minix/servers/pm/main.c
Tomas Hruby b4cf88a04f Userspace scheduling
- cotributed by Bjorn Swift

- In this first phase, scheduling is moved from the kernel to the PM
  server. The next steps are to a) moving scheduling to its own server
  and b) include useful information in the "out of quantum" message,
  so that the scheduler can make use of this information.

- The kernel process table now keeps record of who is responsible for
  scheduling each process (p_scheduler). When this pointer is NULL,
  the process will be scheduled by the kernel. If such a process runs
  out of quantum, the kernel will simply renew its quantum an requeue
  it.

- When PM loads, it will take over scheduling of all running
  processes, except system processes, using sys_schedctl().
  Essentially, this only results in taking over init. As children
  inherit a scheduler from their parent, user space programs forked by
  init will inherit PM (for now) as their scheduler.

 - Once a process has been assigned a scheduler, and runs out of
   quantum, its RTS_NO_QUANTUM flag will be set and the process
   dequeued. The kernel will send a message to the scheduler, on the
   process' behalf, informing the scheduler that it has run out of
   quantum. The scheduler can take what ever action it pleases, based
   on its policy, and then reschedule the process using the
   sys_schedule() system call.

- Balance queues does not work as before. While the old in-kernel
  function used to renew the quantum of processes in the highest
  priority run queue, the user-space implementation only acts on
  processes that have been bumped down to a lower priority queue.
  This approach reacts slower to changes than the old one, but saves
  us sending a sys_schedule message for each process every time we
  balance the queues. Currently, when processes are moved up a
  priority queue, their quantum is also renewed, but this can be
  fiddled with.

- do_nice has been removed from kernel. PM answers to get- and
  setpriority calls, updates it's own nice variable as well as the
  max_run_queue. This will be refactored once scheduling is moved to a
  separate server. We will probably have PM update it's local nice
  value and then send a message to whoever is scheduling the process.

- changes to fix an issue in do_fork() where processes could run out
  of quantum but bypassing the code path that handles it correctly.
  The future plan is to remove the policy from do_fork() and implement
  it in userspace too.
2010-03-29 11:07:20 +00:00

