minix/boot/boot/bootimage.c
2011-09-19 13:36:03 +00:00

1222 lines
32 KiB
C

/* bootimage.c - Load an image and start it. Author: Kees J. Bot
* 19 Jan 1992
*/
#define BIOS 1 /* Can only be used under the BIOS. */
#define nil 0
#define _POSIX_SOURCE 1
#define _MINIX 1
#include <stddef.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/param.h>
#include <stdlib.h>
#include <stdio.h>
#include <limits.h>
#include <string.h>
#include <errno.h>
#include <a.out.h>
#include <minix/config.h>
#include <minix/const.h>
#include <minix/type.h>
#include <minix/syslib.h>
#include <minix/tty.h>
#include <sys/video.h>
#include <kernel/const.h>
#include <kernel/type.h>
#include <machine/partition.h>
#include "rawfs.h"
#include "image.h"
#include "emem.h"
#include "boot.h"
#include <machine/multiboot.h>
#include <machine/elf.h>
static int block_size = 0;
static int verboseboot = VERBOSEBOOT_QUIET;
#define DEBUG_PRINT(params, level) do { \
if (verboseboot >= (level)) printf params; } while (0)
#define DEBUGBASIC(params) DEBUG_PRINT(params, VERBOSEBOOT_BASIC)
#define DEBUGEXTRA(params) DEBUG_PRINT(params, VERBOSEBOOT_EXTRA)
#define DEBUGMAX(params) DEBUG_PRINT(params, VERBOSEBOOT_MAX)
extern int serial_line;
extern u16_t vid_port; /* Video i/o port. */
extern u32_t vid_mem_base; /* Video memory base address. */
extern u32_t vid_mem_size; /* Video memory size. */
extern u32_t mbdev; /* Device number in multiboot format */
#define click_shift clck_shft /* 7 char clash with click_size. */
/* Some kernels have extra features: */
#define K_I386 0x0001 /* Make the 386 transition before you call me. */
#define K_CLAIM 0x0002 /* I will acquire my own bss pages, thank you. */
#define K_CHMEM 0x0004 /* This kernel listens to chmem for its stack size. */
#define K_HIGH 0x0008 /* Load mm, fs, etc. in extended memory. */
#define K_HDR 0x0010 /* No need to patch sizes, kernel uses the headers. */
#define K_RET 0x0020 /* Returns to the monitor on reboot. */
#define K_INT86 0x0040 /* Requires generic INT support. */
#define K_MEML 0x0080 /* Pass a list of free memory. */
#define K_BRET 0x0100 /* New monitor code on shutdown in boot parameters. */
#define K_KHIGH 0x0200 /* Load kernel in extended memory. */
#define K_ALL 0x03FF /* All feature bits this monitor supports. */
/* Data about the different processes. */
#define PROCESS_MAX 16 /* Must match the space in kernel/mpx.x */
#define KERNEL_IDX 0 /* The first process is the kernel. */
#define FS 2 /* The third must be fs. */
struct process { /* Per-process memory adresses. */
u32_t entry; /* Entry point. */
u32_t cs; /* Code segment. */
u32_t ds; /* Data segment. */
u32_t data; /* To access the data segment. */
u32_t end; /* End of this process, size = (end - cs). */
} process[PROCESS_MAX];
int n_procs; /* Number of processes. */
/* Magic numbers in process' data space. */
#define MAGIC_OFF 0 /* Offset of magic # in data seg. */
#define CLICK_OFF 2 /* Offset in kernel text to click_shift. */
#define FLAGS_OFF 4 /* Offset in kernel text to flags. */
#define KERNEL_D_MAGIC 0x526F /* Kernel magic number. */
/* Offsets of sizes to be patched into kernel and fs. */
#define P_SIZ_OFF 0 /* Process' sizes into kernel data. */
#define P_INIT_OFF 4 /* Init cs & sizes into fs data. */
/* Where multiboot info struct goes in memory */
#define MULTIBOOT_INFO_ADDR 0x9500
#define between(a, c, z) ((unsigned) ((c) - (a)) <= ((z) - (a)))
char *select_image(char *image);
size_t strspn(const char *string, const char *in);
char * strpbrk(register const char *string, register const char *brk);
char * strtok(register char *string, const char *separators);
char * strdup(const char *s1);
void pretty_image(const char *image)
/* Pretty print the name of the image to load. Translate '/' and '_' to
* space, first letter goes uppercase. An 'r' before a digit prints as
* 'revision'. E.g. 'minix/1.6.16r10' -> 'Minix 1.6.16 revision 10'.
* The idea is that the part before the 'r' is the official Minix release
* and after the 'r' you can put version numbers for your own changes.
