
|
|
test_version(void *arg)
|
|
{
|
|
const char *vstr;
|
|
ev_uint32_t vint;
|
|
int major, minor, patch, n;
|
|
|
|
vstr = event_get_version();
|
|
vint = event_get_version_number();
|
|
|
|
tt_assert(vstr);
|
|
tt_assert(vint);
|
|
|
|
tt_str_op(vstr, ==, LIBEVENT_VERSION);
|
|
tt_int_op(vint, ==, LIBEVENT_VERSION_NUMBER);
|
|
|
|
n = sscanf(vstr, "%d.%d.%d", &major, &minor, &patch);
|
|
tt_assert(3 == n);
|
|
tt_int_op((vint&0xffffff00), ==, ((major<<24)|(minor<<16)|(patch<<8)));
|
|
end:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_base_features(void *arg)
|
|
{
|
|
struct event_base *base = NULL;
|
|
struct event_config *cfg = NULL;
|
|
|
|
cfg = event_config_new();
|
|
|
|
tt_assert(0 == event_config_require_features(cfg, EV_FEATURE_ET));
|
|
|
|
base = event_base_new_with_config(cfg);
|
|
if (base) {
|
|
tt_int_op(EV_FEATURE_ET, ==,
|
|
event_base_get_features(base) & EV_FEATURE_ET);
|
|
} else {
|
|
base = event_base_new();
|
|
tt_int_op(0, ==, event_base_get_features(base) & EV_FEATURE_ET);
|
|
}
|
|
|
|
end:
|
|
if (base)
|
|
event_base_free(base);
|
|
if (cfg)
|
|
event_config_free(cfg);
|
|
}
|
|
|
|
#ifdef _EVENT_HAVE_SETENV
|
|
#define SETENV_OK
|
|
#elif !defined(_EVENT_HAVE_SETENV) && defined(_EVENT_HAVE_PUTENV)
|
|
static void setenv(const char *k, const char *v, int _o)
|
|
{
|
|
char b[256];
|
|
evutil_snprintf(b, sizeof(b), "%s=%s",k,v);
|
|
putenv(b);
|
|
}
|
|
#define SETENV_OK
|
|
#endif
|
|
|
|
#ifdef _EVENT_HAVE_UNSETENV
|
|
#define UNSETENV_OK
|
|
#elif !defined(_EVENT_HAVE_UNSETENV) && defined(_EVENT_HAVE_PUTENV)
|
|
static void unsetenv(const char *k)
|
|
{
|
|
char b[256];
|
|
evutil_snprintf(b, sizeof(b), "%s=",k);
|
|
putenv(b);
|
|
}
|
|
#define UNSETENV_OK
|
|
#endif
|
|
|
|
#if defined(SETENV_OK) && defined(UNSETENV_OK)
|
|
static void
|
|
methodname_to_envvar(const char *mname, char *buf, size_t buflen)
|
|
{
|
|
char *cp;
|
|
evutil_snprintf(buf, buflen, "EVENT_NO%s", mname);
|
|
for (cp = buf; *cp; ++cp) {
|
|
*cp = EVUTIL_TOUPPER(*cp);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
test_base_environ(void *arg)
|
|
{
|
|
struct event_base *base = NULL;
|
|
struct event_config *cfg = NULL;
|
|
|
|
#if defined(SETENV_OK) && defined(UNSETENV_OK)
|
|
const char **basenames;
|
|
int i, n_methods=0;
|
|
char varbuf[128];
|
|
const char *defaultname, *ignoreenvname;
|
|
|
|
/* See if unsetenv works before we rely on it. */
|
|
setenv("EVENT_NOWAFFLES", "1", 1);
|
|
unsetenv("EVENT_NOWAFFLES");
|
|
if (getenv("EVENT_NOWAFFLES") != NULL) {
|
|
#ifndef _EVENT_HAVE_UNSETENV
|
|