534 lines
16 KiB
C

/* This file contains the main program of the process manager and some related
* procedures. When MINIX starts up, the kernel runs for a little while,
* initializing itself and its tasks, and then it runs PM and FS. Both PM
* and FS initialize themselves as far as they can. PM asks the kernel for
* all free memory and starts serving requests.
*
* The entry points into this file are:
* main: starts PM running
* setreply: set the reply to be sent to process making an PM system call
*/
#include "pm.h"
#include <minix/keymap.h>
#include <minix/callnr.h>
#include <minix/com.h>
#include <minix/ds.h>
#include <minix/type.h>
#include <minix/endpoint.h>
#include <minix/minlib.h>
#include <minix/type.h>
#include <minix/vm.h>
#include <minix/crtso.h>
#include <signal.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/resource.h>
#include <sys/utsname.h>
#include <string.h>
#include <machine/archtypes.h>
#include <env.h>
#include "mproc.h"
#include "param.h"
#include "../../kernel/const.h"
#include "../../kernel/config.h"
#include "../../kernel/proc.h"
#if ENABLE_SYSCALL_STATS
EXTERN unsigned long calls_stats[NCALLS];
#endif
FORWARD _PROTOTYPE( void sendreply, (void) );
FORWARD _PROTOTYPE( void get_work, (void) );
FORWARD _PROTOTYPE( int get_nice_value, (int queue) );
FORWARD _PROTOTYPE( void handle_fs_reply, (void) );
#define click_to_round_k(n) \
((unsigned) ((((unsigned long) (n) << CLICK_SHIFT) + 512) / 1024))
extern int unmap_ok;
/* SEF functions and variables. */
FORWARD _PROTOTYPE( void sef_local_startup, (void) );
FORWARD _PROTOTYPE( int sef_cb_init_fresh, (int type, sef_init_info_t *info) );
FORWARD _PROTOTYPE( int sef_cb_signal_manager, (endpoint_t target, int signo) );
/*===========================================================================*
* main *
*===========================================================================*/
PUBLIC int main()
{
/* Main routine of the process manager. */
int result, s, proc_nr;
struct mproc *rmp;
sigset_t sigset;
/* SEF local startup. */
sef_local_startup();
overtake_scheduling(); /* overtake all running processes */
/* This is PM's main loop- get work and do it, forever and forever. */
while (TRUE) {
get_work(); /* wait for an PM system call */
/* Drop delayed calls from exiting processes. */
if (mp->mp_flags & EXITING)
continue;
/* Check for system notifications first. Special cases. */
if (is_notify(call_nr)) {
switch(who_p) {
case CLOCK:
pm_expire_timers(m_in.NOTIFY_TIMESTAMP);
result = SUSPEND; /* don't reply */
break;
default :
result = ENOSYS;
}
/* done, send reply and continue */
if (result != SUSPEND) setreply(who_p, result);
sendreply();
continue;
}
switch(call_nr)
{
case PM_SETUID_REPLY:
case PM_SETGID_REPLY:
case PM_SETSID_REPLY:
case PM_EXEC_REPLY:
case PM_EXIT_REPLY:
case PM_CORE_REPLY:
case PM_FORK_REPLY:
case PM_SRV_FORK_REPLY:
case PM_UNPAUSE_REPLY:
case PM_REBOOT_REPLY:
case PM_SETGROUPS_REPLY:
if (who_e == FS_PROC_NR)
{
handle_fs_reply();
result= SUSPEND; /* don't reply */
}
else
result= ENOSYS;
break;
case SCHEDULING_NO_QUANTUM:
/* This message was sent from the kernel, don't reply */
do_noquantum();
continue;
default:
/* Else, if the system call number is valid, perform the
* call.
*/
if ((unsigned) call_nr >= NCALLS) {
result = ENOSYS;
} else {
#if ENABLE_SYSCALL_STATS
calls_stats[call_nr]++;
#endif
result = (*call_vec[call_nr])();
}
break;
}
/* Send reply. */
if (result != SUSPEND) setreply(who_p, result);
sendreply();
}
return(OK);
}
/*===========================================================================*
* sef_local_startup *
*===========================================================================*/
PRIVATE void sef_local_startup()
{
/* Register init callbacks. */
sef_setcb_init_fresh(sef_cb_init_fresh);
sef_setcb_init_restart(sef_cb_init_fail);
