f4a2713ac8
Change-Id: Ia40e9ffdf29b5dab2f122f673ff6802a58bc690f
9828 lines
379 KiB
C++
9828 lines
379 KiB
C++
//===------- TreeTransform.h - Semantic Tree Transformation -----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a semantic tree transformation that takes a given
|
|
// AST and rebuilds it, possibly transforming some nodes in the process.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CLANG_SEMA_TREETRANSFORM_H
|
|
#define LLVM_CLANG_SEMA_TREETRANSFORM_H
|
|
|
|
#include "TypeLocBuilder.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/AST/StmtObjC.h"
|
|
#include "clang/AST/StmtOpenMP.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Sema/Designator.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/Ownership.h"
|
|
#include "clang/Sema/ParsedTemplate.h"
|
|
#include "clang/Sema/ScopeInfo.h"
|
|
#include "clang/Sema/SemaDiagnostic.h"
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <algorithm>
|
|
|
|
namespace clang {
|
|
using namespace sema;
|
|
|
|
/// \brief A semantic tree transformation that allows one to transform one
|
|
/// abstract syntax tree into another.
|
|
///
|
|
/// A new tree transformation is defined by creating a new subclass \c X of
|
|
/// \c TreeTransform<X> and then overriding certain operations to provide
|
|
/// behavior specific to that transformation. For example, template
|
|
/// instantiation is implemented as a tree transformation where the
|
|
/// transformation of TemplateTypeParmType nodes involves substituting the
|
|
/// template arguments for their corresponding template parameters; a similar
|
|
/// transformation is performed for non-type template parameters and
|
|
/// template template parameters.
|
|
///
|
|
/// This tree-transformation template uses static polymorphism to allow
|
|
/// subclasses to customize any of its operations. Thus, a subclass can
|
|
/// override any of the transformation or rebuild operators by providing an
|
|
/// operation with the same signature as the default implementation. The
|
|
/// overridding function should not be virtual.
|
|
///
|
|
/// Semantic tree transformations are split into two stages, either of which
|
|
/// can be replaced by a subclass. The "transform" step transforms an AST node
|
|
/// or the parts of an AST node using the various transformation functions,
|
|
/// then passes the pieces on to the "rebuild" step, which constructs a new AST
|
|
/// node of the appropriate kind from the pieces. The default transformation
|
|
/// routines recursively transform the operands to composite AST nodes (e.g.,
|
|
/// the pointee type of a PointerType node) and, if any of those operand nodes
|
|
/// were changed by the transformation, invokes the rebuild operation to create
|
|
/// a new AST node.
|
|
///
|
|
/// Subclasses can customize the transformation at various levels. The
|
|
/// most coarse-grained transformations involve replacing TransformType(),
|
|
/// TransformExpr(), TransformDecl(), TransformNestedNameSpecifierLoc(),
|
|
/// TransformTemplateName(), or TransformTemplateArgument() with entirely
|
|
/// new implementations.
|
|
///
|
|
/// For more fine-grained transformations, subclasses can replace any of the
|
|
/// \c TransformXXX functions (where XXX is the name of an AST node, e.g.,
|
|
/// PointerType, StmtExpr) to alter the transformation. As mentioned previously,
|
|
/// replacing TransformTemplateTypeParmType() allows template instantiation
|
|
/// to substitute template arguments for their corresponding template
|
|
/// parameters. Additionally, subclasses can override the \c RebuildXXX
|
|
/// functions to control how AST nodes are rebuilt when their operands change.
|
|
/// By default, \c TreeTransform will invoke semantic analysis to rebuild
|
|
/// AST nodes. However, certain other tree transformations (e.g, cloning) may
|
|
/// be able to use more efficient rebuild steps.
|
|
///
|
|
/// There are a handful of other functions that can be overridden, allowing one
|
|
/// to avoid traversing nodes that don't need any transformation
|
|
/// (\c AlreadyTransformed()), force rebuilding AST nodes even when their
|
|
/// operands have not changed (\c AlwaysRebuild()), and customize the
|
|
/// default locations and entity names used for type-checking
|
|
/// (\c getBaseLocation(), \c getBaseEntity()).
|
|
template<typename Derived>
|
|
class TreeTransform {
|
|
/// \brief Private RAII object that helps us forget and then re-remember
|
|
/// the template argument corresponding to a partially-substituted parameter
|
|
/// pack.
|
|
class ForgetPartiallySubstitutedPackRAII {
|
|
Derived &Self;
|
|
TemplateArgument Old;
|
|
|
|
public:
|
|
ForgetPartiallySubstitutedPackRAII(Derived &Self) : Self(Self) {
|
|
Old = Self.ForgetPartiallySubstitutedPack();
|
|
}
|
|
|
|
~ForgetPartiallySubstitutedPackRAII() {
|
|
Self.RememberPartiallySubstitutedPack(Old);
|
|
}
|
|
};
|
|
|
|
protected:
|
|
Sema &SemaRef;
|
|
|
|
/// \brief The set of local declarations that have been transformed, for
|
|
/// cases where we are forced to build new declarations within the transformer
|
|
/// rather than in the subclass (e.g., lambda closure types).
|
|
llvm::DenseMap<Decl *, Decl *> TransformedLocalDecls;
|
|
|
|
public:
|
|
/// \brief Initializes a new tree transformer.
|
|
TreeTransform(Sema &SemaRef) : SemaRef(SemaRef) { }
|
|
|
|
/// \brief Retrieves a reference to the derived class.