TT_DECLARE("NOTE", ("Can't fake unsetenv; skipping test"));
|
|
#else
|
|
TT_DECLARE("NOTE", ("unsetenv doesn't work; skipping test"));
|
|
#endif
|
|
tt_skip();
|
|
}
|
|
|
|
basenames = event_get_supported_methods();
|
|
for (i = 0; basenames[i]; ++i) {
|
|
methodname_to_envvar(basenames[i], varbuf, sizeof(varbuf));
|
|
unsetenv(varbuf);
|
|
++n_methods;
|
|
}
|
|
|
|
base = event_base_new();
|
|
tt_assert(base);
|
|
|
|
defaultname = event_base_get_method(base);
|
|
TT_BLATHER(("default is <%s>", defaultname));
|
|
event_base_free(base);
|
|
base = NULL;
|
|
|
|
/* Can we disable the method with EVENT_NOfoo ? */
|
|
if (!strcmp(defaultname, "epoll (with changelist)")) {
|
|
setenv("EVENT_NOEPOLL", "1", 1);
|
|
ignoreenvname = "epoll";
|
|
} else {
|
|
methodname_to_envvar(defaultname, varbuf, sizeof(varbuf));
|
|
setenv(varbuf, "1", 1);
|
|
ignoreenvname = defaultname;
|
|
}
|
|
|
|
/* Use an empty cfg rather than NULL so a failure doesn't exit() */
|
|
cfg = event_config_new();
|
|
base = event_base_new_with_config(cfg);
|
|
event_config_free(cfg);
|
|
cfg = NULL;
|
|
if (n_methods == 1) {
|
|
tt_assert(!base);
|
|
} else {
|
|
tt_assert(base);
|
|
tt_str_op(defaultname, !=, event_base_get_method(base));
|
|
event_base_free(base);
|
|
base = NULL;
|
|
}
|
|
|
|
/* Can we disable looking at the environment with IGNORE_ENV ? */
|
|
cfg = event_config_new();
|
|
event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV);
|
|
base = event_base_new_with_config(cfg);
|
|
tt_assert(base);
|
|
tt_str_op(ignoreenvname, ==, event_base_get_method(base));
|
|
#else
|
|
tt_skip();
|
|
#endif
|
|
|
|
end:
|
|
if (base)
|
|
event_base_free(base);
|
|
if (cfg)
|
|
event_config_free(cfg);
|
|
}
|
|
|
|
static void
|
|
read_called_once_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
tt_int_op(event, ==, EV_READ);
|
|
called += 1;
|
|
end:
|
|
;
|
|
}
|
|
|
|
static void
|
|
timeout_called_once_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
tt_int_op(event, ==, EV_TIMEOUT);
|
|
called += 100;
|
|
end:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_event_once(void *ptr)
|
|
{
|
|
struct basic_test_data *data = ptr;
|
|
struct timeval tv;
|
|
int r;
|
|
|
|
tv.tv_sec = 0;
|
|
tv.tv_usec = 50*1000;
|
|
called = 0;
|
|
r = event_base_once(data->base, data->pair[0], EV_READ,
|
|
read_called_once_cb, NULL, NULL);
|
|
tt_int_op(r, ==, 0);
|
|
r = event_base_once(data->base, -1, EV_TIMEOUT,
|
|
timeout_called_once_cb, NULL, &tv);
|
|
tt_int_op(r, ==, 0);
|
|
r = event_base_once(data->base, -1, 0, NULL, NULL, NULL);
|
|
tt_int_op(r, <, 0);
|
|
|
|
if (write(data->pair[1], TEST1, strlen(TEST1)+1) < 0) {