*/
{
int up= 0, c;
while ((c= *image++) != 0) {
if (c == '/' || c == '_') c= ' ';
if (c == 'r' && between('0', *image, '9')) {
printf(" revision ");
continue;
}
if (!up && between('a', c, 'z')) c= c - 'a' + 'A';
if (between('A', c, 'Z')) up= 1;
putch(c);
}
}
#define RAW_ALIGN 16
#define BUFSIZE_ZEROS 128
void raw_clear(u32_t addr, u32_t count)
/* Clear "count" bytes at absolute address "addr". */
{
static char zerosdata[BUFSIZE_ZEROS + RAW_ALIGN];
char *zeros = zerosdata + RAW_ALIGN - (unsigned) &zerosdata % RAW_ALIGN;
u32_t dst;
u32_t zct;
zct= BUFSIZE_ZEROS;
if (zct > count) zct= count;
raw_copy(addr, mon2abs(zeros), zct);
count-= zct;
while (count > 0) {
dst= addr + zct;
if (zct > count) zct= count;
raw_copy(dst, addr, zct);
count-= zct;
zct*= 2;
}
}
/* Align a to a multiple of n (a power of 2): */
#define align(a, n) (((u32_t)(a) + ((u32_t)(n) - 1)) & ~((u32_t)(n) - 1))
unsigned click_shift;
unsigned click_size; /* click_size = Smallest kernel memory object. */
unsigned k_flags; /* Not all kernels are created equal. */
u32_t reboot_code; /* Obsolete reboot code return pointer. */
int do_multiboot;
int params2params(char *params, size_t psize)
/* Repackage the environment settings for the kernel. */
{
size_t i, n;
environment *e;
char *name, *value;
dev_t dev;
i= 0;
for (e= env; e != nil; e= e->next) {
name= e->name;
value= e->value;
if (!(e->flags & E_VAR)) continue;
if (e->flags & E_DEV) {
if ((dev= name2dev(value)) == -1) return 0;
value= ul2a10((u16_t) dev);
}
n= i + strlen(name) + 1 + strlen(value) + 1;
if (n < psize) {
strcpy(params + i, name);
strcat(params + i, "=");
strcat(params + i, value);
}
i= n;
}
if (!(k_flags & K_MEML)) {
/* Require old memory size variables. */
value= ul2a10((mem[0].base + mem[0].size) / 1024);
n= i + 7 + 1 + strlen(value) + 1;
if (n < psize) {
strcpy(params + i, "memsize=");
strcat(params + i, value);
}
i= n;
value= ul2a10(mem[1].size / 1024);
n= i + 7 + 1 + strlen(value) + 1;
if (n < psize) {
strcpy(params + i, "emssize=");
strcat(params + i, value);
}
i= n;
}
if (i >= psize) {
printf("Too many boot parameters\n");
return 0;
}
params[i]= 0; /* End marked with empty string. */
return 1;
}
void patch_sizes(void)
/* Patch sizes of each process into kernel data space, kernel ds into kernel
* text space, and sizes of init into data space of fs. All the patched
* numbers are based on the kernel click size, not hardware segments.
*/
{
u16_t text_size, data_size;
int i;
struct process *procp, *initp;
u32_t doff;
if (k_flags & K_HDR) return; /* Uses the headers. */
/* Patch text and data sizes of the processes into kernel data space.
*/
doff= process[KERNEL_IDX].data + P_SIZ_OFF;
for (i= 0; i < n_procs; i++) {
procp= &process[i];
text_size= (procp->ds - procp->cs) >> click_shift;
data_size= (procp->end - procp->ds) >> click_shift;
/* Two words per process, the text and data size: */
put_word(doff, text_size); doff+= 2;
put_word(doff, data_size); doff+= 2;
initp= procp; /* The last process must be init. */
}
if (k_flags & (K_HIGH|K_MEML)) return; /* Doesn't need FS patching. */
/* Patch cs and sizes of init into fs data. */
put_word(process[FS].data + P_INIT_OFF+0, initp->cs >> click_shift);
put_word(process[FS].data + P_INIT_OFF+2, text_size);
put_word(process[FS].data + P_INIT_OFF+4, data_size);
}
int selected(const char *name)
/* True iff name has no label or the proper label. */
{
char *colon, *label;
int cmp;
if ((colon= strchr(name, ':')) == nil) return 1;
if ((label= b_value("label")) == nil) return 1;
*colon= 0;
cmp= strcmp(label, name);
*colon= ':';
return cmp == 0;
}
static u32_t proc_size(const struct image_header *hdr)
/* Return the size of a process in sectors as found in an image. */
{
u32_t len= hdr->process.a_text;
if (hdr->process.a_flags & A_PAL) len+= hdr->process.a_hdrlen;
if (hdr->process.a_flags & A_SEP) len= align(len, SECTOR_SIZE);
len= align(len + hdr->process.a_data, SECTOR_SIZE);
return len >> SECTOR_SHIFT;
}
off_t image_off, image_sectors, image_bytes;
u32_t (*vir2sec)(u32_t vsec); /* Where is a sector on disk? */
u32_t file_vir2sec(u32_t vsec)
/* Translate a virtual sector number to an absolute disk sector. */
{
off_t blk;
if(!block_size) { errno = 0; return -1; }
if ((blk= r_vir2abs(vsec / RATIO(block_size))) == -1) {
errno= EIO;
return -1;
}
return blk == 0 ? 0 : lowsec + blk * RATIO(block_size) + vsec % RATIO(block_size);
}
u32_t flat_vir2sec(u32_t vsec)
/* Simply add an absolute sector offset to vsec. */
{
return lowsec + image_off + vsec;
}
char *get_sector(u32_t vsec)
/* Read a sector "vsec" from the image into memory and return its address.
