673 lines
24 KiB
C
673 lines
24 KiB
C
/* This task handles the interface between the kernel and user-level servers.
|
|
* System services can be accessed by doing a system call. System calls are
|
|
* transformed into request messages, which are handled by this task. By
|
|
* convention, a sys_call() is transformed in a SYS_CALL request message that
|
|
* is handled in a function named do_call().
|
|
*
|
|
* A private call vector is used to map all system calls to the functions that
|
|
* handle them. The actual handler functions are contained in separate files
|
|
* to keep this file clean. The call vector is used in the system task's main
|
|
* loop to handle all incoming requests.
|
|
*
|
|
* In addition to the main sys_task() entry point, which starts the main loop,
|
|
* there are several other minor entry points:
|
|
* get_priv: assign privilege structure to user or system process
|
|
* set_sendto_bit: allow a process to send messages to a new target
|
|
* unset_sendto_bit: disallow a process from sending messages to a target
|
|
* fill_sendto_mask: fill the target mask of a given process
|
|
* send_sig: send a signal directly to a system process
|
|
* cause_sig: take action to cause a signal to occur via a signal mgr
|
|
* sig_delay_done: tell PM that a process is not sending
|
|
* umap_bios: map virtual address in BIOS_SEG to physical
|
|
* get_randomness: accumulate randomness in a buffer
|
|
* clear_endpoint: remove a process' ability to send and receive messages
|
|
* sched_proc: schedule a process
|
|
*
|
|
* Changes:
|
|
* Nov 22, 2009 get_priv supports static priv ids (Cristiano Giuffrida)
|
|
* Aug 04, 2005 check if system call is allowed (Jorrit N. Herder)
|
|
* Jul 20, 2005 send signal to services with message (Jorrit N. Herder)
|
|
* Jan 15, 2005 new, generalized virtual copy function (Jorrit N. Herder)
|
|
* Oct 10, 2004 dispatch system calls from call vector (Jorrit N. Herder)
|
|
* Sep 30, 2004 source code documentation updated (Jorrit N. Herder)
|
|
*/
|
|
|
|
#include "debug.h"
|
|
#include "kernel.h"
|
|
#include "system.h"
|
|
#include "proc.h"
|
|
#include "vm.h"
|
|
#include "kernel/clock.h"
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <signal.h>
|
|
#include <unistd.h>
|
|
#include <minix/endpoint.h>
|
|
#include <minix/safecopies.h>
|
|
|
|
/* Declaration of the call vector that defines the mapping of system calls
|
|
* to handler functions. The vector is initialized in sys_init() with map(),
|
|
* which makes sure the system call numbers are ok. No space is allocated,
|
|
* because the dummy is declared extern. If an illegal call is given, the
|
|
* array size will be negative and this won't compile.
|
|
*/
|
|
static int (*call_vec[NR_SYS_CALLS])(struct proc * caller, message *m_ptr);
|
|
|
|
#define map(call_nr, handler) \
|
|
{ int call_index = call_nr-KERNEL_CALL; \
|
|
assert(call_index >= 0 && call_index < NR_SYS_CALLS); \
|
|
call_vec[call_index] = (handler) ; }
|
|
|
|
static void kernel_call_finish(struct proc * caller, message *msg, int result)
|
|
{
|
|
if(result == VMSUSPEND) {
|
|
/* Special case: message has to be saved for handling
|
|
* until VM tells us it's allowed. VM has been notified
|
|
* and we must wait for its reply to restart the call.