|
|
Derived &getDerived() { return static_cast<Derived&>(*this); }
|
|
|
|
/// \brief Retrieves a reference to the derived class.
|
|
const Derived &getDerived() const {
|
|
return static_cast<const Derived&>(*this);
|
|
}
|
|
|
|
static inline ExprResult Owned(Expr *E) { return E; }
|
|
static inline StmtResult Owned(Stmt *S) { return S; }
|
|
|
|
/// \brief Retrieves a reference to the semantic analysis object used for
|
|
/// this tree transform.
|
|
Sema &getSema() const { return SemaRef; }
|
|
|
|
/// \brief Whether the transformation should always rebuild AST nodes, even
|
|
/// if none of the children have changed.
|
|
///
|
|
/// Subclasses may override this function to specify when the transformation
|
|
/// should rebuild all AST nodes.
|
|
///
|
|
/// We must always rebuild all AST nodes when performing variadic template
|
|
/// pack expansion, in order to avoid violating the AST invariant that each
|
|
/// statement node appears at most once in its containing declaration.
|
|
bool AlwaysRebuild() { return SemaRef.ArgumentPackSubstitutionIndex != -1; }
|
|
|
|
/// \brief Returns the location of the entity being transformed, if that
|
|
/// information was not available elsewhere in the AST.
|
|
///
|
|
/// By default, returns no source-location information. Subclasses can
|
|
/// provide an alternative implementation that provides better location
|
|
/// information.
|
|
SourceLocation getBaseLocation() { return SourceLocation(); }
|
|
|
|
/// \brief Returns the name of the entity being transformed, if that
|
|
/// information was not available elsewhere in the AST.
|
|
///
|
|
/// By default, returns an empty name. Subclasses can provide an alternative
|
|
/// implementation with a more precise name.
|
|
DeclarationName getBaseEntity() { return DeclarationName(); }
|
|
|
|
/// \brief Sets the "base" location and entity when that
|
|
/// information is known based on another transformation.
|
|
///
|
|
/// By default, the source location and entity are ignored. Subclasses can
|
|
/// override this function to provide a customized implementation.
|
|
void setBase(SourceLocation Loc, DeclarationName Entity) { }
|
|
|
|
/// \brief RAII object that temporarily sets the base location and entity
|
|
/// used for reporting diagnostics in types.
|
|
class TemporaryBase {
|
|
TreeTransform &Self;
|
|
SourceLocation OldLocation;
|
|
DeclarationName OldEntity;
|
|
|
|
public:
|
|
TemporaryBase(TreeTransform &Self, SourceLocation Location,
|
|
DeclarationName Entity) : Self(Self) {
|
|
OldLocation = Self.getDerived().getBaseLocation();
|
|
OldEntity = Self.getDerived().getBaseEntity();
|
|
|
|
if (Location.isValid())
|
|
Self.getDerived().setBase(Location, Entity);
|
|
}
|
|
|
|
~TemporaryBase() {
|
|
Self.getDerived().setBase(OldLocation, OldEntity);
|
|
}
|
|
};
|
|
|
|
/// \brief Determine whether the given type \p T has already been
|
|
/// transformed.
|
|
///
|
|
/// Subclasses can provide an alternative implementation of this routine
|
|
/// to short-circuit evaluation when it is known that a given type will
|
|
/// not change. For example, template instantiation need not traverse
|
|
/// non-dependent types.
|
|
bool AlreadyTransformed(QualType T) {
|
|
return T.isNull();
|
|
}
|
|
|
|
/// \brief Determine whether the given call argument should be dropped, e.g.,
|
|
/// because it is a default argument.
|
|
///
|
|
/// Subclasses can provide an alternative implementation of this routine to
|
|
/// determine which kinds of call arguments get dropped. By default,
|
|
/// CXXDefaultArgument nodes are dropped (prior to transformation).
|
|
bool DropCallArgument(Expr *E) {
|
|
return E->isDefaultArgument();
|
|
}
|
|
|
|
/// \brief Determine whether we should expand a pack expansion with the
|
|
/// given set of parameter packs into separate arguments by repeatedly
|
|
/// transforming the pattern.
|
|
///
|
|
/// By default, the transformer never tries to expand pack expansions.
|
|
/// Subclasses can override this routine to provide different behavior.
|
|
///
|
|
/// \param EllipsisLoc The location of the ellipsis that identifies the
|
|
/// pack expansion.
|
|
///
|
|
/// \param PatternRange The source range that covers the entire pattern of
|
|
/// the pack expansion.
|
|
///
|
|
/// \param Unexpanded The set of unexpanded parameter packs within the
|
|
/// pattern.
|
|
///
|
|
/// \param ShouldExpand Will be set to \c true if the transformer should
|
|
/// expand the corresponding pack expansions into separate arguments. When
|
|
/// set, \c NumExpansions must also be set.
|
|
///
|
|
/// \param RetainExpansion Whether the caller should add an unexpanded
|
|
/// pack expansion after all of the expanded arguments. This is used
|
|
/// when extending explicitly-specified template argument packs per
|
|
/// C++0x [temp.arg.explicit]p9.
|
|
///
|
|
/// \param NumExpansions The number of separate arguments that will be in
|
|
/// the expanded form of the corresponding pack expansion. This is both an
|
|
/// input and an output parameter, which can be set by the caller if the
|
|
/// number of expansions is known a priori (e.g., due to a prior substitution)
|
|
/// and will be set by the callee when the number of expansions is known.
