b6ea15115c
. map all objects named usermapped_*.o with globally visible pages; usermapped_glo_*.o with the VM 'global' bit on, i.e. permanently in tlb (very scarce resource!) . added kinfo, machine, kmessages and loadinfo for a start . modified log, tty to make use of the shared messages struct
1003 lines
26 KiB
C
1003 lines
26 KiB
C
|
|
#include "kernel/kernel.h"
|
|
#include "kernel/proc.h"
|
|
#include "kernel/vm.h"
|
|
|
|
#include <machine/vm.h>
|
|
|
|
#include <minix/type.h>
|
|
#include <minix/syslib.h>
|
|
#include <minix/cpufeature.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <signal.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <machine/vm.h>
|
|
|
|
#include "oxpcie.h"
|
|
#include "arch_proto.h"
|
|
#include "kernel/proto.h"
|
|
#include "kernel/debug.h"
|
|
|
|
#ifdef USE_APIC
|
|
#include "apic.h"
|
|
#ifdef USE_WATCHDOG
|
|
#include "kernel/watchdog.h"
|
|
#endif
|
|
#endif
|
|
|
|
phys_bytes video_mem_vaddr = 0;
|
|
|
|
#define HASPT(procptr) ((procptr)->p_seg.p_cr3 != 0)
|
|
static int nfreepdes = 0;
|
|
#define MAXFREEPDES 2
|
|
static int freepdes[MAXFREEPDES];
|
|
|
|
static u32_t phys_get32(phys_bytes v);
|
|
|
|
void mem_clear_mapcache(void)
|
|
{
|
|
int i;
|
|
for(i = 0; i < nfreepdes; i++) {
|
|
struct proc *ptproc = get_cpulocal_var(ptproc);
|
|
int pde = freepdes[i];
|
|
u32_t *ptv;
|
|
assert(ptproc);
|
|
ptv = ptproc->p_seg.p_cr3_v;
|
|
assert(ptv);
|
|
ptv[pde] = 0;
|
|
}
|
|
}
|
|
|
|
/* This function sets up a mapping from within the kernel's address
|
|
* space to any other area of memory, either straight physical
|
|
* memory (pr == NULL) or a process view of memory, in 4MB windows.
|
|
* I.e., it maps in 4MB chunks of virtual (or physical) address space
|
|
* to 4MB chunks of kernel virtual address space.
|
|
*
|
|
* It recognizes pr already being in memory as a special case (no
|
|
* mapping required).
|
|
*
|
|
* The target (i.e. in-kernel) mapping area is one of the freepdes[]
|
|
* VM has earlier already told the kernel about that is available. It is
|
|
* identified as the 'pde' parameter. This value can be chosen freely
|
|
* by the caller, as long as it is in range (i.e. 0 or higher and corresonds
|
|
* to a known freepde slot). It is up to the caller to keep track of which
|
|
* freepde's are in use, and to determine which ones are free to use.
|
|
*
|
|
* The logical number supplied by the caller is translated into an actual
|
|
* pde number to be used, and a pointer to it (linear address) is returned
|
|
* for actual use by phys_copy or memset.
|
|
*/
|
|
static phys_bytes createpde(
|
|
const struct proc *pr, /* Requested process, NULL for physical. */
|
|
const phys_bytes linaddr,/* Address after segment translation. */
|
|
phys_bytes *bytes, /* Size of chunk, function may truncate it. */
|
|
int free_pde_idx, /* index of the free slot to use */
|
|
int *changed /* If mapping is made, this is set to 1. */
|
|
)
|
|
{
|
|
u32_t pdeval;
|
|
phys_bytes offset;
|
|
int pde;
|
|
|
|
assert(free_pde_idx >= 0 && free_pde_idx < nfreepdes);
|
|
pde = freepdes[free_pde_idx];
|
|
assert(pde >= 0 && pde < 1024);
|
|
|
|
if(pr && ((pr == get_cpulocal_var(ptproc)) || iskernelp(pr))) {
|
|
/* Process memory is requested, and
|
|
* it's a process that is already in current page table, or
|
|
* the kernel, which is always there.
|
|
* Therefore linaddr is valid directly, with the requested
|
|
* size.
|
|
*/
|
|
return linaddr;
|
|
}
|
|
|
|
if(pr) {
|
|
/* Requested address is in a process that is not currently
|
|
* accessible directly. Grab the PDE entry of that process'
|
|
* page table that corresponds to the requested address.
|
|
*/
|
|
assert(pr->p_seg.p_cr3_v);
|
|
pdeval = pr->p_seg.p_cr3_v[I386_VM_PDE(linaddr)];
|
|
} else {
|
|
/* Requested address is physical. Make up the PDE entry. */
|
|
pdeval = (linaddr & I386_VM_ADDR_MASK_4MB) |
|
|
I386_VM_BIGPAGE | I386_VM_PRESENT |
|
|
I386_VM_WRITE | I386_VM_USER;
|
|
}
|
|
|
|
/* Write the pde value that we need into a pde that the kernel
|
|
* can access, into the currently loaded page table so it becomes
|
|
* visible.