* Return nil on error. (This routine tries to read an entire track, so
* the next request is usually satisfied from the track buffer.)
*/
{
u32_t sec;
int r;
#define SECBUFS 16
static char bufdata[SECBUFS * SECTOR_SIZE + RAW_ALIGN];
static size_t count; /* Number of sectors in the buffer. */
static u32_t bufsec; /* First Sector now in the buffer. */
char *buf = bufdata + RAW_ALIGN - (unsigned) &bufdata % RAW_ALIGN;
if (vsec == 0) count= 0; /* First sector; initialize. */
if ((sec= (*vir2sec)(vsec)) == -1) return nil;
if (sec == 0) {
/* A hole. */
count= 0;
memset(buf, 0, SECTOR_SIZE);
return buf;
}
/* Can we return a sector from the buffer? */
if ((sec - bufsec) < count) {
return buf + ((size_t) (sec - bufsec) << SECTOR_SHIFT);
}
/* Not in the buffer. */
count= 0;
bufsec= sec;
/* Read a whole track if possible. */
while (++count < SECBUFS && !dev_boundary(bufsec + count)) {
vsec++;
if ((sec= (*vir2sec)(vsec)) == -1) break;
/* Consecutive? */
if (sec != bufsec + count) break;
}
/* Actually read the sectors. */
if ((r= readsectors(mon2abs(buf), bufsec, count)) != 0) {
readerr(bufsec, r);
count= 0;
errno= 0;
return nil;
}
return buf;
}
int get_clickshift(u32_t ksec, struct image_header *hdr)
/* Get the click shift and special flags from kernel text. */
{
char *textp;
if ((textp= get_sector(ksec)) == nil) return 0;
if (hdr->process.a_flags & A_PAL) textp+= hdr->process.a_hdrlen;
click_shift= * (u16_t *) (textp + CLICK_OFF);
k_flags= * (u16_t *) (textp + FLAGS_OFF);
if ((k_flags & ~K_ALL) != 0) {
printf("%s requires features this monitor doesn't offer\n",
hdr->name);
return 0;
}
if (click_shift < HCLICK_SHIFT || click_shift > 16) {
printf("%s click size is bad\n", hdr->name);
errno= 0;
return 0;
}
click_size= 1 << click_shift;
return 1;
}
int get_segment(u32_t *vsec, long *size, u32_t *addr, u32_t limit)
/* Read *size bytes starting at virtual sector *vsec to memory at *addr. */
{
char *buf;
size_t cnt, n;
cnt= 0;
while (*size > 0) {
if (cnt == 0) {
if ((buf= get_sector((*vsec)++)) == nil) return 0;
cnt= SECTOR_SIZE;
}
if (*addr + click_size > limit)
{
DEBUGEXTRA(("get_segment: out of memory; "
"addr=0x%lx; limit=0x%lx; size=%lx\n",
*addr, limit, size));
errno= ENOMEM;
return 0;
}
n= click_size;
if (n > cnt) n= cnt;
DEBUGMAX(("raw_copy(0x%lx, 0x%lx/0x%x, 0x%lx)... ",
*addr, mon2abs(buf), buf, n));
raw_copy(*addr, mon2abs(buf), n);
DEBUGMAX(("done\n"));
*addr+= n;
*size-= n;
buf+= n;
cnt-= n;
}
/* Zero extend to a click. */
n= align(*addr, click_size) - *addr;
DEBUGMAX(("raw_clear(0x%lx, 0x%lx)... ", *addr, n));
raw_clear(*addr, n);
DEBUGMAX(("done\n"));
*addr+= n;
*size-= n;
return 1;
}
static void restore_screen(void)
{
struct boot_tty_info boot_tty_info;
u32_t info_location;
#define LINES 25
#define CHARS 80
static u16_t consolescreen[LINES][CHARS];
/* Try and find out what the main console was displaying
* by looking into video memory.