|
|
*/
|
|
assert(RTS_ISSET(caller, RTS_VMREQUEST));
|
|
assert(caller->p_vmrequest.type == VMSTYPE_KERNELCALL);
|
|
caller->p_vmrequest.saved.reqmsg = *msg;
|
|
caller->p_misc_flags |= MF_KCALL_RESUME;
|
|
} else {
|
|
/*
|
|
* call is finished, we could have been suspended because of VM,
|
|
* remove the request message
|
|
*/
|
|
caller->p_vmrequest.saved.reqmsg.m_source = NONE;
|
|
if (result != EDONTREPLY) {
|
|
/* copy the result as a message to the original user buffer */
|
|
msg->m_source = SYSTEM;
|
|
msg->m_type = result; /* report status of call */
|
|
#if DEBUG_IPC_HOOK
|
|
hook_ipc_msgkresult(msg, caller);
|
|
#endif
|
|
if (copy_msg_to_user(caller, msg,
|
|
(message *)caller->p_delivermsg_vir)) {
|
|
printf("WARNING wrong user pointer 0x%08x from "
|
|
"process %s / %d\n",
|
|
caller->p_delivermsg_vir,
|
|
caller->p_name,
|
|
caller->p_endpoint);
|
|
cause_sig(proc_nr(caller), SIGSEGV);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int kernel_call_dispatch(struct proc * caller, message *msg)
|
|
{
|
|
int result = OK;
|
|
int call_nr;
|
|
|
|
#if DEBUG_IPC_HOOK
|
|
hook_ipc_msgkcall(msg, caller);
|
|
#endif
|
|
call_nr = msg->m_type - KERNEL_CALL;
|
|
|
|
/* See if the caller made a valid request and try to handle it. */
|
|
if (call_nr < 0 || call_nr >= NR_SYS_CALLS) { /* check call number */
|
|
printf("SYSTEM: illegal request %d from %d.\n",
|
|
call_nr,msg->m_source);
|
|
result = EBADREQUEST; /* illegal message type */
|
|
}
|
|
else if (!GET_BIT(priv(caller)->s_k_call_mask, call_nr)) {
|
|
printf("SYSTEM: denied request %d from %d.\n",
|
|
call_nr,msg->m_source);
|
|
result = ECALLDENIED; /* illegal message type */
|
|
} else {
|
|
/* handle the system call */
|
|
if (call_vec[call_nr])
|
|
result = (*call_vec[call_nr])(caller, msg);
|
|
else {
|
|
printf("Unused kernel call %d from %d\n",
|
|
call_nr, caller->p_endpoint);
|
|
result = EBADREQUEST;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* kernel_call *
|
|
*===========================================================================*/
|
|
/*
|
|
* this function checks the basic syscall parameters and if accepted it
|
|
* dispatches its handling to the right handler
|
|
*/
|
|
void kernel_call(message *m_user, struct proc * caller)
|
|
{
|
|
int result = OK;
|
|
message msg;
|
|
|
|
caller->p_delivermsg_vir = (vir_bytes) m_user;
|
|
/*
|
|
* the ldt and cr3 of the caller process is loaded because it just've trapped
|
|
* into the kernel or was already set in switch_to_user() before we resume
|
|
* execution of an interrupted kernel call
|
|
*/
|
|
if (copy_msg_from_user(caller, m_user, &msg) == 0) {
|
|
msg.m_source = caller->p_endpoint;
|
|
result = kernel_call_dispatch(caller, &msg);
|
|
}
|
|
else {
|
|
printf("WARNING wrong user pointer 0x%08x from process %s / %d\n",
|
|
m_user, caller->p_name, caller->p_endpoint);
|
|
cause_sig(proc_nr(caller), SIGSEGV);
|
|
return;
|
|
}
|
|
|
|
|
|
/* remember who invoked the kcall so we can bill it its time */
|
|
kbill_kcall = caller;
|
|
|
|
kernel_call_finish(caller, &msg, result);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* initialize *
|
|
*===========================================================================*/
|
|
void system_init(void)
|
|
{
|
|
register struct priv *sp;
|
|
int i;
|
|
|
|
/* Initialize IRQ handler hooks. Mark all hooks available. */
|
|
for (i=0; i<NR_IRQ_HOOKS; i++) {
|
|
irq_hooks[i].proc_nr_e = NONE;
|
|
}
|
|
|
|
/* Initialize all alarm timers for all processes. */
|
|
for (sp=BEG_PRIV_ADDR; sp < END_PRIV_ADDR; sp++) {
|
|
tmr_inittimer(&(sp->s_alarm_timer));
|
|
}
|
|
|
|
/* Initialize the call vector to a safe default handler. Some system calls
|
|
* may be disabled or nonexistant. Then explicitely map known calls to their
|
|
* handler functions. This is done with a macro that gives a compile error
|
|
* if an illegal call number is used. The ordering is not important here.