|
|
*/
|
|
assert(get_cpulocal_var(ptproc)->p_seg.p_cr3_v);
|
|
if(get_cpulocal_var(ptproc)->p_seg.p_cr3_v[pde] != pdeval) {
|
|
get_cpulocal_var(ptproc)->p_seg.p_cr3_v[pde] = pdeval;
|
|
*changed = 1;
|
|
}
|
|
|
|
/* Memory is now available, but only the 4MB window of virtual
|
|
* address space that we have mapped; calculate how much of
|
|
* the requested range is visible and return that in *bytes,
|
|
* if that is less than the requested range.
|
|
*/
|
|
offset = linaddr & I386_VM_OFFSET_MASK_4MB; /* Offset in 4MB window. */
|
|
*bytes = MIN(*bytes, I386_BIG_PAGE_SIZE - offset);
|
|
|
|
/* Return the linear address of the start of the new mapping. */
|
|
return I386_BIG_PAGE_SIZE*pde + offset;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* lin_lin_copy *
|
|
*===========================================================================*/
|
|
static int lin_lin_copy(struct proc *srcproc, vir_bytes srclinaddr,
|
|
struct proc *dstproc, vir_bytes dstlinaddr, vir_bytes bytes)
|
|
{
|
|
u32_t addr;
|
|
proc_nr_t procslot;
|
|
|
|
assert(get_cpulocal_var(ptproc));
|
|
assert(get_cpulocal_var(proc_ptr));
|
|
assert(read_cr3() == get_cpulocal_var(ptproc)->p_seg.p_cr3);
|
|
|
|
procslot = get_cpulocal_var(ptproc)->p_nr;
|
|
|
|
assert(procslot >= 0 && procslot < I386_VM_DIR_ENTRIES);
|
|
|
|
if(srcproc) assert(!RTS_ISSET(srcproc, RTS_SLOT_FREE));
|
|
if(dstproc) assert(!RTS_ISSET(dstproc, RTS_SLOT_FREE));
|
|
assert(!RTS_ISSET(get_cpulocal_var(ptproc), RTS_SLOT_FREE));
|
|
assert(get_cpulocal_var(ptproc)->p_seg.p_cr3_v);
|
|
if(srcproc) assert(!RTS_ISSET(srcproc, RTS_VMINHIBIT));
|
|
if(dstproc) assert(!RTS_ISSET(dstproc, RTS_VMINHIBIT));
|
|
|
|
while(bytes > 0) {
|
|
phys_bytes srcptr, dstptr;
|
|
vir_bytes chunk = bytes;
|
|
int changed = 0;
|
|
|
|
#ifdef CONFIG_SMP
|
|
unsigned cpu = cpuid;
|
|
|
|
if (srcproc && GET_BIT(srcproc->p_stale_tlb, cpu)) {
|
|
changed = 1;
|
|
UNSET_BIT(srcproc->p_stale_tlb, cpu);
|
|
}
|
|
if (dstproc && GET_BIT(dstproc->p_stale_tlb, cpu)) {
|
|
changed = 1;
|
|
UNSET_BIT(dstproc->p_stale_tlb, cpu);
|
|
}
|
|
#endif
|
|
|
|
/* Set up 4MB ranges. */
|
|
srcptr = createpde(srcproc, srclinaddr, &chunk, 0, &changed);
|
|
dstptr = createpde(dstproc, dstlinaddr, &chunk, 1, &changed);
|
|
if(changed)
|
|
reload_cr3();
|
|
|
|
/* Copy pages. */
|
|
PHYS_COPY_CATCH(srcptr, dstptr, chunk, addr);
|
|
|
|
if(addr) {
|
|
/* If addr is nonzero, a page fault was caught. */
|
|
|
|
if(addr >= srcptr && addr < (srcptr + chunk)) {
|
|
return EFAULT_SRC;
|
|
}
|
|
if(addr >= dstptr && addr < (dstptr + chunk)) {
|
|
return EFAULT_DST;
|
|
}
|
|
|
|
panic("lin_lin_copy fault out of range");
|
|
|
|
/* Not reached. */
|
|
return EFAULT;
|
|
}
|
|
|
|
/* Update counter and addresses for next iteration, if any. */
|
|
bytes -= chunk;
|
|
srclinaddr += chunk;
|
|
dstlinaddr += chunk;
|
|
}
|
|
|
|
if(srcproc) assert(!RTS_ISSET(srcproc, RTS_SLOT_FREE));
|
|
if(dstproc) assert(!RTS_ISSET(dstproc, RTS_SLOT_FREE));
|
|
assert(!RTS_ISSET(get_cpulocal_var(ptproc), RTS_SLOT_FREE));
|
|
assert(get_cpulocal_var(ptproc)->p_seg.p_cr3_v);
|
|
|
|
return OK;
|
|
}
|
|
|
|
|
|
static u32_t phys_get32(phys_bytes addr)
|
|
{
|
|
const u32_t v;
|
|
int r;
|
|
|
|
if((r=lin_lin_copy(NULL, addr,
|
|
proc_addr(SYSTEM), (phys_bytes) &v, sizeof(v))) != OK) {
|
|
panic("lin_lin_copy for phys_get32 failed: %d", r);
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
#if 0
|
|
static char *cr0_str(u32_t e)
|
|
{
|
|
static char str[80];
|
|
strcpy(str, "");
|
|
#define FLAG(v) do { if(e & (v)) { strcat(str, #v " "); e &= ~v; } } while(0)
|
|
FLAG(I386_CR0_PE);
|
|
FLAG(I386_CR0_MP);
|
|
FLAG(I386_CR0_EM);
|
|
FLAG(I386_CR0_TS);
|
|
FLAG(I386_CR0_ET);
|
|
FLAG(I386_CR0_PG);
|
|
FLAG(I386_CR0_WP);
|
|
if(e) { strcat(str, " (++)"); }
|
|
return str;
|
|
}
|
|
|
|
static char *cr4_str(u32_t e)
|
|
{
|
|
static char str[80];
|
|
strcpy(str, "");
|
|
FLAG(I386_CR4_VME);
|
|
FLAG(I386_CR4_PVI);
|
|