|
|
tt_fail_perror("write");
|
|
}
|
|
|
|
shutdown(data->pair[1], SHUT_WR);
|
|
|
|
event_base_dispatch(data->base);
|
|
|
|
tt_int_op(called, ==, 101);
|
|
end:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_event_pending(void *ptr)
|
|
{
|
|
struct basic_test_data *data = ptr;
|
|
struct event *r=NULL, *w=NULL, *t=NULL;
|
|
struct timeval tv, now, tv2, diff;
|
|
|
|
tv.tv_sec = 0;
|
|
tv.tv_usec = 500 * 1000;
|
|
r = event_new(data->base, data->pair[0], EV_READ, simple_read_cb,
|
|
NULL);
|
|
w = event_new(data->base, data->pair[1], EV_WRITE, simple_write_cb,
|
|
NULL);
|
|
t = evtimer_new(data->base, timeout_cb, NULL);
|
|
|
|
tt_assert(r);
|
|
tt_assert(w);
|
|
tt_assert(t);
|
|
|
|
evutil_gettimeofday(&now, NULL);
|
|
event_add(r, NULL);
|
|
event_add(t, &tv);
|
|
|
|
tt_assert( event_pending(r, EV_READ, NULL));
|
|
tt_assert(!event_pending(w, EV_WRITE, NULL));
|
|
tt_assert(!event_pending(r, EV_WRITE, NULL));
|
|
tt_assert( event_pending(r, EV_READ|EV_WRITE, NULL));
|
|
tt_assert(!event_pending(r, EV_TIMEOUT, NULL));
|
|
tt_assert( event_pending(t, EV_TIMEOUT, NULL));
|
|
tt_assert( event_pending(t, EV_TIMEOUT, &tv2));
|
|
|
|
tt_assert(evutil_timercmp(&tv2, &now, >));
|
|
evutil_timeradd(&now, &tv, &tv);
|
|
evutil_timersub(&tv2, &tv, &diff);
|
|
tt_int_op(diff.tv_sec, ==, 0);
|
|
tt_int_op(labs(diff.tv_usec), <, 1000);
|
|
|
|
end:
|
|
if (r) {
|
|
event_del(r);
|
|
event_free(r);
|
|
}
|
|
if (w) {
|
|
event_del(w);
|
|
event_free(w);
|
|
}
|
|
if (t) {
|
|
event_del(t);
|
|
event_free(t);
|
|
}
|
|
}
|
|
|
|
#ifndef WIN32
|
|
/* You can't do this test on windows, since dup2 doesn't work on sockets */
|
|
|
|
static void
|
|
dfd_cb(evutil_socket_t fd, short e, void *data)
|
|
{
|
|
*(int*)data = (int)e;
|
|
}
|
|
|
|
/* Regression test for our workaround for a fun epoll/linux related bug
|
|
* where fd2 = dup(fd1); add(fd2); close(fd2); dup2(fd1,fd2); add(fd2)
|
|
* will get you an EEXIST */
|
|
static void
|
|
test_dup_fd(void *arg)
|
|
{
|
|
struct basic_test_data *data = arg;
|
|
struct event_base *base = data->base;
|
|
struct event *ev1=NULL, *ev2=NULL;
|
|
int fd, dfd=-1;
|
|
int ev1_got, ev2_got;
|
|
|
|
tt_int_op(write(data->pair[0], "Hello world",
|
|
strlen("Hello world")), >, 0);
|
|
fd = data->pair[1];
|
|
|
|
dfd = dup(fd);
|
|
tt_int_op(dfd, >=, 0);
|
|
|
|
ev1 = event_new(base, fd, EV_READ|EV_PERSIST, dfd_cb, &ev1_got);
|
|
ev2 = event_new(base, dfd, EV_READ|EV_PERSIST, dfd_cb, &ev2_got);
|
|
ev1_got = ev2_got = 0;
|
|
event_add(ev1, NULL);
|
|
event_add(ev2, NULL);
|
|
event_base_loop(base, EVLOOP_ONCE);