*/
info_location = vid_mem_base+vid_mem_size-sizeof(boot_tty_info);
raw_copy(mon2abs(&boot_tty_info), info_location,
sizeof(boot_tty_info));
if(boot_tty_info.magic == TTYMAGIC) {
if((boot_tty_info.flags & (BTIF_CONSORIGIN|BTIF_CONSCURSOR)) ==
(BTIF_CONSORIGIN|BTIF_CONSCURSOR)) {
int line;
raw_copy(mon2abs(consolescreen),
vid_mem_base + boot_tty_info.consorigin,
sizeof(consolescreen));
clear_screen();
for(line = 0; line < LINES; line++) {
int ch;
for(ch = 0; ch < CHARS; ch++) {
u16_t newch = consolescreen[line][ch] & BYTE;
if(newch < ' ') newch = ' ';
putch(newch);
}
}
}
}
}
int split_module_list(char *modules)
{
int i;
char *c, *s;
for (s= modules, i= 1; (c= strrchr(s, ' ')) != NULL; i++) {
*c = '\0';
}
return i;
}
void exec_mb(char *kernel, char* modules)
/* Get a Minix image into core, patch it up and execute. */
{
int i;
static char hdr[SECTOR_SIZE];
char *buf;
u32_t vsec, addr, limit, n, totalmem = 0;
u16_t kmagic, mode;
char *console;
char params[SECTOR_SIZE];
extern char *sbrk(int);
char *verb;
u32_t text_vaddr, text_paddr, text_filebytes, text_membytes;
u32_t data_vaddr, data_paddr, data_filebytes, data_membytes;
u32_t pc;
u32_t text_offset, data_offset;
i32_t segsize;
int r;
u32_t cs, ds;
char *modstring, *mod;
multiboot_info_t *mbinfo;
multiboot_module_t *mbmodinfo;
u32_t mbinfo_size, mbmodinfo_size;
char *memvar;
memory *mp;
u32_t mod_cmdline_start, kernel_cmdline_start;
u32_t modstringlen;
int modnr;
/* The stack is pretty deep here, so check if heap and stack collide. */
(void) sbrk(0);
if ((verb= b_value(VERBOSEBOOTVARNAME)) != nil)
verboseboot = a2l(verb);
printf("\nLoading %s\n", kernel);
vsec= 0; /* Load this sector from kernel next. */
addr= mem[0].base; /* Into this memory block. */
limit= mem[0].base + mem[0].size;
if (limit > caddr) limit= caddr;
/* set click size for get_segment */
click_size = PAGE_SIZE;
k_flags = K_KHIGH|K_BRET|K_MEML|K_INT86|K_RET|K_HDR
|K_HIGH|K_CHMEM|K_I386;
/* big kernels must be loaded into extended memory */
addr= mem[1].base;
limit= mem[1].base + mem[1].size;
/* Get first sector */
DEBUGEXTRA(("get_sector\n"));
if ((buf= get_sector(vsec++)) == nil) {
DEBUGEXTRA(("get_sector failed\n"));
return;
}
memcpy(hdr, buf, SECTOR_SIZE);
/* Get ELF header */
DEBUGEXTRA(("read_header_elf\n"));
r = read_header_elf(hdr, &text_vaddr, &text_paddr,
&text_filebytes, &text_membytes,
&data_vaddr, &data_paddr,
&data_filebytes, &data_membytes,
&pc, &text_offset, &data_offset);
if (r < 0) { errno= ENOEXEC; return; }
/* Read the text segment. */
addr = text_paddr;
segsize = (i32_t) text_filebytes;
vsec = text_offset / SECTOR_SIZE;
DEBUGEXTRA(("get_segment(0x%lx, 0x%lx, 0x%lx, 0x%lx)\n",
vsec, segsize, addr, limit));
if (!get_segment(&vsec, &segsize, &addr, limit)) return;
DEBUGEXTRA(("get_segment done vsec=0x%lx size=0x%lx "
"addr=0x%lx\n",
vsec, segsize, addr));
/* Read the data segment. */
addr = data_paddr;
segsize = (i32_t) data_filebytes;
vsec = data_offset / SECTOR_SIZE;
DEBUGEXTRA(("get_segment(0x%lx, 0x%lx, 0x%lx, 0x%lx)\n",
vsec, segsize, addr, limit));
if (!get_segment(&vsec, &segsize, &addr, limit)) return;
DEBUGEXTRA(("get_segment done vsec=0x%lx size=0x%lx "
"addr=0x%lx\n",
vsec, segsize, addr));
n = data_membytes - align(data_filebytes, click_size);
/* Zero out bss. */
DEBUGEXTRA(("\nraw_clear(0x%lx, 0x%lx); limit=0x%lx... ", addr, n, limit));
if (addr + n > limit) { errno= ENOMEM; return; }
raw_clear(addr, n);
DEBUGEXTRA(("done\n"));
addr+= n;
/* Check the kernel magic number. */
raw_copy(mon2abs(&kmagic),
data_paddr + MAGIC_OFF, sizeof(kmagic));
if (kmagic != KERNEL_D_MAGIC) {
printf("Kernel magic number is incorrect (0x%x@0x%lx)\n",
kmagic, data_paddr + MAGIC_OFF);
errno= 0;
return;
}
/* Translate the boot parameters to what Minix likes best. */
DEBUGEXTRA(("params2params(0x%x, 0x%x)... ", params, sizeof(params)));
if (!params2params(params, sizeof(params))) { errno= 0; return; }
DEBUGEXTRA(("done\n"));