|
|
/// The callee must set this value when \c ShouldExpand is \c true; it may
|
|
/// set this value in other cases.
|
|
///
|
|
/// \returns true if an error occurred (e.g., because the parameter packs
|
|
/// are to be instantiated with arguments of different lengths), false
|
|
/// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
|
|
/// must be set.
|
|
bool TryExpandParameterPacks(SourceLocation EllipsisLoc,
|
|
SourceRange PatternRange,
|
|
ArrayRef<UnexpandedParameterPack> Unexpanded,
|
|
bool &ShouldExpand,
|
|
bool &RetainExpansion,
|
|
Optional<unsigned> &NumExpansions) {
|
|
ShouldExpand = false;
|
|
return false;
|
|
}
|
|
|
|
/// \brief "Forget" about the partially-substituted pack template argument,
|
|
/// when performing an instantiation that must preserve the parameter pack
|
|
/// use.
|
|
///
|
|
/// This routine is meant to be overridden by the template instantiator.
|
|
TemplateArgument ForgetPartiallySubstitutedPack() {
|
|
return TemplateArgument();
|
|
}
|
|
|
|
/// \brief "Remember" the partially-substituted pack template argument
|
|
/// after performing an instantiation that must preserve the parameter pack
|
|
/// use.
|
|
///
|
|
/// This routine is meant to be overridden by the template instantiator.
|
|
void RememberPartiallySubstitutedPack(TemplateArgument Arg) { }
|
|
|
|
/// \brief Note to the derived class when a function parameter pack is
|
|
/// being expanded.
|
|
void ExpandingFunctionParameterPack(ParmVarDecl *Pack) { }
|
|
|
|
/// \brief Transforms the given type into another type.
|
|
///
|
|
/// By default, this routine transforms a type by creating a
|
|
/// TypeSourceInfo for it and delegating to the appropriate
|
|
/// function. This is expensive, but we don't mind, because
|
|
/// this method is deprecated anyway; all users should be
|
|
/// switched to storing TypeSourceInfos.
|
|
///
|
|
/// \returns the transformed type.
|
|
QualType TransformType(QualType T);
|
|
|
|
/// \brief Transforms the given type-with-location into a new
|
|
/// type-with-location.
|
|
///
|
|
/// By default, this routine transforms a type by delegating to the
|
|
/// appropriate TransformXXXType to build a new type. Subclasses
|
|
/// may override this function (to take over all type
|
|
/// transformations) or some set of the TransformXXXType functions
|
|
/// to alter the transformation.
|
|
TypeSourceInfo *TransformType(TypeSourceInfo *DI);
|
|
|
|
/// \brief Transform the given type-with-location into a new
|
|
/// type, collecting location information in the given builder
|
|
/// as necessary.
|
|
///
|
|
QualType TransformType(TypeLocBuilder &TLB, TypeLoc TL);
|
|
|
|
/// \brief Transform the given statement.
|
|
///
|
|
/// By default, this routine transforms a statement by delegating to the
|
|
/// appropriate TransformXXXStmt function to transform a specific kind of
|
|
/// statement or the TransformExpr() function to transform an expression.
|
|
/// Subclasses may override this function to transform statements using some
|
|
/// other mechanism.
|
|
///
|
|
/// \returns the transformed statement.
|
|
StmtResult TransformStmt(Stmt *S);
|
|
|
|
/// \brief Transform the given statement.
|
|
///
|
|
/// By default, this routine transforms a statement by delegating to the
|
|
/// appropriate TransformOMPXXXClause function to transform a specific kind
|
|
/// of clause. Subclasses may override this function to transform statements
|
|
/// using some other mechanism.
|
|
///
|
|
/// \returns the transformed OpenMP clause.
|
|
OMPClause *TransformOMPClause(OMPClause *S);
|
|
|
|
/// \brief Transform the given expression.
|
|
///
|
|
/// By default, this routine transforms an expression by delegating to the
|
|
/// appropriate TransformXXXExpr function to build a new expression.
|
|
/// Subclasses may override this function to transform expressions using some
|
|
/// other mechanism.
|
|
///
|
|
/// \returns the transformed expression.
|
|
ExprResult TransformExpr(Expr *E);
|
|
|
|
/// \brief Transform the given initializer.
|
|
///
|
|
/// By default, this routine transforms an initializer by stripping off the
|
|
/// semantic nodes added by initialization, then passing the result to
|
|
/// TransformExpr or TransformExprs.
|
|
///
|
|
/// \returns the transformed initializer.
|
|
ExprResult TransformInitializer(Expr *Init, bool CXXDirectInit);
|
|
|
|
/// \brief Transform the given list of expressions.
|
|
///
|
|
/// This routine transforms a list of expressions by invoking
|
|
/// \c TransformExpr() for each subexpression. However, it also provides
|
|
/// support for variadic templates by expanding any pack expansions (if the
|
|
/// derived class permits such expansion) along the way. When pack expansions
|
|
/// are present, the number of outputs may not equal the number of inputs.
|
|
///
|
|
/// \param Inputs The set of expressions to be transformed.
|
|
///
|
|
/// \param NumInputs The number of expressions in \c Inputs.
|
|
///
|
|
/// \param IsCall If \c true, then this transform is being performed on
|
|
/// function-call arguments, and any arguments that should be dropped, will
|
|
/// be.
|
|
///
|
|
/// \param Outputs The transformed input expressions will be added to this
|
|
/// vector.