FLAG(I386_CR4_TSD);
|
|
FLAG(I386_CR4_DE);
|
|
FLAG(I386_CR4_PSE);
|
|
FLAG(I386_CR4_PAE);
|
|
FLAG(I386_CR4_MCE);
|
|
FLAG(I386_CR4_PGE);
|
|
if(e) { strcat(str, " (++)"); }
|
|
return str;
|
|
}
|
|
#endif
|
|
|
|
/*===========================================================================*
|
|
* umap_virtual *
|
|
*===========================================================================*/
|
|
phys_bytes umap_virtual(rp, seg, vir_addr, bytes)
|
|
register struct proc *rp; /* pointer to proc table entry for process */
|
|
int seg; /* T, D, or S segment */
|
|
vir_bytes vir_addr; /* virtual address in bytes within the seg */
|
|
vir_bytes bytes; /* # of bytes to be copied */
|
|
{
|
|
phys_bytes phys = 0;
|
|
|
|
if(vm_lookup(rp, vir_addr, &phys, NULL) != OK) {
|
|
printf("SYSTEM:umap_virtual: vm_lookup of %s: seg 0x%x: 0x%lx failed\n", rp->p_name, seg, vir_addr);
|
|
phys = 0;
|
|
} else {
|
|
if(phys == 0)
|
|
panic("vm_lookup returned phys: %d", phys);
|
|
}
|
|
|
|
if(phys == 0) {
|
|
printf("SYSTEM:umap_virtual: lookup failed\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Now make sure addresses are contiguous in physical memory
|
|
* so that the umap makes sense.
|
|
*/
|
|
if(bytes > 0 && vm_lookup_range(rp, vir_addr, NULL, bytes) != bytes) {
|
|
printf("umap_virtual: %s: %lu at 0x%lx (vir 0x%lx) not contiguous\n",
|
|
rp->p_name, bytes, vir_addr, vir_addr);
|
|
return 0;
|
|
}
|
|
|
|
/* phys must be larger than 0 (or the caller will think the call
|
|
* failed), and address must not cross a page boundary.
|
|
*/
|
|
assert(phys);
|
|
|
|
return phys;
|
|
}
|
|
|
|
|
|
/*===========================================================================*
|
|
* vm_lookup *
|
|
*===========================================================================*/
|
|
int vm_lookup(const struct proc *proc, const vir_bytes virtual,
|
|
phys_bytes *physical, u32_t *ptent)
|
|
{
|
|
u32_t *root, *pt;
|
|
int pde, pte;
|
|
u32_t pde_v, pte_v;
|
|
|
|
assert(proc);
|
|
assert(physical);
|
|
assert(!isemptyp(proc));
|
|
assert(HASPT(proc));
|
|
|
|
/* Retrieve page directory entry. */
|
|
root = (u32_t *) proc->p_seg.p_cr3;
|
|
assert(!((u32_t) root % I386_PAGE_SIZE));
|
|
pde = I386_VM_PDE(virtual);
|
|
assert(pde >= 0 && pde < I386_VM_DIR_ENTRIES);
|
|
pde_v = phys_get32((u32_t) (root + pde));
|
|
|
|
if(!(pde_v & I386_VM_PRESENT)) {
|
|
return EFAULT;
|
|
}
|
|
|
|
/* We don't expect to ever see this. */
|
|
if(pde_v & I386_VM_BIGPAGE) {
|
|
*physical = pde_v & I386_VM_ADDR_MASK_4MB;
|
|
if(ptent) *ptent = pde_v;
|
|
*physical += virtual & I386_VM_OFFSET_MASK_4MB;
|
|
} else {
|
|
/* Retrieve page table entry. */
|
|
pt = (u32_t *) I386_VM_PFA(pde_v);
|
|
assert(!((u32_t) pt % I386_PAGE_SIZE));
|
|
pte = I386_VM_PTE(virtual);
|
|
assert(pte >= 0 && pte < I386_VM_PT_ENTRIES);
|
|
pte_v = phys_get32((u32_t) (pt + pte));
|
|
if(!(pte_v & I386_VM_PRESENT)) {
|
|
return EFAULT;
|
|
}
|
|
|
|
if(ptent) *ptent = pte_v;
|
|
|
|
/* Actual address now known; retrieve it and add page offset. */
|
|
*physical = I386_VM_PFA(pte_v);
|
|
*physical += virtual % I386_PAGE_SIZE;
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* vm_lookup_range *
|
|
*===========================================================================*/
|
|
size_t vm_lookup_range(const struct proc *proc, vir_bytes vir_addr,
|
|
phys_bytes *phys_addr, size_t bytes)
|
|
{
|
|
/* Look up the physical address corresponding to linear virtual address
|
|
* 'vir_addr' for process 'proc'. Return the size of the range covered
|
|
* by contiguous physical memory starting from that address; this may
|
|
* be anywhere between 0 and 'bytes' inclusive. If the return value is
|
|
* nonzero, and 'phys_addr' is non-NULL, 'phys_addr' will be set to the
|
|
* base physical address of the range. 'vir_addr' and 'bytes' need not
|
|
* be page-aligned, but the caller must have verified that the given
|
|
* linear range is valid for the given process at all.