/* Create multiboot info struct */
mbinfo = malloc(sizeof(multiboot_info_t));
if (mbinfo == nil) { errno= ENOMEM; return; }
memset(mbinfo, 0, sizeof(multiboot_info_t));
/* Module info structs start where kernel ends */
mbinfo->mods_addr = addr;
modstring = strdup(modules);
if (modstring == nil) {errno = ENOMEM; return; }
modstringlen = strlen(modules);
mbinfo->mods_count = split_module_list(modules);
mbmodinfo_size = sizeof(multiboot_module_t) * mbinfo->mods_count;
mbmodinfo = malloc(mbmodinfo_size);
if (mbmodinfo == nil) { errno= ENOMEM; return; }
addr+= mbmodinfo_size;
addr= align(addr, click_size);
mod_cmdline_start = mbinfo->mods_addr + sizeof(multiboot_module_t) *
mbinfo->mods_count;
raw_copy(mod_cmdline_start, mon2abs(modules),
modstringlen+1);
mbmodinfo[0].cmdline = mod_cmdline_start;
modnr = 1;
for (i= 0; i < modstringlen; ++i) {
if (modules[i] == '\0') {
mbmodinfo[modnr].cmdline = mod_cmdline_start + i + 1;
++modnr;
}
}
kernel_cmdline_start = mod_cmdline_start + modstringlen + 1;
mbinfo->cmdline = kernel_cmdline_start;
raw_copy(kernel_cmdline_start, mon2abs(kernel),
strlen(kernel)+1);
mbinfo->flags = MULTIBOOT_INFO_MODS|MULTIBOOT_INFO_CMDLINE|
MULTIBOOT_INFO_BOOTDEV|MULTIBOOT_INFO_MEMORY;
mbinfo->boot_device = mbdev;
mbinfo->mem_lower = mem[0].size/1024;
mbinfo->mem_upper = mem[1].size/1024;
for (i = 0, mod = strtok(modstring, " "); mod != nil;
mod = strtok(nil, " "), i++) {
mod = select_image(mod);
if (mod == nil) {errno = 0; return; }
mbmodinfo[i].mod_start = addr;
mbmodinfo[i].mod_end = addr + image_bytes;
mbmodinfo[i].pad = 0;
segsize= image_bytes;
vsec= 0;
DEBUGEXTRA(("get_segment(0x%lx, 0x%lx, 0x%lx, 0x%lx)\n",
vsec, segsize, addr, limit));
if (!get_segment(&vsec, &segsize, &addr, limit)) return;
DEBUGEXTRA(("get_segment done vsec=0x%lx size=0x%lx "
"addr=0x%lx\n",
vsec, segsize, addr));
addr+= segsize;
addr= align(addr, click_size);
}
free(modstring);
DEBUGEXTRA(("modinfo raw_copy: dst 0x%lx src 0x%lx sz 0x%lx\n",
mbinfo->mods_addr, mon2abs(mbmodinfo),
mbmodinfo_size));
raw_copy(mbinfo->mods_addr, mon2abs(mbmodinfo),
mbmodinfo_size);
free(mbmodinfo);
raw_copy(MULTIBOOT_INFO_ADDR, mon2abs(mbinfo),
sizeof(multiboot_info_t));
free(mbinfo);
/* Run the trailer function just before starting Minix. */
DEBUGEXTRA(("run_trailer()... "));
if (!run_trailer()) { errno= 0; return; }
DEBUGEXTRA(("done\n"));
/* Set the video to the required mode. */
if ((console= b_value("console")) == nil || (mode= a2x(console)) == 0) {
mode= strcmp(b_value("chrome"), "color") == 0 ? COLOR_MODE :
MONO_MODE;
}
DEBUGEXTRA(("set_mode(%d)... ", mode));
set_mode(mode);
DEBUGEXTRA(("done\n"));
/* Close the disk. */
DEBUGEXTRA(("dev_close()... "));
(void) dev_close();
DEBUGEXTRA(("done\n"));
/* Minix. */
cs = ds = text_paddr;
DEBUGEXTRA(("minix(0x%lx, 0x%lx, 0x%lx, 0x%x, 0x%x, 0x%lx)\n",
pc, cs, ds, params, sizeof(params), 0));
minix(pc, cs, ds, params, sizeof(params), 0);
if (!(k_flags & K_BRET)) {
extern u32_t reboot_code;
raw_copy(mon2abs(params), reboot_code, sizeof(params));
}
parse_code(params);
/* Return from Minix. Things may have changed, so assume nothing. */
fsok= -1;
errno= 0;
/* Read leftover character, if any. */
scan_keyboard();
/* Restore screen contents. */
restore_screen();
}
void exec_image(char *image)
/* Get a Minix image into core, patch it up and execute. */
{
int i;
struct image_header hdr;
char *buf;
u32_t vsec, addr, limit, aout, n, totalmem = 0;
struct process *procp; /* Process under construction. */
long a_text, a_data, a_bss, a_stack;
int banner= 0;
long processor= a2l(b_value("processor"));
u16_t kmagic, mode;
char *console;
char params[SECTOR_SIZE];
extern char *sbrk(int);
char *verb;
/* The stack is pretty deep here, so check if heap and stack collide. */
(void) sbrk(0);
if ((verb= b_value(VERBOSEBOOTVARNAME)) != nil)
verboseboot = a2l(verb);
printf("\nLoading ");
pretty_image(image);
printf(".\n");