|
|
///
|
|
/// \param ArgChanged If non-NULL, will be set \c true if any argument changed
|
|
/// due to transformation.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool TransformExprs(Expr **Inputs, unsigned NumInputs, bool IsCall,
|
|
SmallVectorImpl<Expr *> &Outputs,
|
|
bool *ArgChanged = 0);
|
|
|
|
/// \brief Transform the given declaration, which is referenced from a type
|
|
/// or expression.
|
|
///
|
|
/// By default, acts as the identity function on declarations, unless the
|
|
/// transformer has had to transform the declaration itself. Subclasses
|
|
/// may override this function to provide alternate behavior.
|
|
Decl *TransformDecl(SourceLocation Loc, Decl *D) {
|
|
llvm::DenseMap<Decl *, Decl *>::iterator Known
|
|
= TransformedLocalDecls.find(D);
|
|
if (Known != TransformedLocalDecls.end())
|
|
return Known->second;
|
|
|
|
return D;
|
|
}
|
|
|
|
/// \brief Transform the attributes associated with the given declaration and
|
|
/// place them on the new declaration.
|
|
///
|
|
/// By default, this operation does nothing. Subclasses may override this
|
|
/// behavior to transform attributes.
|
|
void transformAttrs(Decl *Old, Decl *New) { }
|
|
|
|
/// \brief Note that a local declaration has been transformed by this
|
|
/// transformer.
|
|
///
|
|
/// Local declarations are typically transformed via a call to
|
|
/// TransformDefinition. However, in some cases (e.g., lambda expressions),
|
|
/// the transformer itself has to transform the declarations. This routine
|
|
/// can be overridden by a subclass that keeps track of such mappings.
|
|
void transformedLocalDecl(Decl *Old, Decl *New) {
|
|
TransformedLocalDecls[Old] = New;
|
|
}
|
|
|
|
/// \brief Transform the definition of the given declaration.
|
|
///
|
|
/// By default, invokes TransformDecl() to transform the declaration.
|
|
/// Subclasses may override this function to provide alternate behavior.
|
|
Decl *TransformDefinition(SourceLocation Loc, Decl *D) {
|
|
return getDerived().TransformDecl(Loc, D);
|
|
}
|
|
|
|
/// \brief Transform the given declaration, which was the first part of a
|
|
/// nested-name-specifier in a member access expression.
|
|
///
|
|
/// This specific declaration transformation only applies to the first
|
|
/// identifier in a nested-name-specifier of a member access expression, e.g.,
|
|
/// the \c T in \c x->T::member
|
|
///
|
|
/// By default, invokes TransformDecl() to transform the declaration.
|
|
/// Subclasses may override this function to provide alternate behavior.
|
|
NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc) {
|
|
return cast_or_null<NamedDecl>(getDerived().TransformDecl(Loc, D));
|
|
}
|
|
|
|
/// \brief Transform the given nested-name-specifier with source-location
|
|
/// information.
|
|
///
|
|
/// By default, transforms all of the types and declarations within the
|
|
/// nested-name-specifier. Subclasses may override this function to provide
|
|
/// alternate behavior.
|
|
NestedNameSpecifierLoc TransformNestedNameSpecifierLoc(
|
|
NestedNameSpecifierLoc NNS,
|
|
QualType ObjectType = QualType(),
|
|
NamedDecl *FirstQualifierInScope = 0);
|
|
|
|
/// \brief Transform the given declaration name.
|
|
///
|
|
/// By default, transforms the types of conversion function, constructor,
|
|
/// and destructor names and then (if needed) rebuilds the declaration name.
|
|
/// Identifiers and selectors are returned unmodified. Sublcasses may
|
|
/// override this function to provide alternate behavior.
|
|
DeclarationNameInfo
|
|
TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo);
|
|
|
|
/// \brief Transform the given template name.
|
|
///
|
|
/// \param SS The nested-name-specifier that qualifies the template
|
|
/// name. This nested-name-specifier must already have been transformed.
|
|
///
|
|
/// \param Name The template name to transform.
|
|
///
|
|
/// \param NameLoc The source location of the template name.
|
|
///
|
|
/// \param ObjectType If we're translating a template name within a member
|
|
/// access expression, this is the type of the object whose member template
|
|
/// is being referenced.
|
|
///
|
|
/// \param FirstQualifierInScope If the first part of a nested-name-specifier
|
|
/// also refers to a name within the current (lexical) scope, this is the
|
|
/// declaration it refers to.
|
|
///
|
|
/// By default, transforms the template name by transforming the declarations
|
|
/// and nested-name-specifiers that occur within the template name.
|
|
/// Subclasses may override this function to provide alternate behavior.
|
|
TemplateName TransformTemplateName(CXXScopeSpec &SS,
|
|
TemplateName Name,
|
|
SourceLocation NameLoc,
|
|
QualType ObjectType = QualType(),
|
|
NamedDecl *FirstQualifierInScope = 0);
|
|
|
|
/// \brief Transform the given template argument.
|
|
///
|
|
/// By default, this operation transforms the type, expression, or
|
|
/// declaration stored within the template argument and constructs a
|
|
/// new template argument from the transformed result. Subclasses may
|
|
/// override this function to provide alternate behavior.
|
|
///
|
|
/// Returns true if there was an error.
|
|
bool TransformTemplateArgument(const TemplateArgumentLoc &Input,
|
|
TemplateArgumentLoc &Output);
|
|
|
|
/// \brief Transform the given set of template arguments.