|
|
*/
|
|
phys_bytes phys, next_phys;
|
|
size_t len;
|
|
|
|
assert(proc);
|
|
assert(bytes > 0);
|
|
assert(HASPT(proc));
|
|
|
|
/* Look up the first page. */
|
|
if (vm_lookup(proc, vir_addr, &phys, NULL) != OK)
|
|
return 0;
|
|
|
|
if (phys_addr != NULL)
|
|
*phys_addr = phys;
|
|
|
|
len = I386_PAGE_SIZE - (vir_addr % I386_PAGE_SIZE);
|
|
vir_addr += len;
|
|
next_phys = phys + len;
|
|
|
|
/* Look up any next pages and test physical contiguity. */
|
|
while (len < bytes) {
|
|
if (vm_lookup(proc, vir_addr, &phys, NULL) != OK)
|
|
break;
|
|
|
|
if (next_phys != phys)
|
|
break;
|
|
|
|
len += I386_PAGE_SIZE;
|
|
vir_addr += I386_PAGE_SIZE;
|
|
next_phys += I386_PAGE_SIZE;
|
|
}
|
|
|
|
/* We might now have overshot the requested length somewhat. */
|
|
return MIN(bytes, len);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* vm_suspend *
|
|
*===========================================================================*/
|
|
static void vm_suspend(struct proc *caller, const struct proc *target,
|
|
const vir_bytes linaddr, const vir_bytes len, const int type)
|
|
{
|
|
/* This range is not OK for this process. Set parameters
|
|
* of the request and notify VM about the pending request.
|
|
*/
|
|
assert(!RTS_ISSET(caller, RTS_VMREQUEST));
|
|
assert(!RTS_ISSET(target, RTS_VMREQUEST));
|
|
|
|
RTS_SET(caller, RTS_VMREQUEST);
|
|
|
|
caller->p_vmrequest.req_type = VMPTYPE_CHECK;
|
|
caller->p_vmrequest.target = target->p_endpoint;
|
|
caller->p_vmrequest.params.check.start = linaddr;
|
|
caller->p_vmrequest.params.check.length = len;
|
|
caller->p_vmrequest.params.check.writeflag = 1;
|
|
caller->p_vmrequest.type = type;
|
|
|
|
/* Connect caller on vmrequest wait queue. */
|
|
if(!(caller->p_vmrequest.nextrequestor = vmrequest))
|
|
if(OK != send_sig(VM_PROC_NR, SIGKMEM))
|
|
panic("send_sig failed");
|
|
vmrequest = caller;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* vm_check_range *
|
|
*===========================================================================*/
|
|
int vm_check_range(struct proc *caller, struct proc *target,
|
|
vir_bytes vir_addr, size_t bytes)
|
|
{
|
|
/* Public interface to vm_suspend(), for use by kernel calls. On behalf
|
|
* of 'caller', call into VM to check linear virtual address range of
|
|
* process 'target', starting at 'vir_addr', for 'bytes' bytes. This
|
|
* function assumes that it will called twice if VM returned an error
|
|
* the first time (since nothing has changed in that case), and will
|
|
* then return the error code resulting from the first call. Upon the
|
|
* first call, a non-success error code is returned as well.