|
|
*/
|
|
for (i=0; i<NR_SYS_CALLS; i++) {
|
|
call_vec[i] = NULL;
|
|
}
|
|
|
|
/* Process management. */
|
|
map(SYS_FORK, do_fork); /* a process forked a new process */
|
|
map(SYS_EXEC, do_exec); /* update process after execute */
|
|
map(SYS_CLEAR, do_clear); /* clean up after process exit */
|
|
map(SYS_EXIT, do_exit); /* a system process wants to exit */
|
|
map(SYS_PRIVCTL, do_privctl); /* system privileges control */
|
|
map(SYS_TRACE, do_trace); /* request a trace operation */
|
|
map(SYS_SETGRANT, do_setgrant); /* get/set own parameters */
|
|
map(SYS_RUNCTL, do_runctl); /* set/clear stop flag of a process */
|
|
map(SYS_UPDATE, do_update); /* update a process into another */
|
|
map(SYS_STATECTL, do_statectl); /* let a process control its state */
|
|
|
|
/* Signal handling. */
|
|
map(SYS_KILL, do_kill); /* cause a process to be signaled */
|
|
map(SYS_GETKSIG, do_getksig); /* signal manager checks for signals */
|
|
map(SYS_ENDKSIG, do_endksig); /* signal manager finished signal */
|
|
map(SYS_SIGSEND, do_sigsend); /* start POSIX-style signal */
|
|
map(SYS_SIGRETURN, do_sigreturn); /* return from POSIX-style signal */
|
|
|
|
/* Device I/O. */
|
|
map(SYS_IRQCTL, do_irqctl); /* interrupt control operations */
|
|
map(SYS_DEVIO, do_devio); /* inb, inw, inl, outb, outw, outl */
|
|
map(SYS_VDEVIO, do_vdevio); /* vector with devio requests */
|
|
|
|
/* Memory management. */
|
|
map(SYS_NEWMAP, do_newmap); /* set up a process memory map */
|
|
map(SYS_MEMSET, do_memset); /* write char to memory area */
|
|
map(SYS_VMCTL, do_vmctl); /* various VM process settings */
|
|
|
|
/* Copying. */
|
|
map(SYS_UMAP, do_umap); /* map virtual to physical address */
|
|
map(SYS_UMAP_REMOTE, do_umap_remote); /* do_umap for non-caller process */
|
|
map(SYS_VUMAP, do_vumap); /* vectored virtual to physical map */
|
|
map(SYS_VIRCOPY, do_vircopy); /* use pure virtual addressing */
|
|
map(SYS_PHYSCOPY, do_copy); /* use physical addressing */
|
|
map(SYS_SAFECOPYFROM, do_safecopy_from);/* copy with pre-granted permission */
|
|
map(SYS_SAFECOPYTO, do_safecopy_to); /* copy with pre-granted permission */
|
|
map(SYS_VSAFECOPY, do_vsafecopy); /* vectored safecopy */
|
|
|
|
/* Mapping. */
|
|
map(SYS_SAFEMAP, do_safemap); /* map pages from other process */
|
|
map(SYS_SAFEREVMAP, do_saferevmap); /* grantor revokes the map grant */
|
|
map(SYS_SAFEUNMAP, do_safeunmap); /* requestor unmaps the mapped pages */
|
|
|
|
/* Clock functionality. */
|
|
map(SYS_TIMES, do_times); /* get uptime and process times */
|
|
map(SYS_SETALARM, do_setalarm); /* schedule a synchronous alarm */
|
|
map(SYS_STIME, do_stime); /* set the boottime */
|
|
map(SYS_VTIMER, do_vtimer); /* set or retrieve a virtual timer */
|
|
|
|
/* System control. */
|
|
map(SYS_ABORT, do_abort); /* abort MINIX */
|
|
map(SYS_GETINFO, do_getinfo); /* request system information */
|
|
map(SYS_SYSCTL, do_sysctl); /* misc system manipulation */
|
|
|
|
/* Profiling. */
|
|
map(SYS_SPROF, do_sprofile); /* start/stop statistical profiling */
|
|
map(SYS_CPROF, do_cprofile); /* get/reset call profiling data */
|
|
map(SYS_PROFBUF, do_profbuf); /* announce locations to kernel */
|
|
|
|
/* i386-specific. */
|
|
#if _MINIX_CHIP == _CHIP_INTEL
|
|
map(SYS_INT86, do_int86); /* real-mode BIOS calls */
|
|
map(SYS_READBIOS, do_readbios); /* read from BIOS locations */
|
|
map(SYS_IOPENABLE, do_iopenable); /* Enable I/O */
|
|
map(SYS_SDEVIO, do_sdevio); /* phys_insb, _insw, _outsb, _outsw */
|
|
|
|
/* Machine state switching. */
|
|
map(SYS_SETMCONTEXT, do_setmcontext); /* set machine context */
|
|
map(SYS_GETMCONTEXT, do_getmcontext); /* get machine context */
|
|
#endif
|
|
|
|
/* Scheduling */
|
|
map(SYS_SCHEDULE, do_schedule); /* reschedule a process */
|
|
map(SYS_SCHEDCTL, do_schedctl); /* change process scheduler */
|
|
|
|
}
|
|
/*===========================================================================*
|
|
* get_priv *
|
|
*===========================================================================*/
|
|
int get_priv(rc, priv_id)
|
|
register struct proc *rc; /* new (child) process pointer */
|
|
int priv_id; /* privilege id */
|
|
{
|
|
/* Allocate a new privilege structure for a system process. Privilege ids
|
|
* can be assigned either statically or dynamically.