|
|
///
|
|
/// By default, this operation transforms all of the template arguments
|
|
/// in the input set using \c TransformTemplateArgument(), and appends
|
|
/// the transformed arguments to the output list.
|
|
///
|
|
/// Note that this overload of \c TransformTemplateArguments() is merely
|
|
/// a convenience function. Subclasses that wish to override this behavior
|
|
/// should override the iterator-based member template version.
|
|
///
|
|
/// \param Inputs The set of template arguments to be transformed.
|
|
///
|
|
/// \param NumInputs The number of template arguments in \p Inputs.
|
|
///
|
|
/// \param Outputs The set of transformed template arguments output by this
|
|
/// routine.
|
|
///
|
|
/// Returns true if an error occurred.
|
|
bool TransformTemplateArguments(const TemplateArgumentLoc *Inputs,
|
|
unsigned NumInputs,
|
|
TemplateArgumentListInfo &Outputs) {
|
|
return TransformTemplateArguments(Inputs, Inputs + NumInputs, Outputs);
|
|
}
|
|
|
|
/// \brief Transform the given set of template arguments.
|
|
///
|
|
/// By default, this operation transforms all of the template arguments
|
|
/// in the input set using \c TransformTemplateArgument(), and appends
|
|
/// the transformed arguments to the output list.
|
|
///
|
|
/// \param First An iterator to the first template argument.
|
|
///
|
|
/// \param Last An iterator one step past the last template argument.
|
|
///
|
|
/// \param Outputs The set of transformed template arguments output by this
|
|
/// routine.
|
|
///
|
|
/// Returns true if an error occurred.
|
|
template<typename InputIterator>
|
|
bool TransformTemplateArguments(InputIterator First,
|
|
InputIterator Last,
|
|
TemplateArgumentListInfo &Outputs);
|
|
|
|
/// \brief Fakes up a TemplateArgumentLoc for a given TemplateArgument.
|
|
void InventTemplateArgumentLoc(const TemplateArgument &Arg,
|
|
TemplateArgumentLoc &ArgLoc);
|
|
|
|
/// \brief Fakes up a TypeSourceInfo for a type.
|
|
TypeSourceInfo *InventTypeSourceInfo(QualType T) {
|
|
return SemaRef.Context.getTrivialTypeSourceInfo(T,
|
|
getDerived().getBaseLocation());
|
|
}
|
|
|
|
#define ABSTRACT_TYPELOC(CLASS, PARENT)
|
|
#define TYPELOC(CLASS, PARENT) \
|
|
QualType Transform##CLASS##Type(TypeLocBuilder &TLB, CLASS##TypeLoc T);
|
|
#include "clang/AST/TypeLocNodes.def"
|
|
|
|
QualType TransformFunctionProtoType(TypeLocBuilder &TLB,
|
|
FunctionProtoTypeLoc TL,
|
|
CXXRecordDecl *ThisContext,
|
|
unsigned ThisTypeQuals);
|
|
|
|
StmtResult TransformSEHHandler(Stmt *Handler);
|
|
|
|
QualType
|
|
TransformTemplateSpecializationType(TypeLocBuilder &TLB,
|
|
TemplateSpecializationTypeLoc TL,
|
|
TemplateName Template);
|
|
|
|
QualType
|
|
TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
|
|
DependentTemplateSpecializationTypeLoc TL,
|
|
TemplateName Template,
|
|
CXXScopeSpec &SS);
|
|
|
|
QualType
|
|
TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
|
|
DependentTemplateSpecializationTypeLoc TL,
|
|
NestedNameSpecifierLoc QualifierLoc);
|
|
|
|
/// \brief Transforms the parameters of a function type into the
|
|
/// given vectors.
|
|
///
|
|
/// The result vectors should be kept in sync; null entries in the
|
|
/// variables vector are acceptable.
|
|
///
|
|
/// Return true on error.
|
|
bool TransformFunctionTypeParams(SourceLocation Loc,
|
|
ParmVarDecl **Params, unsigned NumParams,
|
|
const QualType *ParamTypes,
|
|
SmallVectorImpl<QualType> &PTypes,
|
|
SmallVectorImpl<ParmVarDecl*> *PVars);
|
|
|
|
/// \brief Transforms a single function-type parameter. Return null
|
|
/// on error.
|
|
///
|
|
/// \param indexAdjustment - A number to add to the parameter's
|
|
/// scope index; can be negative
|
|
ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm,
|
|
int indexAdjustment,
|
|
Optional<unsigned> NumExpansions,
|
|
bool ExpectParameterPack);
|
|
|
|
QualType TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL);
|
|
|
|
StmtResult TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr);
|
|
ExprResult TransformCXXNamedCastExpr(CXXNamedCastExpr *E);
|
|
|
|
/// \brief Transform the captures and body of a lambda expression.
|
|
ExprResult TransformLambdaScope(LambdaExpr *E, CXXMethodDecl *CallOperator);
|
|
|
|
TemplateParameterList *TransformTemplateParameterList(
|
|
TemplateParameterList *TPL) {
|
|
return TPL;
|
|
}
|
|
|
|
ExprResult TransformAddressOfOperand(Expr *E);
|
|
ExprResult TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E,
|
|
bool IsAddressOfOperand);
|
|
|
|
// FIXME: We use LLVM_ATTRIBUTE_NOINLINE because inlining causes a ridiculous
|
|
// amount of stack usage with clang.