|
|
*/
|
|
int r;
|
|
|
|
if ((caller->p_misc_flags & MF_KCALL_RESUME) &&
|
|
(r = caller->p_vmrequest.vmresult) != OK)
|
|
return r;
|
|
|
|
vm_suspend(caller, target, vir_addr, bytes, VMSTYPE_KERNELCALL);
|
|
|
|
return VMSUSPEND;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* delivermsg *
|
|
*===========================================================================*/
|
|
void delivermsg(struct proc *rp)
|
|
{
|
|
int r = OK;
|
|
|
|
assert(rp->p_misc_flags & MF_DELIVERMSG);
|
|
assert(rp->p_delivermsg.m_source != NONE);
|
|
|
|
if (copy_msg_to_user(&rp->p_delivermsg,
|
|
(message *) rp->p_delivermsg_vir)) {
|
|
printf("WARNING wrong user pointer 0x%08lx from "
|
|
"process %s / %d\n",
|
|
rp->p_delivermsg_vir,
|
|
rp->p_name,
|
|
rp->p_endpoint);
|
|
r = EFAULT;
|
|
}
|
|
|
|
/* Indicate message has been delivered; address is 'used'. */
|
|
rp->p_delivermsg.m_source = NONE;
|
|
rp->p_misc_flags &= ~MF_DELIVERMSG;
|
|
|
|
if(!(rp->p_misc_flags & MF_CONTEXT_SET)) {
|
|
rp->p_reg.retreg = r;
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
static char *flagstr(u32_t e, const int dir)
|
|
{
|
|
static char str[80];
|
|
strcpy(str, "");
|
|
FLAG(I386_VM_PRESENT);
|
|
FLAG(I386_VM_WRITE);
|
|
FLAG(I386_VM_USER);
|
|
FLAG(I386_VM_PWT);
|
|
FLAG(I386_VM_PCD);
|
|
FLAG(I386_VM_GLOBAL);
|
|
if(dir)
|
|
FLAG(I386_VM_BIGPAGE); /* Page directory entry only */
|
|
else
|
|
FLAG(I386_VM_DIRTY); /* Page table entry only */
|
|
return str;
|
|
}
|
|
|
|
static void vm_pt_print(u32_t *pagetable, const u32_t v)
|
|
{
|
|
int pte;
|
|
int col = 0;
|
|
|
|
assert(!((u32_t) pagetable % I386_PAGE_SIZE));
|
|
|
|
for(pte = 0; pte < I386_VM_PT_ENTRIES; pte++) {
|
|
u32_t pte_v, pfa;
|
|
pte_v = phys_get32((u32_t) (pagetable + pte));
|
|
if(!(pte_v & I386_VM_PRESENT))
|
|
continue;
|
|
pfa = I386_VM_PFA(pte_v);
|
|
printf("%4d:%08lx:%08lx %2s ",
|
|
pte, v + I386_PAGE_SIZE*pte, pfa,
|
|
(pte_v & I386_VM_WRITE) ? "rw":"RO");
|
|
col++;
|
|
if(col == 3) { printf("\n"); col = 0; }
|
|
}
|
|
if(col > 0) printf("\n");
|
|
|
|
return;
|
|
}
|
|
|
|
static void vm_print(u32_t *root)
|
|
{
|
|
int pde;
|
|
|
|
assert(!((u32_t) root % I386_PAGE_SIZE));
|
|
|
|
printf("page table 0x%lx:\n", root);
|
|
|
|
for(pde = 0; pde < I386_VM_DIR_ENTRIES; pde++) {
|
|
u32_t pde_v;
|
|
u32_t *pte_a;
|
|
pde_v = phys_get32((u32_t) (root + pde));
|
|
if(!(pde_v & I386_VM_PRESENT))
|
|
continue;
|
|
if(pde_v & I386_VM_BIGPAGE) {
|
|
printf("%4d: 0x%lx, flags %s\n",
|
|
pde, I386_VM_PFA(pde_v), flagstr(pde_v, 1));
|
|
} else {
|
|
pte_a = (u32_t *) I386_VM_PFA(pde_v);
|
|
printf("%4d: pt %08lx %s\n",
|
|
pde, pte_a, flagstr(pde_v, 1));
|
|
vm_pt_print(pte_a, pde * I386_VM_PT_ENTRIES * I386_PAGE_SIZE);
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
int vm_memset(endpoint_t who, phys_bytes ph, const u8_t c, phys_bytes bytes)
|
|
{
|
|
u32_t p;
|
|
int r = OK;
|
|
struct proc *whoptr = NULL;
|
|
|
|
/* NONE for physical, otherwise virtual */
|
|
if(who != NONE) {
|
|
int n;
|
|
if(!isokendpt(who, &n)) return ESRCH;
|
|
whoptr = proc_addr(n);
|
|
}
|
|
|
|
p = c | (c << 8) | (c << 16) | (c << 24);
|
|
|
|
assert(get_cpulocal_var(ptproc)->p_seg.p_cr3_v);
|
|
|
|
assert(!catch_pagefaults);
|
|
catch_pagefaults=1;
|
|
|
|
/* With VM, we have to map in the memory (virtual or physical).
|
|
* We can do this 4MB at a time.
|
|
*/
|
|
while(bytes > 0) {
|
|
int changed = 0;
|
|
phys_bytes chunk = bytes, ptr, pfa;
|
|
ptr = createpde(whoptr, ph, &chunk, 0, &changed);
|
|
if(changed)
|
|
reload_cr3();
|
|
|
|
/* We can memset as many bytes as we have remaining,
|
|
* or as many as remain in the 4MB chunk we mapped in.