|
|
*/
|
|
register struct priv *sp; /* privilege structure */
|
|
|
|
if(priv_id == NULL_PRIV_ID) { /* allocate slot dynamically */
|
|
for (sp = BEG_DYN_PRIV_ADDR; sp < END_DYN_PRIV_ADDR; ++sp)
|
|
if (sp->s_proc_nr == NONE) break;
|
|
if (sp >= END_DYN_PRIV_ADDR) return(ENOSPC);
|
|
}
|
|
else { /* allocate slot from id */
|
|
if(!is_static_priv_id(priv_id)) {
|
|
return EINVAL; /* invalid static priv id */
|
|
}
|
|
if(priv[priv_id].s_proc_nr != NONE) {
|
|
return EBUSY; /* slot already in use */
|
|
}
|
|
sp = &priv[priv_id];
|
|
}
|
|
rc->p_priv = sp; /* assign new slot */
|
|
rc->p_priv->s_proc_nr = proc_nr(rc); /* set association */
|
|
|
|
return(OK);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* set_sendto_bit *
|
|
*===========================================================================*/
|
|
void set_sendto_bit(const struct proc *rp, int id)
|
|
{
|
|
/* Allow a process to send messages to the process(es) associated with the
|
|
* system privilege structure with the given ID.
|
|
*/
|
|
|
|
/* Disallow the process from sending to a process privilege structure with no
|
|
* associated process, and disallow the process from sending to itself.
|
|
*/
|
|
if (id_to_nr(id) == NONE || priv_id(rp) == id) {
|
|
unset_sys_bit(priv(rp)->s_ipc_to, id);
|
|
return;
|
|
}
|
|
|
|
set_sys_bit(priv(rp)->s_ipc_to, id);
|
|
|
|
/* The process that this process can now send to, must be able to reply (or
|
|
* vice versa). Therefore, its send mask should be updated as well. Ignore
|
|
* receivers that don't support traps other than RECEIVE, they can't reply
|
|
* or send messages anyway.
|
|
*/
|
|
if (priv_addr(id)->s_trap_mask & ~((1 << RECEIVE)))
|
|
set_sys_bit(priv_addr(id)->s_ipc_to, priv_id(rp));
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* unset_sendto_bit *
|
|
*===========================================================================*/
|
|
void unset_sendto_bit(const struct proc *rp, int id)
|
|
{
|
|
/* Prevent a process from sending to another process. Retain the send mask
|
|
* symmetry by also unsetting the bit for the other direction.
|
|
*/
|
|
|
|
unset_sys_bit(priv(rp)->s_ipc_to, id);
|
|
|
|
unset_sys_bit(priv_addr(id)->s_ipc_to, priv_id(rp));
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* fill_sendto_mask *
|
|
*===========================================================================*/
|
|
void fill_sendto_mask(const struct proc *rp, sys_map_t *map)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i < NR_SYS_PROCS; i++) {
|
|
if (get_sys_bit(*map, i))
|
|
set_sendto_bit(rp, i);
|
|
else
|
|
unset_sendto_bit(rp, i);
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* send_sig *
|
|
*===========================================================================*/
|
|
void send_sig(endpoint_t ep, int sig_nr)
|
|
{
|
|
/* Notify a system process about a signal. This is straightforward. Simply
|
|
* set the signal that is to be delivered in the pending signals map and
|
|
* send a notification with source SYSTEM.