|
|
#define STMT(Node, Parent) \
|
|
LLVM_ATTRIBUTE_NOINLINE \
|
|
StmtResult Transform##Node(Node *S);
|
|
#define EXPR(Node, Parent) \
|
|
LLVM_ATTRIBUTE_NOINLINE \
|
|
ExprResult Transform##Node(Node *E);
|
|
#define ABSTRACT_STMT(Stmt)
|
|
#include "clang/AST/StmtNodes.inc"
|
|
|
|
#define OPENMP_CLAUSE(Name, Class) \
|
|
LLVM_ATTRIBUTE_NOINLINE \
|
|
OMPClause *Transform ## Class(Class *S);
|
|
#include "clang/Basic/OpenMPKinds.def"
|
|
|
|
/// \brief Build a new pointer type given its pointee type.
|
|
///
|
|
/// By default, performs semantic analysis when building the pointer type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildPointerType(QualType PointeeType, SourceLocation Sigil);
|
|
|
|
/// \brief Build a new block pointer type given its pointee type.
|
|
///
|
|
/// By default, performs semantic analysis when building the block pointer
|
|
/// type. Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildBlockPointerType(QualType PointeeType, SourceLocation Sigil);
|
|
|
|
/// \brief Build a new reference type given the type it references.
|
|
///
|
|
/// By default, performs semantic analysis when building the
|
|
/// reference type. Subclasses may override this routine to provide
|
|
/// different behavior.
|
|
///
|
|
/// \param LValue whether the type was written with an lvalue sigil
|
|
/// or an rvalue sigil.
|
|
QualType RebuildReferenceType(QualType ReferentType,
|
|
bool LValue,
|
|
SourceLocation Sigil);
|
|
|
|
/// \brief Build a new member pointer type given the pointee type and the
|
|
/// class type it refers into.
|
|
///
|
|
/// By default, performs semantic analysis when building the member pointer
|
|
/// type. Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildMemberPointerType(QualType PointeeType, QualType ClassType,
|
|
SourceLocation Sigil);
|
|
|
|
/// \brief Build a new array type given the element type, size
|
|
/// modifier, size of the array (if known), size expression, and index type
|
|
/// qualifiers.
|
|
///
|
|
/// By default, performs semantic analysis when building the array type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
/// Also by default, all of the other Rebuild*Array
|
|
QualType RebuildArrayType(QualType ElementType,
|
|
ArrayType::ArraySizeModifier SizeMod,
|
|
const llvm::APInt *Size,
|
|
Expr *SizeExpr,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange BracketsRange);
|
|
|
|
/// \brief Build a new constant array type given the element type, size
|
|
/// modifier, (known) size of the array, and index type qualifiers.
|
|
///
|
|
/// By default, performs semantic analysis when building the array type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildConstantArrayType(QualType ElementType,
|
|
ArrayType::ArraySizeModifier SizeMod,
|
|
const llvm::APInt &Size,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange BracketsRange);
|
|
|
|
/// \brief Build a new incomplete array type given the element type, size
|
|
/// modifier, and index type qualifiers.
|
|
///
|
|
/// By default, performs semantic analysis when building the array type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildIncompleteArrayType(QualType ElementType,
|
|
ArrayType::ArraySizeModifier SizeMod,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange BracketsRange);
|
|
|
|
/// \brief Build a new variable-length array type given the element type,
|
|
/// size modifier, size expression, and index type qualifiers.
|
|
///
|
|
/// By default, performs semantic analysis when building the array type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildVariableArrayType(QualType ElementType,
|
|
ArrayType::ArraySizeModifier SizeMod,
|
|
Expr *SizeExpr,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange BracketsRange);
|
|
|
|
/// \brief Build a new dependent-sized array type given the element type,
|
|
/// size modifier, size expression, and index type qualifiers.
|
|
///
|
|
/// By default, performs semantic analysis when building the array type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildDependentSizedArrayType(QualType ElementType,
|
|
ArrayType::ArraySizeModifier SizeMod,
|
|
Expr *SizeExpr,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange BracketsRange);
|
|
|
|
/// \brief Build a new vector type given the element type and
|
|
/// number of elements.
|
|
///
|
|
/// By default, performs semantic analysis when building the vector type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildVectorType(QualType ElementType, unsigned NumElements,
|
|
VectorType::VectorKind VecKind);
|
|
|
|
/// \brief Build a new extended vector type given the element type and
|
|
/// number of elements.
|
|
///
|
|
/// By default, performs semantic analysis when building the vector type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildExtVectorType(QualType ElementType, unsigned NumElements,
|
|
SourceLocation AttributeLoc);
|
|
|
|
/// \brief Build a new potentially dependently-sized extended vector type
|
|
/// given the element type and number of elements.
|
|
///
|
|
/// By default, performs semantic analysis when building the vector type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildDependentSizedExtVectorType(QualType ElementType,
|
|
Expr *SizeExpr,
|
|
SourceLocation AttributeLoc);
|
|
|
|
/// \brief Build a new function type.
|
|
///
|
|
/// By default, performs semantic analysis when building the function type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildFunctionProtoType(QualType T,
|
|
llvm::MutableArrayRef<QualType> ParamTypes,
|
|
const FunctionProtoType::ExtProtoInfo &EPI);
|
|
|
|
/// \brief Build a new unprototyped function type.