|
|
*/
|
|
if((pfa=phys_memset(ptr, p, chunk))) {
|
|
printf("kernel memset pagefault\n");
|
|
r = EFAULT;
|
|
break;
|
|
}
|
|
bytes -= chunk;
|
|
ph += chunk;
|
|
}
|
|
|
|
assert(catch_pagefaults);
|
|
catch_pagefaults=0;
|
|
|
|
assert(get_cpulocal_var(ptproc)->p_seg.p_cr3_v);
|
|
|
|
return OK;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* virtual_copy_f *
|
|
*===========================================================================*/
|
|
int virtual_copy_f(caller, src_addr, dst_addr, bytes, vmcheck)
|
|
struct proc * caller;
|
|
struct vir_addr *src_addr; /* source virtual address */
|
|
struct vir_addr *dst_addr; /* destination virtual address */
|
|
vir_bytes bytes; /* # of bytes to copy */
|
|
int vmcheck; /* if nonzero, can return VMSUSPEND */
|
|
{
|
|
/* Copy bytes from virtual address src_addr to virtual address dst_addr. */
|
|
struct vir_addr *vir_addr[2]; /* virtual source and destination address */
|
|
int i, r;
|
|
struct proc *procs[2];
|
|
|
|
assert((vmcheck && caller) || (!vmcheck && !caller));
|
|
|
|
/* Check copy count. */
|
|
if (bytes <= 0) return(EDOM);
|
|
|
|
/* Do some more checks and map virtual addresses to physical addresses. */
|
|
vir_addr[_SRC_] = src_addr;
|
|
vir_addr[_DST_] = dst_addr;
|
|
|
|
for (i=_SRC_; i<=_DST_; i++) {
|
|
endpoint_t proc_e = vir_addr[i]->proc_nr_e;
|
|
int proc_nr;
|
|
struct proc *p;
|
|
|
|
if(proc_e == NONE) {
|
|
p = NULL;
|
|
} else {
|
|
if(!isokendpt(proc_e, &proc_nr)) {
|
|
printf("virtual_copy: no reasonable endpoint\n");
|
|
return ESRCH;
|
|
}
|
|
p = proc_addr(proc_nr);
|
|
}
|
|
|
|
procs[i] = p;
|
|
}
|
|
|
|
if(caller && (caller->p_misc_flags & MF_KCALL_RESUME)) {
|
|
assert(caller->p_vmrequest.vmresult != VMSUSPEND);
|
|
if(caller->p_vmrequest.vmresult != OK) {
|
|
return caller->p_vmrequest.vmresult;
|
|
}
|
|
}
|
|
|
|
if((r=lin_lin_copy(procs[_SRC_], vir_addr[_SRC_]->offset,
|
|
procs[_DST_], vir_addr[_DST_]->offset, bytes)) != OK) {
|
|
struct proc *target = NULL;
|
|
phys_bytes lin;
|
|
if(r != EFAULT_SRC && r != EFAULT_DST)
|
|
panic("lin_lin_copy failed: %d", r);
|
|
if(!vmcheck || !caller) {
|
|
return r;
|
|
}
|
|
|
|
if(r == EFAULT_SRC) {
|
|
lin = vir_addr[_SRC_]->offset;
|
|
target = procs[_SRC_];
|
|
} else if(r == EFAULT_DST) {
|
|
lin = vir_addr[_DST_]->offset;
|
|
target = procs[_DST_];
|
|
} else {
|
|
panic("r strange: %d", r);
|
|
}
|
|
|
|
assert(caller);
|
|
assert(target);
|
|
|
|
vm_suspend(caller, target, lin, bytes, VMSTYPE_KERNELCALL);
|
|
return VMSUSPEND;
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* data_copy *
|
|
*===========================================================================*/
|
|
int data_copy(const endpoint_t from_proc, const vir_bytes from_addr,
|
|
const endpoint_t to_proc, const vir_bytes to_addr,
|
|
size_t bytes)
|
|
{
|
|
struct vir_addr src, dst;
|
|
|
|
src.offset = from_addr;
|
|
dst.offset = to_addr;
|
|
src.proc_nr_e = from_proc;
|
|
dst.proc_nr_e = to_proc;
|
|
assert(src.proc_nr_e != NONE);
|
|
assert(dst.proc_nr_e != NONE);
|
|
|
|
return virtual_copy(&src, &dst, bytes);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* data_copy_vmcheck *
|
|
*===========================================================================*/
|
|
int data_copy_vmcheck(struct proc * caller,
|
|
const endpoint_t from_proc, const vir_bytes from_addr,
|
|
const endpoint_t to_proc, const vir_bytes to_addr,
|
|
size_t bytes)
|
|
{
|
|
struct vir_addr src, dst;
|
|
|
|
src.offset = from_addr;
|
|
dst.offset = to_addr;
|
|
src.proc_nr_e = from_proc;
|
|
dst.proc_nr_e = to_proc;
|
|
assert(src.proc_nr_e != NONE);
|
|