vsec= 0; /* Load this sector from image next. */
addr= mem[0].base; /* Into this memory block. */
limit= mem[0].base + mem[0].size;
if (limit > caddr) limit= caddr;
/* Allocate and clear the area where the headers will be placed. */
aout = (limit -= PROCESS_MAX * A_MINHDR);
/* Clear the area where the headers will be placed. */
raw_clear(aout, PROCESS_MAX * A_MINHDR);
/* Read the many different processes: */
for (i= 0; vsec < image_sectors; i++) {
u32_t startaddr;
startaddr = addr;
if (i == PROCESS_MAX) {
printf("There are more then %d programs in %s\n",
PROCESS_MAX, image);
errno= 0;
return;
}
procp= &process[i];
/* Read header. */
DEBUGEXTRA(("Reading header... "));
for (;;) {
if ((buf= get_sector(vsec++)) == nil) return;
memcpy(&hdr, buf, sizeof(hdr));
if (BADMAG(hdr.process)) { errno= ENOEXEC; return; }
/* Check the optional label on the process. */
if (selected(hdr.name)) break;
/* Bad label, skip this process. */
vsec+= proc_size(&hdr);
}
DEBUGEXTRA(("done\n"));
/* Sanity check: an 8086 can't run a 386 kernel. */
if (hdr.process.a_cpu == A_I80386 && processor < 386) {
printf("You can't run a 386 kernel on this 80%ld\n",
processor);
errno= 0;
return;
}
/* Get the click shift from the kernel text segment. */
if (i == KERNEL_IDX) {
if (!get_clickshift(vsec, &hdr)) return;
addr= align(addr, click_size);
/* big kernels must be loaded into extended memory */
if (k_flags & K_KHIGH) {
addr= mem[1].base;
limit= mem[1].base + mem[1].size;
}
}
/* Save a copy of the header for the kernel, with a_syms
* misused as the address where the process is loaded at.
*/
DEBUGEXTRA(("raw_copy(0x%lx, 0x%lx, 0x%x)... ",
aout + i * A_MINHDR, mon2abs(&hdr.process), A_MINHDR));
hdr.process.a_syms= addr;
raw_copy(aout + i * A_MINHDR, mon2abs(&hdr.process), A_MINHDR);
DEBUGEXTRA(("done\n"));
if (!banner) {
DEBUGBASIC((" cs ds text data bss"));
if (k_flags & K_CHMEM) DEBUGBASIC((" stack"));
DEBUGBASIC(("\n"));
banner= 1;
}
/* Segment sizes. */
DEBUGEXTRA(("a_text=0x%lx; a_data=0x%lx; a_bss=0x%lx; a_flags=0x%x)\n",
hdr.process.a_text, hdr.process.a_data,
hdr.process.a_bss, hdr.process.a_flags));
a_text= hdr.process.a_text;
a_data= hdr.process.a_data;
a_bss= hdr.process.a_bss;
if (k_flags & K_CHMEM) {
a_stack= hdr.process.a_total - a_data - a_bss;
if (!(hdr.process.a_flags & A_SEP)) a_stack-= a_text;
} else {
a_stack= 0;
}
/* Collect info about the process to be. */
procp->cs= addr;
/* Process may be page aligned so that the text segment contains
* the header, or have an unmapped zero page against vaxisms.
*/
procp->entry= hdr.process.a_entry;
if (hdr.process.a_flags & A_PAL) a_text+= hdr.process.a_hdrlen;
if (hdr.process.a_flags & A_UZP) procp->cs-= click_size;
/* Separate I&D: two segments. Common I&D: only one. */
if (hdr.process.a_flags & A_SEP) {
/* Read the text segment. */
DEBUGEXTRA(("get_segment(0x%lx, 0x%lx, 0x%lx, 0x%lx)\n",
vsec, a_text, addr, limit));
if (!get_segment(&vsec, &a_text, &addr, limit)) return;
DEBUGEXTRA(("get_segment done vsec=0x%lx a_text=0x%lx "
"addr=0x%lx\n",
vsec, a_text, addr));
/* The data segment follows. */
procp->ds= addr;
if (hdr.process.a_flags & A_UZP) procp->ds-= click_size;
procp->data= addr;
} else {
/* Add text to data to form one segment. */
procp->data= addr + a_text;
procp->ds= procp->cs;
a_data+= a_text;
}
/* Read the data segment. */
DEBUGEXTRA(("get_segment(0x%lx, 0x%lx, 0x%lx, 0x%lx)\n",
vsec, a_data, addr, limit));
if (!get_segment(&vsec, &a_data, &addr, limit)) return;
DEBUGEXTRA(("get_segment done vsec=0x%lx a_data=0x%lx "
"addr=0x%lx\n",
vsec, a_data, addr));
/* Make space for bss and stack unless... */
if (i != KERNEL_IDX && (k_flags & K_CLAIM)) a_bss= a_stack= 0;
DEBUGBASIC(("%07lx %07lx %8ld %8ld %8ld",
procp->cs, procp->ds, hdr.process.a_text,
hdr.process.a_data, hdr.process.a_bss));
if (k_flags & K_CHMEM) DEBUGBASIC((" %8ld", a_stack));
/* Note that a_data may be negative now, but we can look at it
* as -a_data bss bytes.