|
|
*/
|
|
register struct proc *rp;
|
|
int proc_nr;
|
|
|
|
if(!isokendpt(ep, &proc_nr) || isemptyn(proc_nr))
|
|
panic("send_sig to empty process: %d", ep);
|
|
|
|
rp = proc_addr(proc_nr);
|
|
sigaddset(&priv(rp)->s_sig_pending, sig_nr);
|
|
mini_notify(proc_addr(SYSTEM), rp->p_endpoint);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* cause_sig *
|
|
*===========================================================================*/
|
|
void cause_sig(proc_nr, sig_nr)
|
|
proc_nr_t proc_nr; /* process to be signalled */
|
|
int sig_nr; /* signal to be sent */
|
|
{
|
|
/* A system process wants to send a signal to a process. Examples are:
|
|
* - HARDWARE wanting to cause a SIGSEGV after a CPU exception
|
|
* - TTY wanting to cause SIGINT upon getting a DEL
|
|
* - FS wanting to cause SIGPIPE for a broken pipe
|
|
* Signals are handled by sending a message to the signal manager assigned to
|
|
* the process. This function handles the signals and makes sure the signal
|
|
* manager gets them by sending a notification. The process being signaled
|
|
* is blocked while the signal manager has not finished all signals for it.
|
|
* Race conditions between calls to this function and the system calls that
|
|
* process pending kernel signals cannot exist. Signal related functions are
|
|
* only called when a user process causes a CPU exception and from the kernel
|
|
* process level, which runs to completion.
|
|
*/
|
|
register struct proc *rp, *sig_mgr_rp;
|
|
endpoint_t sig_mgr;
|
|
int sig_mgr_proc_nr;
|
|
|
|
/* Lookup signal manager. */
|
|
rp = proc_addr(proc_nr);
|
|
sig_mgr = priv(rp)->s_sig_mgr;
|
|
if(sig_mgr == SELF) sig_mgr = rp->p_endpoint;
|
|
|
|
/* If the target is the signal manager of itself, send the signal directly. */
|
|
if(rp->p_endpoint == sig_mgr) {
|
|
if(SIGS_IS_LETHAL(sig_nr)) {
|
|
/* If the signal is lethal, see if a backup signal manager exists. */
|
|
sig_mgr = priv(rp)->s_bak_sig_mgr;
|
|
if(sig_mgr != NONE && isokendpt(sig_mgr, &sig_mgr_proc_nr)) {
|
|
priv(rp)->s_sig_mgr = sig_mgr;
|
|
priv(rp)->s_bak_sig_mgr = NONE;
|
|
sig_mgr_rp = proc_addr(sig_mgr_proc_nr);
|
|
RTS_UNSET(sig_mgr_rp, RTS_NO_PRIV);
|
|
cause_sig(proc_nr, sig_nr); /* try again with the new sig mgr. */
|
|
return;
|
|
}
|
|
/* We are out of luck. Time to panic. */
|
|
proc_stacktrace(rp);
|
|
panic("cause_sig: sig manager %d gets lethal signal %d for itself",
|
|
rp->p_endpoint, sig_nr);
|
|
}
|
|
sigaddset(&priv(rp)->s_sig_pending, sig_nr);
|
|
send_sig(rp->p_endpoint, SIGKSIGSM);
|
|
return;
|
|
}
|
|
|
|
/* Check if the signal is already pending. Process it otherwise. */
|
|
if (! sigismember(&rp->p_pending, sig_nr)) {
|
|
sigaddset(&rp->p_pending, sig_nr);
|
|
if (! (RTS_ISSET(rp, RTS_SIGNALED))) { /* other pending */
|
|
RTS_SET(rp, RTS_SIGNALED | RTS_SIG_PENDING);
|
|
send_sig(sig_mgr, SIGKSIG);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* sig_delay_done *
|
|
*===========================================================================*/
|
|
void sig_delay_done(struct proc *rp)
|
|
{
|
|
/* A process is now known not to send any direct messages.
|
|
* Tell PM that the stop delay has ended, by sending a signal to the process.
|
|
* Used for actual signal delivery.