assert(dst.proc_nr_e != NONE);
|
|
|
|
return virtual_copy_vmcheck(caller, &src, &dst, bytes);
|
|
}
|
|
|
|
void memory_init(void)
|
|
{
|
|
assert(nfreepdes == 0);
|
|
|
|
freepdes[nfreepdes++] = kinfo.freepde_start++;
|
|
freepdes[nfreepdes++] = kinfo.freepde_start++;
|
|
|
|
assert(kinfo.freepde_start < I386_VM_DIR_ENTRIES);
|
|
assert(nfreepdes == 2);
|
|
assert(nfreepdes <= MAXFREEPDES);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* arch_proc_init *
|
|
*===========================================================================*/
|
|
void arch_proc_init(struct proc *pr, const u32_t ip, const u32_t sp, char *name)
|
|
{
|
|
arch_proc_reset(pr);
|
|
strlcpy(pr->p_name, name, sizeof(pr->p_name));
|
|
|
|
/* set custom state we know */
|
|
pr->p_reg.pc = ip;
|
|
pr->p_reg.sp = sp;
|
|
}
|
|
|
|
static int oxpcie_mapping_index = -1,
|
|
lapic_mapping_index = -1,
|
|
ioapic_first_index = -1,
|
|
ioapic_last_index = -1,
|
|
video_mem_mapping_index = -1,
|
|
usermapped_glo_index = -1,
|
|
usermapped_index = -1, first_um_idx = -1;
|
|
|
|
extern char *video_mem;
|
|
|
|
extern char usermapped_start, usermapped_end, usermapped_nonglo_start;
|
|
|
|
int arch_phys_map(const int index,
|
|
phys_bytes *addr,
|
|
phys_bytes *len,
|
|
int *flags)
|
|
{
|
|
static int first = 1;
|
|
int freeidx = 0;
|
|
static char *ser_var = NULL;
|
|
u32_t glo_len = (u32_t) &usermapped_nonglo_start -
|
|
(u32_t) &usermapped_start;
|
|
|
|
if(first) {
|
|
video_mem_mapping_index = freeidx++;
|
|
if(glo_len > 0) {
|
|
usermapped_glo_index = freeidx++;
|
|
}
|
|
|
|
usermapped_index = freeidx++;
|
|
first_um_idx = usermapped_index;
|
|
if(usermapped_glo_index != -1)
|
|
first_um_idx = usermapped_glo_index;
|
|
|
|
#ifdef USE_APIC
|
|
if(lapic_addr)
|
|
lapic_mapping_index = freeidx++;
|
|
if (ioapic_enabled) {
|
|
ioapic_first_index = freeidx;
|
|
assert(nioapics > 0);
|
|
freeidx += nioapics;
|
|
ioapic_last_index = freeidx-1;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_OXPCIE
|
|
if((ser_var = env_get("oxpcie"))) {
|
|
if(ser_var[0] != '0' || ser_var[1] != 'x') {
|
|
printf("oxpcie address in hex please\n");
|
|
} else {
|
|
printf("oxpcie address is %s\n", ser_var);
|
|
oxpcie_mapping_index = freeidx++;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
first = 0;
|
|
}
|
|
|
|
if(index == usermapped_glo_index) {
|
|
*addr = vir2phys(&usermapped_start);
|
|
*len = glo_len;
|
|
*flags = VMMF_USER | VMMF_GLO;
|
|
return OK;
|
|
}
|
|
else if(index == usermapped_index) {
|
|
*addr = vir2phys(&usermapped_nonglo_start);
|
|
*len = (u32_t) &usermapped_end -
|
|
(u32_t) &usermapped_nonglo_start;
|
|
*flags = VMMF_USER;
|
|
return OK;
|
|
}
|
|
else if (index == video_mem_mapping_index) {
|
|
/* map video memory in so we can print panic messages */
|
|
*addr = MULTIBOOT_VIDEO_BUFFER;
|
|
*len = I386_PAGE_SIZE;
|
|
*flags = VMMF_WRITE;
|
|
return OK;
|
|
}
|
|
#ifdef USE_APIC
|
|
else if (index == lapic_mapping_index) {
|
|
/* map the local APIC if enabled */
|
|
if (!lapic_addr)
|
|
return EINVAL;
|
|
*addr = lapic_addr;
|
|
*len = 4 << 10 /* 4kB */;
|
|
*flags = VMMF_UNCACHED | VMMF_WRITE;
|
|
return OK;
|
|
}
|
|
else if (ioapic_enabled && index >= ioapic_first_index && index <= ioapic_last_index) {
|
|
int ioapic_idx = index - ioapic_first_index;
|
|
*addr = io_apic[ioapic_idx].paddr;
|
|
assert(*addr);
|
|
*len = 4 << 10 /* 4kB */;
|
|
*flags = VMMF_UNCACHED | VMMF_WRITE;
|
|
printf("ioapic map: addr 0x%lx\n", *addr);
|
|
return OK;
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_OXPCIE
|
|
if(index == oxpcie_mapping_index) {
|
|
*addr = strtoul(ser_var+2, NULL, 16);