*/
/* Compute the number of bss clicks left. */
a_bss+= a_data;
n= align(a_bss, click_size);
a_bss-= n;
/* Zero out bss. */
DEBUGEXTRA(("\nraw_clear(0x%lx, 0x%lx); limit=0x%lx... ", addr, n, limit));
if (addr + n > limit) { errno= ENOMEM; return; }
raw_clear(addr, n);
DEBUGEXTRA(("done\n"));
addr+= n;
/* And the number of stack clicks. */
a_stack+= a_bss;
n= align(a_stack, click_size);
a_stack-= n;
/* Add space for the stack. */
addr+= n;
/* Process endpoint. */
procp->end= addr;
if (verboseboot >= VERBOSEBOOT_BASIC)
printf(" %s\n", hdr.name);
else {
u32_t mem;
mem = addr-startaddr;
printf("%s ", hdr.name);
totalmem += mem;
}
if (i == 0 && (k_flags & (K_HIGH | K_KHIGH)) == K_HIGH) {
/* Load the rest in extended memory. */
addr= mem[1].base;
limit= mem[1].base + mem[1].size;
}
}
if (verboseboot < VERBOSEBOOT_BASIC)
printf("(%luk)\n", totalmem/1024);
if ((n_procs= i) == 0) {
printf("There are no programs in %s\n", image);
errno= 0;
return;
}
/* Check the kernel magic number. */
raw_copy(mon2abs(&kmagic),
process[KERNEL_IDX].data + MAGIC_OFF, sizeof(kmagic));
if (kmagic != KERNEL_D_MAGIC) {
printf("Kernel magic number is incorrect (0x%x@0x%lx)\n",
kmagic, process[KERNEL_IDX].data + MAGIC_OFF);
errno= 0;
return;
}
/* Patch sizes, etc. into kernel data. */
DEBUGEXTRA(("patch_sizes()... "));
patch_sizes();
DEBUGEXTRA(("done\n"));
#if !DOS
if (!(k_flags & K_MEML)) {
/* Copy the a.out headers to the old place. */
raw_copy(HEADERPOS, aout, PROCESS_MAX * A_MINHDR);
}
#endif
/* Run the trailer function just before starting Minix. */
DEBUGEXTRA(("run_trailer()... "));
if (!run_trailer()) { errno= 0; return; }
DEBUGEXTRA(("done\n"));
/* Translate the boot parameters to what Minix likes best. */
DEBUGEXTRA(("params2params(0x%x, 0x%x)... ", params, sizeof(params)));
if (!params2params(params, sizeof(params))) { errno= 0; return; }
DEBUGEXTRA(("done\n"));
/* Set the video to the required mode. */
if ((console= b_value("console")) == nil || (mode= a2x(console)) == 0) {
mode= strcmp(b_value("chrome"), "color") == 0 ? COLOR_MODE :
MONO_MODE;
}
DEBUGEXTRA(("set_mode(%d)... ", mode));
set_mode(mode);
DEBUGEXTRA(("done\n"));
/* Close the disk. */
DEBUGEXTRA(("dev_close()... "));
(void) dev_close();
DEBUGEXTRA(("done\n"));
/* Minix. */
DEBUGEXTRA(("minix(0x%lx, 0x%lx, 0x%lx, 0x%x, 0x%x, 0x%lx)\n",
process[KERNEL_IDX].entry, process[KERNEL_IDX].cs,
process[KERNEL_IDX].ds, params, sizeof(params), aout));
minix(process[KERNEL_IDX].entry, process[KERNEL_IDX].cs,
process[KERNEL_IDX].ds, params, sizeof(params), aout);
if (!(k_flags & K_BRET)) {
extern u32_t reboot_code;
raw_copy(mon2abs(params), reboot_code, sizeof(params));
}
parse_code(params);
/* Return from Minix. Things may have changed, so assume nothing. */
fsok= -1;
errno= 0;
/* Read leftover character, if any. */
scan_keyboard();
/* Restore screen contents. */
restore_screen();
}
ino_t latest_version(char *version, struct stat *stp)
/* Recursively read the current directory, selecting the newest image on
* the way up. (One can't use r_stat while reading a directory.)