/* No live update support for now. */
/* Register signal callbacks. */
sef_setcb_signal_manager(sef_cb_signal_manager);
/* Let SEF perform startup. */
sef_startup();
}
/*===========================================================================*
* sef_cb_init_fresh *
*===========================================================================*/
PRIVATE int sef_cb_init_fresh(int type, sef_init_info_t *info)
{
/* Initialize the process manager.
* Memory use info is collected from the boot monitor, the kernel, and
* all processes compiled into the system image. Initially this information
* is put into an array mem_chunks. Elements of mem_chunks are struct memory,
* and hold base, size pairs in units of clicks. This array is small, there
* should be no more than 8 chunks. After the array of chunks has been built
* the contents are used to initialize the hole list. Space for the hole list
* is reserved as an array with twice as many elements as the maximum number
* of processes allowed. It is managed as a linked list, and elements of the
* array are struct hole, which, in addition to storage for a base and size in
* click units also contain space for a link, a pointer to another element.
*/
int s;
static struct boot_image image[NR_BOOT_PROCS];
register struct boot_image *ip;
static char core_sigs[] = { SIGQUIT, SIGILL, SIGTRAP, SIGABRT,
SIGEMT, SIGFPE, SIGBUS, SIGSEGV };
static char ign_sigs[] = { SIGCHLD, SIGWINCH, SIGCONT };
static char mess_sigs[] = { SIGTERM, SIGHUP, SIGABRT, SIGQUIT };
static char noign_sigs[] = { SIGILL, SIGTRAP, SIGEMT, SIGFPE,
SIGBUS, SIGSEGV };
register struct mproc *rmp;
register char *sig_ptr;
register int signo;
message mess;
/* Initialize process table, including timers. */
for (rmp=&mproc[0]; rmp<&mproc[NR_PROCS]; rmp++) {
tmr_inittimer(&rmp->mp_timer);
}
/* Build the set of signals which cause core dumps, and the set of signals
* that are by default ignored.
*/
sigemptyset(&core_sset);
for (sig_ptr = core_sigs; sig_ptr < core_sigs+sizeof(core_sigs); sig_ptr++)
sigaddset(&core_sset, *sig_ptr);
sigemptyset(&ign_sset);
for (sig_ptr = ign_sigs; sig_ptr < ign_sigs+sizeof(ign_sigs); sig_ptr++)
sigaddset(&ign_sset, *sig_ptr);
sigemptyset(&noign_sset);
for (sig_ptr = noign_sigs; sig_ptr < noign_sigs+sizeof(noign_sigs); sig_ptr++)
sigaddset(&noign_sset, *sig_ptr);
/* Obtain a copy of the boot monitor parameters and the kernel info struct.
* Parse the list of free memory chunks. This list is what the boot monitor
* reported, but it must be corrected for the kernel and system processes.
*/
if ((s=sys_getmonparams(monitor_params, sizeof(monitor_params))) != OK)
panic("get monitor params failed: %d", s);
if ((s=sys_getkinfo(&kinfo)) != OK)
panic("get kernel info failed: %d", s);
/* Initialize PM's process table. Request a copy of the system image table
* that is defined at the kernel level to see which slots to fill in.
*/
if (OK != (s=sys_getimage(image)))
panic("couldn't get image table: %d", s);
procs_in_use = 0; /* start populating table */
for (ip = &image[0]; ip < &image[NR_BOOT_PROCS]; ip++) {
if (ip->proc_nr >= 0) { /* task have negative nrs */
procs_in_use += 1; /* found user process */
/* Set process details found in the image table. */
rmp = &mproc[ip->proc_nr];
strncpy(rmp->mp_name, ip->proc_name, PROC_NAME_LEN);
rmp->mp_nice = get_nice_value(ip->priority);
sigemptyset(&rmp->mp_ignore);
sigemptyset(&rmp->mp_sigmask);
sigemptyset(&rmp->mp_catch);
if (ip->proc_nr == INIT_PROC_NR) { /* user process */
/* INIT is root, we make it father of itself. This is
* not really OK, INIT should have no father, i.e.
* a father with pid NO_PID. But PM currently assumes
* that mp_parent always points to a valid slot number.
*/
rmp->mp_parent = INIT_PROC_NR;
rmp->mp_procgrp = rmp->mp_pid = INIT_PID;
rmp->mp_flags |= IN_USE;
}
else { /* system process */