|
|
*len = 0x4000;
|
|
*flags = VMMF_UNCACHED | VMMF_WRITE;
|
|
return OK;
|
|
}
|
|
#endif
|
|
|
|
return EINVAL;
|
|
}
|
|
|
|
int arch_phys_map_reply(const int index, const vir_bytes addr)
|
|
{
|
|
#ifdef USE_APIC
|
|
/* if local APIC is enabled */
|
|
if (index == lapic_mapping_index && lapic_addr) {
|
|
lapic_addr_vaddr = addr;
|
|
return OK;
|
|
}
|
|
else if (ioapic_enabled && index >= ioapic_first_index &&
|
|
index <= ioapic_last_index) {
|
|
int i = index - ioapic_first_index;
|
|
io_apic[i].vaddr = addr;
|
|
return OK;
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_OXPCIE
|
|
if (index == oxpcie_mapping_index) {
|
|
oxpcie_set_vaddr((unsigned char *) addr);
|
|
return OK;
|
|
}
|
|
#endif
|
|
if(index == first_um_idx) {
|
|
u32_t usermapped_offset;
|
|
assert(addr > (u32_t) &usermapped_start);
|
|
usermapped_offset = addr - (u32_t) &usermapped_start;
|
|
memset(&minix_kerninfo, 0, sizeof(minix_kerninfo));
|
|
#define FIXEDPTR(ptr) (void *) ((u32_t)ptr + usermapped_offset)
|
|
#define FIXPTR(ptr) ptr = FIXEDPTR(ptr)
|
|
#define ASSIGN(minixstruct) minix_kerninfo.minixstruct = FIXEDPTR(&minixstruct)
|
|
ASSIGN(kinfo);
|
|
ASSIGN(machine);
|
|
ASSIGN(kmessages);
|
|
ASSIGN(loadinfo);
|
|
|
|
/* adjust the pointers of the functions and the struct
|
|
* itself to the user-accessible mapping
|
|
*/
|
|
minix_kerninfo.kerninfo_magic = KERNINFO_MAGIC;
|
|
minix_kerninfo.minix_feature_flags = minix_feature_flags;
|
|
minix_kerninfo_user = (vir_bytes) FIXEDPTR(&minix_kerninfo);
|
|
|
|
return OK;
|
|
}
|
|
|
|
if(index == usermapped_index) return OK;
|
|
|
|
if (index == video_mem_mapping_index) {
|
|
video_mem_vaddr = addr;
|
|
return OK;
|
|
}
|
|
|
|
return EINVAL;
|
|
}
|
|
|
|
int arch_enable_paging(struct proc * caller)
|
|
{
|
|
assert(caller->p_seg.p_cr3);
|
|
|
|
/* load caller's page table */
|
|
switch_address_space(caller);
|
|
|
|
video_mem = (char *) video_mem_vaddr;
|
|
|
|
#ifdef USE_APIC
|
|
/* start using the virtual addresses */
|
|
|
|
/* if local APIC is enabled */
|
|
if (lapic_addr) {
|
|
lapic_addr = lapic_addr_vaddr;
|
|
lapic_eoi_addr = LAPIC_EOI;
|
|
}
|
|
/* if IO apics are enabled */
|
|
if (ioapic_enabled) {
|
|
int i;
|
|
|
|
for (i = 0; i < nioapics; i++) {
|
|
io_apic[i].addr = io_apic[i].vaddr;
|
|
}
|
|
}
|
|
#if CONFIG_SMP
|
|
barrier();
|
|
|
|
wait_for_APs_to_finish_booting();
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef USE_WATCHDOG
|
|
/*
|
|
* We make sure that we don't enable the watchdog until paging is turned
|
|
* on as we might get an NMI while switching and we might still use wrong
|
|
* lapic address. Bad things would happen. It is unfortunate but such is
|
|
* life
|
|
*/
|
|
if (watchdog_enabled)
|
|
i386_watchdog_start();
|
|
#endif
|
|
|
|
return OK;
|
|
}
|
|
|
|
void release_address_space(struct proc *pr)
|
|
{
|
|
pr->p_seg.p_cr3_v = NULL;
|
|
}
|
|
|
|
/* computes a checksum of a buffer of a given length. The byte sum must be zero */
|
|
int platform_tbl_checksum_ok(void *ptr, unsigned int length)
|
|
{
|
|
u8_t total = 0;
|
|
unsigned int i;
|
|
for (i = 0; i < length; i++)
|
|
total += ((unsigned char *)ptr)[i];
|
|
return !total;
|
|
}
|
|
|
|
int platform_tbl_ptr(phys_bytes start,
|
|
phys_bytes end,
|
|
unsigned increment,
|
|
void * buff,
|
|
unsigned size,
|
|
phys_bytes * phys_addr,
|
|
int ((* cmp_f)(void *)))
|
|
{
|
|
phys_bytes addr;
|
|
|
|
for (addr = start; addr < end; addr += increment) {
|
|
phys_copy (addr, (phys_bytes) buff, size);
|
|
if (cmp_f(buff)) {
|
|
if (phys_addr)
|
|
*phys_addr = addr;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|