|
|
*/
|
|
|
|
rp->p_misc_flags &= ~MF_SIG_DELAY;
|
|
|
|
cause_sig(proc_nr(rp), SIGSNDELAY);
|
|
}
|
|
|
|
#if _MINIX_CHIP == _CHIP_INTEL
|
|
|
|
/*===========================================================================*
|
|
* umap_bios *
|
|
*===========================================================================*/
|
|
phys_bytes umap_bios(vir_addr, bytes)
|
|
vir_bytes vir_addr; /* virtual address in BIOS segment */
|
|
vir_bytes bytes; /* # of bytes to be copied */
|
|
{
|
|
/* Calculate the physical memory address at the BIOS. Note: currently, BIOS
|
|
* address zero (the first BIOS interrupt vector) is not considered as an
|
|
* error here, but since the physical address will be zero as well, the
|
|
* calling function will think an error occurred. This is not a problem,
|
|
* since no one uses the first BIOS interrupt vector.
|
|
*/
|
|
|
|
/* Check all acceptable ranges. */
|
|
if (vir_addr >= BIOS_MEM_BEGIN && vir_addr + bytes <= BIOS_MEM_END)
|
|
return (phys_bytes) vir_addr;
|
|
else if (vir_addr >= BASE_MEM_TOP && vir_addr + bytes <= UPPER_MEM_END)
|
|
return (phys_bytes) vir_addr;
|
|
|
|
printf("Warning, error in umap_bios, virtual address 0x%x\n", vir_addr);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*===========================================================================*
|
|
* clear_ipc *
|
|
*===========================================================================*/
|
|
static void clear_ipc(
|
|
register struct proc *rc /* slot of process to clean up */
|
|
)
|
|
{
|
|
/* Clear IPC data for a given process slot. */
|
|
struct proc **xpp; /* iterate over caller queue */
|
|
|
|
if (RTS_ISSET(rc, RTS_SENDING)) {
|
|
int target_proc;
|
|
|
|
okendpt(rc->p_sendto_e, &target_proc);
|
|
xpp = &proc_addr(target_proc)->p_caller_q; /* destination's queue */
|
|
while (*xpp) { /* check entire queue */
|
|
if (*xpp == rc) { /* process is on the queue */
|
|
*xpp = (*xpp)->p_q_link; /* replace by next process */
|
|
#if DEBUG_ENABLE_IPC_WARNINGS
|
|
printf("endpoint %d / %s removed from queue at %d\n",
|
|
rc->p_endpoint, rc->p_name, rc->p_sendto_e);
|
|
#endif
|
|
break; /* can only be queued once */
|
|
}
|
|
xpp = &(*xpp)->p_q_link; /* proceed to next queued */
|
|
}
|
|
RTS_UNSET(rc, RTS_SENDING);
|
|
}
|
|
RTS_UNSET(rc, RTS_RECEIVING);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* clear_endpoint *
|
|
*===========================================================================*/
|
|
void clear_endpoint(rc)
|
|
register struct proc *rc; /* slot of process to clean up */
|
|
{
|
|
if(isemptyp(rc)) panic("clear_proc: empty process: %d", rc->p_endpoint);
|
|
|
|
|
|
#if DEBUG_IPC_HOOK
|
|
hook_ipc_clear(rc);
|
|
#endif
|
|
|
|
/* Make sure that the exiting process is no longer scheduled. */
|
|
RTS_SET(rc, RTS_NO_ENDPOINT);
|
|
if (priv(rc)->s_flags & SYS_PROC)
|
|
{
|
|
priv(rc)->s_asynsize= 0;
|
|
}
|
|
|
|
/* If the process happens to be queued trying to send a
|
|
* message, then it must be removed from the message queues.
|
|
*/
|
|
clear_ipc(rc);
|
|
|
|
/* Likewise, if another process was sending or receive a message to or from
|
|
* the exiting process, it must be alerted that process no longer is alive.
|
|
* Check all processes.