if(ip->proc_nr == RS_PROC_NR) {
rmp->mp_parent = INIT_PROC_NR;
}
else {
rmp->mp_parent = RS_PROC_NR;
}
rmp->mp_pid = get_free_pid();
rmp->mp_flags |= IN_USE | PRIV_PROC;
}
/* Get kernel endpoint identifier. */
rmp->mp_endpoint = ip->endpoint;
/* Get scheduling info */
rmp->mp_max_priority = ip->priority;
rmp->mp_priority = ip->priority;
rmp->mp_time_slice = ip->quantum;
/* Tell FS about this system process. */
mess.m_type = PM_INIT;
mess.PM_SLOT = ip->proc_nr;
mess.PM_PID = rmp->mp_pid;
mess.PM_PROC = rmp->mp_endpoint;
if (OK != (s=send(FS_PROC_NR, &mess)))
panic("can't sync up with FS: %d", s);
}
}
/* Tell FS that no more system processes follow and synchronize. */
mess.PR_ENDPT = NONE;
if (sendrec(FS_PROC_NR, &mess) != OK || mess.m_type != OK)
panic("can't sync up with FS");
#if (CHIP == INTEL)
uts_val.machine[0] = 'i';
strcpy(uts_val.machine + 1, itoa(getprocessor()));
#endif
system_hz = sys_hz();
/* Map out our own text and data. This is normally done in crtso.o
* but PM is an exception - we don't get to talk to VM so early on.
* That's why we override munmap() and munmap_text() in utility.c.
*
* _minix_unmapzero() is the same code in crtso.o that normally does
* it on startup. It's best that it's there as crtso.o knows exactly
* what the ranges are of the filler data.
*/
unmap_ok = 1;
_minix_unmapzero();
return(OK);
}
/*===========================================================================*
* sef_cb_signal_manager *
*===========================================================================*/
PRIVATE int sef_cb_signal_manager(endpoint_t target, int signo)
{
/* Process signal on behalf of the kernel. */
int r;
r = process_ksig(target, signo);
sendreply();
return r;
}
/*===========================================================================*
* get_work *
*===========================================================================*/
PRIVATE void get_work()
{
/* Wait for the next message and extract useful information from it. */
if (sef_receive(ANY, &m_in) != OK)
panic("PM sef_receive error");
who_e = m_in.m_source; /* who sent the message */
if(pm_isokendpt(who_e, &who_p) != OK)
panic("PM got message from invalid endpoint: %d", who_e);
call_nr = m_in.m_type; /* system call number */
/* Process slot of caller. Misuse PM's own process slot if the kernel is
* calling. This can happen in case of synchronous alarms (CLOCK) or or
* event like pending kernel signals (SYSTEM).
*/
mp = &mproc[who_p < 0 ? PM_PROC_NR : who_p];
if(who_p >= 0 && mp->mp_endpoint != who_e) {
panic("PM endpoint number out of sync with source: %d", mp->mp_endpoint);
}
}
/*===========================================================================*
* setreply *
*===========================================================================*/
PUBLIC void setreply(proc_nr, result)
int proc_nr; /* process to reply to */
int result; /* result of call (usually OK or error #) */
{
/* Fill in a reply message to be sent later to a user process. System calls
* may occasionally fill in other fields, this is only for the main return
* value, and for setting the "must send reply" flag.
*/
register struct mproc *rmp = &mproc[proc_nr];
if(proc_nr < 0 || proc_nr >= NR_PROCS)
panic("setreply arg out of range: %d", proc_nr);
rmp->mp_reply.reply_res = result;
rmp->mp_flags |= REPLY; /* reply pending */
}
/*===========================================================================*
* sendreply *
*===========================================================================*/
PRIVATE void sendreply()
{
int proc_nr;
int s;
struct mproc *rmp;
/* Send out all pending reply messages, including the answer to
* the call just made above.
*/
for (proc_nr=0, rmp=mproc; proc_nr < NR_PROCS; proc_nr++, rmp++) {
/* In the meantime, the process may have been killed by a
* signal (e.g. if a lethal pending signal was unblocked)