|
|
QualType RebuildFunctionNoProtoType(QualType ResultType);
|
|
|
|
/// \brief Rebuild an unresolved typename type, given the decl that
|
|
/// the UnresolvedUsingTypenameDecl was transformed to.
|
|
QualType RebuildUnresolvedUsingType(Decl *D);
|
|
|
|
/// \brief Build a new typedef type.
|
|
QualType RebuildTypedefType(TypedefNameDecl *Typedef) {
|
|
return SemaRef.Context.getTypeDeclType(Typedef);
|
|
}
|
|
|
|
/// \brief Build a new class/struct/union type.
|
|
QualType RebuildRecordType(RecordDecl *Record) {
|
|
return SemaRef.Context.getTypeDeclType(Record);
|
|
}
|
|
|
|
/// \brief Build a new Enum type.
|
|
QualType RebuildEnumType(EnumDecl *Enum) {
|
|
return SemaRef.Context.getTypeDeclType(Enum);
|
|
}
|
|
|
|
/// \brief Build a new typeof(expr) type.
|
|
///
|
|
/// By default, performs semantic analysis when building the typeof type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildTypeOfExprType(Expr *Underlying, SourceLocation Loc);
|
|
|
|
/// \brief Build a new typeof(type) type.
|
|
///
|
|
/// By default, builds a new TypeOfType with the given underlying type.
|
|
QualType RebuildTypeOfType(QualType Underlying);
|
|
|
|
/// \brief Build a new unary transform type.
|
|
QualType RebuildUnaryTransformType(QualType BaseType,
|
|
UnaryTransformType::UTTKind UKind,
|
|
SourceLocation Loc);
|
|
|
|
/// \brief Build a new C++11 decltype type.
|
|
///
|
|
/// By default, performs semantic analysis when building the decltype type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildDecltypeType(Expr *Underlying, SourceLocation Loc);
|
|
|
|
/// \brief Build a new C++11 auto type.
|
|
///
|
|
/// By default, builds a new AutoType with the given deduced type.
|
|
QualType RebuildAutoType(QualType Deduced, bool IsDecltypeAuto) {
|
|
// Note, IsDependent is always false here: we implicitly convert an 'auto'
|
|
// which has been deduced to a dependent type into an undeduced 'auto', so
|
|
// that we'll retry deduction after the transformation.
|
|
return SemaRef.Context.getAutoType(Deduced, IsDecltypeAuto,
|
|
/*IsDependent*/ false);
|
|
}
|
|
|
|
/// \brief Build a new template specialization type.
|
|
///
|
|
/// By default, performs semantic analysis when building the template
|
|
/// specialization type. Subclasses may override this routine to provide
|
|
/// different behavior.
|
|
QualType RebuildTemplateSpecializationType(TemplateName Template,
|
|
SourceLocation TemplateLoc,
|
|
TemplateArgumentListInfo &Args);
|
|
|
|
/// \brief Build a new parenthesized type.
|
|
///
|
|
/// By default, builds a new ParenType type from the inner type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildParenType(QualType InnerType) {
|
|
return SemaRef.Context.getParenType(InnerType);
|
|
}
|
|
|
|
/// \brief Build a new qualified name type.
|
|
///
|
|
/// By default, builds a new ElaboratedType type from the keyword,
|
|
/// the nested-name-specifier and the named type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildElaboratedType(SourceLocation KeywordLoc,
|
|
ElaboratedTypeKeyword Keyword,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
QualType Named) {
|
|
return SemaRef.Context.getElaboratedType(Keyword,
|
|
QualifierLoc.getNestedNameSpecifier(),
|
|
Named);
|
|
}
|
|
|
|
/// \brief Build a new typename type that refers to a template-id.
|
|
///
|
|
/// By default, builds a new DependentNameType type from the
|
|
/// nested-name-specifier and the given type. Subclasses may override
|
|
/// this routine to provide different behavior.
|
|
QualType RebuildDependentTemplateSpecializationType(
|
|
ElaboratedTypeKeyword Keyword,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
const IdentifierInfo *Name,
|
|
SourceLocation NameLoc,
|
|
TemplateArgumentListInfo &Args) {
|
|
// Rebuild the template name.
|
|
// TODO: avoid TemplateName abstraction
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(QualifierLoc);
|
|
TemplateName InstName
|
|
= getDerived().RebuildTemplateName(SS, *Name, NameLoc, QualType(), 0);
|
|
|
|
if (InstName.isNull())
|
|
return QualType();
|
|
|
|
// If it's still dependent, make a dependent specialization.
|
|
if (InstName.getAsDependentTemplateName())
|
|
return SemaRef.Context.getDependentTemplateSpecializationType(Keyword,
|
|
QualifierLoc.getNestedNameSpecifier(),
|
|
Name,
|
|
Args);
|
|
|
|
// Otherwise, make an elaborated type wrapping a non-dependent
|
|
// specialization.
|
|
QualType T =
|
|
getDerived().RebuildTemplateSpecializationType(InstName, NameLoc, Args);
|
|
if (T.isNull()) return QualType();
|
|
|
|
if (Keyword == ETK_None && QualifierLoc.getNestedNameSpecifier() == 0)
|
|
return T;
|
|
|
|
return SemaRef.Context.getElaboratedType(Keyword,
|
|
QualifierLoc.getNestedNameSpecifier(),
|
|
T);
|
|
}
|
|
|
|
/// \brief Build a new typename type that refers to an identifier.