*/
{
char name[MFS_DIRSIZ + 1];
ino_t ino, newest;
time_t mtime;
if ((ino= r_readdir(name)) == 0) { stp->st_mtime= 0; return 0; }
newest= latest_version(version, stp);
mtime= stp->st_mtime;
r_stat(ino, stp);
if (S_ISREG(stp->st_mode) && stp->st_mtime > mtime) {
newest= ino;
strcpy(version, name);
} else {
stp->st_mtime= mtime;
}
return newest;
}
char *select_image(char *image)
/* Look image up on the filesystem, if it is a file then we're done, but
* if its a directory then we want the newest file in that directory. If
* it doesn't exist at all, then see if it is 'number:number' and get the
* image from that absolute offset off the disk.
*/
{
ino_t image_ino;
struct stat st;
image= strcpy(malloc((strlen(image) + 1 + MFS_DIRSIZ + 1)
* sizeof(char)), image);
fsok= r_super(&block_size) != 0;
if (!fsok || (image_ino= r_lookup(ROOT_INO, image)) == 0) {
char *size;
if (numprefix(image, &size) && *size++ == ':'
&& numeric(size)) {
vir2sec= flat_vir2sec;
image_off= a2l(image);
image_sectors= a2l(size);
strcpy(image, "Minix");
return image;
}
if (!fsok)
printf("No image selected\n");
else
printf("Can't load %s: %s\n", image, unix_err(errno));
goto bail_out;
}
r_stat(image_ino, &st);
image_bytes = st.st_size;
if (!S_ISREG(st.st_mode)) {
char *version= image + strlen(image);
char dots[MFS_DIRSIZ + 1];
if (!S_ISDIR(st.st_mode)) {
printf("%s: %s\n", image, unix_err(ENOTDIR));
goto bail_out;
}
(void) r_readdir(dots);
(void) r_readdir(dots); /* "." & ".." */
*version++= '/';
*version= 0;
if ((image_ino= latest_version(version, &st)) == 0) {
printf("There are no images in %s\n", image);
goto bail_out;
}
r_stat(image_ino, &st);
}
vir2sec= file_vir2sec;
image_sectors= (st.st_size + SECTOR_SIZE - 1) >> SECTOR_SHIFT;
return image;
bail_out:
free(image);
return nil;
}
void bootminix(void)
/* Load Minix and run it. (Given the size of this program it is surprising
* that it ever gets to that.)
*/
{
char *image;
char *mb;
char *kernel;
/* FIXME: modules should come from environment */
char modules[] = "boot/ds boot/rs boot/pm boot/sched boot/vfs boot/memory boot/log boot/tty boot/mfs boot/vm boot/pfs boot/init";
if ((mb = b_value("mb")) != nil) {
do_multiboot = a2l(mb);
kernel = b_value("kernel");
if (kernel == nil) {
printf("kernel not set\n");
return;
}
}
if (do_multiboot) {
if ((kernel= select_image(b_value("kernel"))) == nil) return;
} else {
if ((image= select_image(b_value("image"))) == nil) return;
}
if(serial_line >= 0) {
char linename[2];
linename[0] = serial_line + '0';
linename[1] = '\0';
b_setvar(E_VAR, SERVARNAME, linename);
}
if (do_multiboot)
exec_mb(kernel, modules);
else
exec_image(image);
switch (errno) {
case ENOEXEC:
printf("%s contains a bad program header\n",
do_multiboot ? kernel : image);
break;
case ENOMEM:
printf("Not enough memory to load %s\n",
do_multiboot ? kernel : image);
break;
case EIO:
printf("Unexpected EOF on %s\n",
do_multiboot ? kernel : image);
case 0:
/* No error or error already reported. */;
}
if (do_multiboot)
free(kernel);
else
free(image);
if(serial_line >= 0)
b_unset(SERVARNAME);
}
size_t
strspn(const char *string, const char *in)
{
register const char *s1, *s2;
for (s1 = string; *s1; s1++) {
for (s2 = in; *s2 && *s2 != *s1; s2++)
/* EMPTY */ ;
if (*s2 == '\0')
break;
}
return s1 - string;
}
char *
strpbrk(register const char *string, register const char *brk)
{
register const char *s1;
while (*string) {
for (s1 = brk; *s1 && *s1 != *string; s1++)
/* EMPTY */ ;
if (*s1)
return (char *)string;
string++;
}
return (char *)NULL;
}
char *
strtok(register char *string, const char *separators)
{
register char *s1, *s2;
static char *savestring = NULL;
if (string == NULL) {
string = savestring;
if (string == NULL) return (char *)NULL;
}
s1 = string + strspn(string, separators);
if (*s1 == '\0') {
savestring = NULL;
return (char *)NULL;
}
s2 = strpbrk(s1, separators);
if (s2 != NULL)
*s2++ = '\0';
savestring = s2;
return s1;
}
char *
strdup(const char *s1)
{
size_t len;
char *s2;
len= strlen(s1)+1;
s2= malloc(len);
if (s2 == NULL)
return NULL;
strcpy(s2, s1);
return s2;
}
/*
* $PchId: bootimage.c,v 1.10 2002/02/27 19:39:09 philip Exp $
*/