|
|
tt_int_op(ev1_got, ==, EV_READ);
|
|
tt_int_op(ev2_got, ==, EV_READ);
|
|
|
|
/* Now close and delete dfd then dispatch. We need to do the
|
|
* dispatch here so that when we add it later, we think there
|
|
* was an intermediate delete. */
|
|
close(dfd);
|
|
event_del(ev2);
|
|
ev1_got = ev2_got = 0;
|
|
event_base_loop(base, EVLOOP_ONCE);
|
|
tt_want_int_op(ev1_got, ==, EV_READ);
|
|
tt_int_op(ev2_got, ==, 0);
|
|
|
|
/* Re-duplicate the fd. We need to get the same duplicated
|
|
* value that we closed to provoke the epoll quirk. Also, we
|
|
* need to change the events to write, or else the old lingering
|
|
* read event will make the test pass whether the change was
|
|
* successful or not. */
|
|
tt_int_op(dup2(fd, dfd), ==, dfd);
|
|
event_free(ev2);
|
|
ev2 = event_new(base, dfd, EV_WRITE|EV_PERSIST, dfd_cb, &ev2_got);
|
|
event_add(ev2, NULL);
|
|
ev1_got = ev2_got = 0;
|
|
event_base_loop(base, EVLOOP_ONCE);
|
|
tt_want_int_op(ev1_got, ==, EV_READ);
|
|
tt_int_op(ev2_got, ==, EV_WRITE);
|
|
|
|
end:
|
|
if (ev1)
|
|
event_free(ev1);
|
|
if (ev2)
|
|
event_free(ev2);
|
|
if (dfd >= 0)
|
|
close(dfd);
|
|
}
|
|
#endif
|
|
|
|
#ifdef _EVENT_DISABLE_MM_REPLACEMENT
|
|
static void
|
|
test_mm_functions(void *arg)
|
|
{
|
|
_tinytest_set_test_skipped();
|
|
}
|
|
#else
|
|
static int
|
|
check_dummy_mem_ok(void *_mem)
|
|
{
|
|
char *mem = _mem;
|
|
mem -= 16;
|
|
return !memcmp(mem, "{[<guardedram>]}", 16);
|
|
}
|
|
|
|
static void *
|
|
dummy_malloc(size_t len)
|
|
{
|
|
char *mem = malloc(len+16);
|
|
memcpy(mem, "{[<guardedram>]}", 16);
|
|
return mem+16;
|
|
}
|
|
|
|
static void *
|
|
dummy_realloc(void *_mem, size_t len)
|
|
{
|
|
char *mem = _mem;
|
|
if (!mem)
|
|
return dummy_malloc(len);
|
|
tt_want(check_dummy_mem_ok(_mem));
|
|
mem -= 16;
|
|
mem = realloc(mem, len+16);
|
|
return mem+16;
|
|
}
|
|
|
|
static void
|
|
dummy_free(void *_mem)
|
|
{
|
|
char *mem = _mem;
|
|
tt_want(check_dummy_mem_ok(_mem));
|
|
mem -= 16;
|
|
free(mem);
|
|
}
|
|
|
|
static void
|
|
test_mm_functions(void *arg)
|
|
{
|
|
struct event_base *b = NULL;
|
|
struct event_config *cfg = NULL;
|
|
event_set_mem_functions(dummy_malloc, dummy_realloc, dummy_free);
|
|
cfg = event_config_new();
|
|
event_config_avoid_method(cfg, "Nonesuch");
|
|
b = event_base_new_with_config(cfg);
|
|
tt_assert(b);
|
|
tt_assert(check_dummy_mem_ok(b));
|
|
end:
|
|
if (cfg)
|
|
event_config_free(cfg);
|
|
if (b)
|
|
event_base_free(b);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
many_event_cb(evutil_socket_t fd, short event, void *arg)
|
|
{
|
|