|
|
*/
|
|
clear_ipc_refs(rc, EDEADSRCDST);
|
|
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* clear_ipc_refs *
|
|
*===========================================================================*/
|
|
void clear_ipc_refs(rc, caller_ret)
|
|
register struct proc *rc; /* slot of process to clean up */
|
|
int caller_ret; /* code to return on callers */
|
|
{
|
|
/* Clear IPC references for a given process slot. */
|
|
struct proc *rp; /* iterate over process table */
|
|
int src_id;
|
|
|
|
/* Tell processes that sent asynchronous messages to 'rc' they are not
|
|
* going to be delivered */
|
|
while ((src_id = has_pending_asend(rc, ANY)) != NULL_PRIV_ID)
|
|
cancel_async(proc_addr(id_to_nr(src_id)), rc);
|
|
|
|
for (rp = BEG_PROC_ADDR; rp < END_PROC_ADDR; rp++) {
|
|
if(isemptyp(rp))
|
|
continue;
|
|
|
|
/* Unset pending notification bits. */
|
|
unset_sys_bit(priv(rp)->s_notify_pending, priv(rc)->s_id);
|
|
|
|
/* Unset pending asynchronous messages */
|
|
unset_sys_bit(priv(rp)->s_asyn_pending, priv(rc)->s_id);
|
|
|
|
/* Check if process depends on given process. */
|
|
if (P_BLOCKEDON(rp) == rc->p_endpoint) {
|
|
rp->p_reg.retreg = caller_ret; /* return requested code */
|
|
clear_ipc(rp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* kernel_call_resume *
|
|
*===========================================================================*/
|
|
void kernel_call_resume(struct proc *caller)
|
|
{
|
|
int result;
|
|
|
|
assert(!RTS_ISSET(caller, RTS_SLOT_FREE));
|
|
assert(!RTS_ISSET(caller, RTS_VMREQUEST));
|
|
|
|
assert(caller->p_vmrequest.saved.reqmsg.m_source == caller->p_endpoint);
|
|
|
|
/*
|
|
printf("KERNEL_CALL restart from %s / %d rts 0x%08x misc 0x%08x\n",
|
|
caller->p_name, caller->p_endpoint,
|
|
caller->p_rts_flags, caller->p_misc_flags);
|
|
*/
|
|
|
|
/* re-execute the kernel call, with MF_KCALL_RESUME still set so
|
|
* the call knows this is a retry.
|
|
*/
|
|
result = kernel_call_dispatch(caller, &caller->p_vmrequest.saved.reqmsg);
|
|
/*
|
|
* we are resuming the kernel call so we have to remove this flag so it
|
|
* can be set again
|
|
*/
|
|
caller->p_misc_flags &= ~MF_KCALL_RESUME;
|
|
kernel_call_finish(caller, &caller->p_vmrequest.saved.reqmsg, result);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* sched_proc *
|
|
*===========================================================================*/
|
|
int sched_proc(struct proc *p,
|
|
int priority,
|
|
int quantum,
|
|
int cpu)
|
|
{
|
|
/* Make sure the values given are within the allowed range.*/
|
|
if ((priority < TASK_Q && priority != -1) || priority > NR_SCHED_QUEUES)
|
|
return(EINVAL);
|
|
|
|
if (quantum < 1 && quantum != -1)
|
|
return(EINVAL);
|
|
|
|
#ifdef CONFIG_SMP
|
|
if ((cpu < 0 && cpu != -1) || (cpu > 0 && (unsigned) cpu >= ncpus))
|
|
return(EINVAL);
|
|
if (cpu != -1 && !(cpu_is_ready(cpu)))
|
|
return EBADCPU;
|
|
#endif
|
|
|
|
/* In some cases, we might be rescheduling a runnable process. In such
|
|
* a case (i.e. if we are updating the priority) we set the NO_QUANTUM
|
|
* flag before the generic unset to dequeue/enqueue the process
|
|
*/
|
|
|
|
/* FIXME this preempts the process, do we really want to do that ?*/
|
|
|
|
/* FIXME this is a problem for SMP if the processes currently runs on a
|
|
* different CPU */
|
|
if (proc_is_runnable(p)) {
|
|
#ifdef CONFIG_SMP
|
|
if (p->p_cpu != cpuid && cpu != -1 && cpu != p->p_cpu) {
|
|
smp_schedule_migrate_proc(p, cpu);
|
|
}
|
|
#endif
|
|
|
|
RTS_SET(p, RTS_NO_QUANTUM);
|
|
}
|
|
|
|
if (proc_is_runnable(p))
|
|
RTS_SET(p, RTS_NO_QUANTUM);
|
|
|
|
if (priority != -1)
|
|
p->p_priority = priority;
|
|
if (quantum != -1) {
|
|
p->p_quantum_size_ms = quantum;
|
|
p->p_cpu_time_left = ms_2_cpu_time(quantum);
|
|
}
|
|
#ifdef CONFIG_SMP
|
|
if (cpu != -1)
|
|
p->p_cpu = cpu;
|
|
#endif
|
|
|
|
/* Clear the scheduling bit and enqueue the process */
|
|
RTS_UNSET(p, RTS_NO_QUANTUM);
|
|
|
|
return OK;
|
|
}
|
|
|