* without the PM realizing it. If the slot is no longer in
* use or the process is exiting, don't try to reply.
*/
if ((rmp->mp_flags & (REPLY | IN_USE | EXITING)) ==
(REPLY | IN_USE)) {
s=sendnb(rmp->mp_endpoint, &rmp->mp_reply);
if (s != OK) {
printf("PM can't reply to %d (%s): %d\n",
rmp->mp_endpoint, rmp->mp_name, s);
}
rmp->mp_flags &= ~REPLY;
}
}
}
/*===========================================================================*
* get_nice_value *
*===========================================================================*/
PRIVATE int get_nice_value(queue)
int queue; /* store mem chunks here */
{
/* Processes in the boot image have a priority assigned. The PM doesn't know
* about priorities, but uses 'nice' values instead. The priority is between
* MIN_USER_Q and MAX_USER_Q. We have to scale between PRIO_MIN and PRIO_MAX.
*/
int nice_val = (queue - USER_Q) * (PRIO_MAX-PRIO_MIN+1) /
(MIN_USER_Q-MAX_USER_Q+1);
if (nice_val > PRIO_MAX) nice_val = PRIO_MAX; /* shouldn't happen */
if (nice_val < PRIO_MIN) nice_val = PRIO_MIN; /* shouldn't happen */
return nice_val;
}
void checkme(char *str, int line)
{
struct mproc *trmp;
int boned = 0;
int proc_nr;
for (proc_nr=0, trmp=mproc; proc_nr < NR_PROCS; proc_nr++, trmp++) {
if ((trmp->mp_flags & (REPLY | IN_USE | EXITING)) ==
(REPLY | IN_USE)) {
int tp;
if(pm_isokendpt(trmp->mp_endpoint, &tp) != OK) {
printf("PM: %s:%d: reply %d to %s is bogus endpoint %d after call %d by %d\n",
str, line, trmp->mp_reply.m_type,
trmp->mp_name, trmp->mp_endpoint, call_nr, who_e);
boned=1;
}
}
if(boned) panic("corrupt mp_endpoint?");
}
}
/*===========================================================================*
* handle_fs_reply *
*===========================================================================*/
PRIVATE void handle_fs_reply()
{
struct mproc *rmp;
endpoint_t proc_e;
int r, proc_n;
/* PM_REBOOT is the only request not associated with a process.
* Handle its reply first.
*/
if (call_nr == PM_REBOOT_REPLY) {
vir_bytes code_addr;
size_t code_size;
/* Ask the kernel to abort. All system services, including
* the PM, will get a HARD_STOP notification. Await the
* notification in the main loop.
*/
code_addr = (vir_bytes) monitor_code;
code_size = strlen(monitor_code) + 1;
sys_abort(abort_flag, PM_PROC_NR, code_addr, code_size);
return;
}
/* Get the process associated with this call */
proc_e = m_in.PM_PROC;
if (pm_isokendpt(proc_e, &proc_n) != OK) {
panic("handle_fs_reply: got bad endpoint from FS: %d", proc_e);
}
rmp = &mproc[proc_n];
/* Now that FS replied, mark the process as FS-idle again */
if (!(rmp->mp_flags & FS_CALL))
panic("handle_fs_reply: reply without request: %d", call_nr);
rmp->mp_flags &= ~FS_CALL;
if (rmp->mp_flags & UNPAUSED)
panic("handle_fs_reply: UNPAUSED set on entry: %d", call_nr);
/* Call-specific handler code */
switch (call_nr) {
case PM_SETUID_REPLY:
case PM_SETGID_REPLY:
case PM_SETGROUPS_REPLY:
/* Wake up the original caller */
setreply(rmp-mproc, OK);
break;
case PM_SETSID_REPLY:
/* Wake up the original caller */
setreply(rmp-mproc, rmp->mp_procgrp);
break;
case PM_EXEC_REPLY:
exec_restart(rmp, m_in.PM_STATUS);
break;
case PM_EXIT_REPLY:
exit_restart(rmp, FALSE /*dump_core*/);
break;
case PM_CORE_REPLY:
if (m_in.PM_STATUS == OK)
rmp->mp_sigstatus |= DUMPED;
exit_restart(rmp, TRUE /*dump_core*/);
break;
case PM_FORK_REPLY:
/* Wake up the newly created process */
setreply(proc_n, OK);
/* Wake up the parent */
setreply(rmp->mp_parent, rmp->mp_pid);
break;
case PM_SRV_FORK_REPLY:
/* Nothing to do */
break;
case PM_UNPAUSE_REPLY:
/* Process is now unpaused */
rmp->mp_flags |= UNPAUSED;
break;
default:
panic("handle_fs_reply: unknown reply code: %d", call_nr);
}
/* Now that the process is idle again, look at pending signals */
if ((rmp->mp_flags & (IN_USE | EXITING)) == IN_USE)
restart_sigs(rmp);
}