int *calledp = arg;
|
|
*calledp += 1;
|
|
}
|
|
|
|
static void
|
|
test_many_events(void *arg)
|
|
{
|
|
/* Try 70 events that should all be ready at once. This will
|
|
* exercise the "resize" code on most of the backends, and will make
|
|
* sure that we can get past the 64-handle limit of some windows
|
|
* functions. */
|
|
#define MANY 70
|
|
|
|
struct basic_test_data *data = arg;
|
|
struct event_base *base = data->base;
|
|
int one_at_a_time = data->setup_data != NULL;
|
|
evutil_socket_t sock[MANY];
|
|
struct event *ev[MANY];
|
|
int xcalled[MANY];
|
|
int i;
|
|
int loopflags = EVLOOP_NONBLOCK, evflags=0;
|
|
const int is_evport = !strcmp(event_base_get_method(base),"evport");
|
|
if (one_at_a_time) {
|
|
loopflags |= EVLOOP_ONCE;
|
|
evflags = EV_PERSIST;
|
|
}
|
|
|
|
memset(sock, 0xff, sizeof(sock));
|
|
memset(ev, 0, sizeof(ev));
|
|
memset(xcalled, 0, sizeof(xcalled));
|
|
if (is_evport && one_at_a_time) {
|
|
TT_DECLARE("NOTE", ("evport can't pass this in 2.0; skipping\n"));
|
|
tt_skip();
|
|
}
|
|
|
|
for (i = 0; i < MANY; ++i) {
|
|
/* We need an event that will hit the backend, and that will
|
|
* be ready immediately. "Send a datagram" is an easy
|
|
* instance of that. */
|
|
sock[i] = socket(AF_INET, SOCK_DGRAM, 0);
|
|
tt_assert(sock[i] >= 0);
|
|
xcalled[i] = 0;
|
|
ev[i] = event_new(base, sock[i], EV_WRITE|evflags,
|
|
many_event_cb, &xcalled[i]);
|
|
event_add(ev[i], NULL);
|
|
if (one_at_a_time)
|
|
event_base_loop(base, EVLOOP_NONBLOCK|EVLOOP_ONCE);
|
|
}
|
|
|
|
event_base_loop(base, loopflags);
|
|
|
|
for (i = 0; i < MANY; ++i) {
|
|
if (one_at_a_time)
|
|
tt_int_op(xcalled[i], ==, MANY - i + 1);
|
|
else
|
|
tt_int_op(xcalled[i], ==, 1);
|
|
}
|
|
|
|
end:
|
|
for (i = 0; i < MANY; ++i) {
|
|
if (ev[i])
|
|
event_free(ev[i]);
|
|
if (sock[i] >= 0)
|
|
evutil_closesocket(sock[i]);
|
|
}
|
|
#undef MANY
|
|
}
|
|
|
|
static void
|
|
test_struct_event_size(void *arg)
|
|
{
|
|
tt_int_op(event_get_struct_event_size(), <=, sizeof(struct event));
|
|
end:
|
|
;
|
|
}
|
|
|
|
struct testcase_t main_testcases[] = {
|
|
/* Some converted-over tests */
|
|
{ "methods", test_methods, TT_FORK, NULL, NULL },
|
|
{ "version", test_version, 0, NULL, NULL },
|
|
BASIC(base_features, TT_FORK|TT_NO_LOGS),
|
|
{ "base_environ", test_base_environ, TT_FORK, NULL, NULL },
|
|
|
|
BASIC(event_base_new, TT_FORK|TT_NEED_SOCKETPAIR),
|
|
BASIC(free_active_base, TT_FORK|TT_NEED_SOCKETPAIR),
|
|
|
|
BASIC(manipulate_active_events, TT_FORK|TT_NEED_BASE),
|
|
|
|
BASIC(bad_assign, TT_FORK|TT_NEED_BASE|TT_NO_LOGS),
|
|
BASIC(bad_reentrant, TT_FORK|TT_NEED_BASE|TT_NO_LOGS),
|
|
|
|
LEGACY(persistent_timeout, TT_FORK|TT_NEED_BASE),
|
|
{ "persistent_timeout_jump", test_persistent_timeout_jump, TT_FORK|TT_NEED_BASE, &basic_setup, NULL },
|
|
{ "persistent_active_timeout", test_persistent_active_timeout,
|
|
TT_FORK|TT_NEED_BASE, &basic_setup, NULL },
|
|
LEGACY(priorities, TT_FORK|TT_NEED_BASE),
|
|
BASIC(priority_active_inversion, TT_FORK|TT_NEED_BASE),
|
|
{ "common_timeout", test_common_timeout, TT_FORK|TT_NEED_BASE,
|
|
&basic_setup, NULL },
|
|
|
|
/* These legacy tests may not all need all of these flags. */
|
|
LEGACY(simpleread, TT_ISOLATED),
|
|
LEGACY(simpleread_multiple, TT_ISOLATED),
|
|
LEGACY(simplewrite, TT_ISOLATED),
|
|
{ "simpleclose", test_simpleclose, TT_FORK, &basic_setup,
|
|
NULL },
|
|
LEGACY(multiple, TT_ISOLATED),
|
|
LEGACY(persistent, TT_ISOLATED),
|
|
LEGACY(combined, TT_ISOLATED),
|
|
LEGACY(simpletimeout, TT_ISOLATED),
|
|
LEGACY(loopbreak, TT_ISOLATED),
|
|
LEGACY(loopexit, TT_ISOLATED),
|
|
LEGACY(loopexit_multiple, TT_ISOLATED),
|
|
LEGACY(nonpersist_readd, TT_ISOLATED),
|
|
LEGACY(multiple_events_for_same_fd, TT_ISOLATED),
|
|
LEGACY(want_only_once, TT_ISOLATED),
|
|
{ "event_once", test_event_once, TT_ISOLATED, &basic_setup, NULL },
|
|
{ "event_pending", test_event_pending, TT_ISOLATED, &basic_setup,
|
|
NULL },
|
|
#ifndef WIN32
|
|
{ "dup_fd", test_dup_fd, TT_ISOLATED, &basic_setup, NULL },
|
|
#endif
|
|
{ "mm_functions", test_mm_functions, TT_FORK, NULL, NULL },
|
|
{ "many_events", test_many_events, TT_ISOLATED, &basic_setup, NULL },
|
|
{ "many_events_slow_add", test_many_events, TT_ISOLATED, &basic_setup, (void*)1 },
|
|
|
|
{ "struct_event_size", test_struct_event_size, 0, NULL, NULL },
|
|
|
|
#ifndef WIN32
|
|
LEGACY(fork, TT_ISOLATED),
|
|
#endif
|
|
END_OF_TESTCASES
|
|
};
|
|
|
|
struct testcase_t evtag_testcases[] = {
|
|
{ "int", evtag_int_test, TT_FORK, NULL, NULL },
|
|
{ "fuzz", evtag_fuzz, TT_FORK, NULL, NULL },
|
|
{ "encoding", evtag_tag_encoding, TT_FORK, NULL, NULL },
|
|
{ "peek", evtag_test_peek, 0, NULL, NULL },
|
|
|
|
END_OF_TESTCASES
|
|
};
|
|
|
|
struct testcase_t signal_testcases[] = {
|
|
#ifndef WIN32
|
|
LEGACY(simplesignal, TT_ISOLATED),
|
|
LEGACY(multiplesignal, TT_ISOLATED),
|
|
LEGACY(immediatesignal, TT_ISOLATED),
|
|
LEGACY(signal_dealloc, TT_ISOLATED),
|
|
LEGACY(signal_pipeloss, TT_ISOLATED),
|
|
LEGACY(signal_switchbase, TT_ISOLATED|TT_NO_LOGS),
|
|
LEGACY(signal_restore, TT_ISOLATED),
|
|
LEGACY(signal_assert, TT_ISOLATED),
|
|
LEGACY(signal_while_processing, TT_ISOLATED),
|
|
#endif
|
|
END_OF_TESTCASES
|
|
};
|
|
|