|
|
///
|
|
/// By default, performs semantic analysis when building the typename type
|
|
/// (or elaborated type). Subclasses may override this routine to provide
|
|
/// different behavior.
|
|
QualType RebuildDependentNameType(ElaboratedTypeKeyword Keyword,
|
|
SourceLocation KeywordLoc,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
const IdentifierInfo *Id,
|
|
SourceLocation IdLoc) {
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(QualifierLoc);
|
|
|
|
if (QualifierLoc.getNestedNameSpecifier()->isDependent()) {
|
|
// If the name is still dependent, just build a new dependent name type.
|
|
if (!SemaRef.computeDeclContext(SS))
|
|
return SemaRef.Context.getDependentNameType(Keyword,
|
|
QualifierLoc.getNestedNameSpecifier(),
|
|
Id);
|
|
}
|
|
|
|
if (Keyword == ETK_None || Keyword == ETK_Typename)
|
|
return SemaRef.CheckTypenameType(Keyword, KeywordLoc, QualifierLoc,
|
|
*Id, IdLoc);
|
|
|
|
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword);
|
|
|
|
// We had a dependent elaborated-type-specifier that has been transformed
|
|
// into a non-dependent elaborated-type-specifier. Find the tag we're
|
|
// referring to.
|
|
LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
|
|
DeclContext *DC = SemaRef.computeDeclContext(SS, false);
|
|
if (!DC)
|
|
return QualType();
|
|
|
|
if (SemaRef.RequireCompleteDeclContext(SS, DC))
|
|
return QualType();
|
|
|
|
TagDecl *Tag = 0;
|
|
SemaRef.LookupQualifiedName(Result, DC);
|
|
switch (Result.getResultKind()) {
|
|
case LookupResult::NotFound:
|
|
case LookupResult::NotFoundInCurrentInstantiation:
|
|
break;
|
|
|
|
case LookupResult::Found:
|
|
Tag = Result.getAsSingle<TagDecl>();
|
|
break;
|
|
|
|
case LookupResult::FoundOverloaded:
|
|
case LookupResult::FoundUnresolvedValue:
|
|
llvm_unreachable("Tag lookup cannot find non-tags");
|
|
|
|
case LookupResult::Ambiguous:
|
|
// Let the LookupResult structure handle ambiguities.
|
|
return QualType();
|
|
}
|
|
|
|
if (!Tag) {
|
|
// Check where the name exists but isn't a tag type and use that to emit
|
|
// better diagnostics.
|
|
LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
|
|
SemaRef.LookupQualifiedName(Result, DC);
|
|
switch (Result.getResultKind()) {
|
|
case LookupResult::Found:
|
|
case LookupResult::FoundOverloaded:
|
|
case LookupResult::FoundUnresolvedValue: {
|
|
NamedDecl *SomeDecl = Result.getRepresentativeDecl();
|
|
unsigned Kind = 0;
|
|
if (isa<TypedefDecl>(SomeDecl)) Kind = 1;
|
|
else if (isa<TypeAliasDecl>(SomeDecl)) Kind = 2;
|
|
else if (isa<ClassTemplateDecl>(SomeDecl)) Kind = 3;
|
|
SemaRef.Diag(IdLoc, diag::err_tag_reference_non_tag) << Kind;
|
|
SemaRef.Diag(SomeDecl->getLocation(), diag::note_declared_at);
|
|
break;
|
|
}
|
|
default:
|
|
// FIXME: Would be nice to highlight just the source range.
|
|
SemaRef.Diag(IdLoc, diag::err_not_tag_in_scope)
|
|
<< Kind << Id << DC;
|
|
break;
|
|
}
|
|
return QualType();
|
|
}
|
|
|
|
if (!SemaRef.isAcceptableTagRedeclaration(Tag, Kind, /*isDefinition*/false,
|
|
IdLoc, *Id)) {
|
|
SemaRef.Diag(KeywordLoc, diag::err_use_with_wrong_tag) << Id;
|
|
SemaRef.Diag(Tag->getLocation(), diag::note_previous_use);
|
|
return QualType();
|
|
}
|
|
|
|
// Build the elaborated-type-specifier type.
|
|
QualType T = SemaRef.Context.getTypeDeclType(Tag);
|
|
return SemaRef.Context.getElaboratedType(Keyword,
|
|
QualifierLoc.getNestedNameSpecifier(),
|
|
T);
|
|
}
|
|
|
|
/// \brief Build a new pack expansion type.
|
|
///
|
|
/// By default, builds a new PackExpansionType type from the given pattern.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildPackExpansionType(QualType Pattern,
|
|
SourceRange PatternRange,
|
|
SourceLocation EllipsisLoc,
|
|
Optional<unsigned> NumExpansions) {
|
|
return getSema().CheckPackExpansion(Pattern, PatternRange, EllipsisLoc,
|
|
NumExpansions);
|
|
}
|
|
|
|
/// \brief Build a new atomic type given its value type.
|
|
///
|
|
/// By default, performs semantic analysis when building the atomic type.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
QualType RebuildAtomicType(QualType ValueType, SourceLocation KWLoc);
|
|
|
|
/// \brief Build a new template name given a nested name specifier, a flag
|
|
/// indicating whether the "template" keyword was provided, and the template
|
|
/// that the template name refers to.
|
|
///
|
|
/// By default, builds the new template name directly. Subclasses may override
|
|
/// this routine to provide different behavior.
|
|
TemplateName RebuildTemplateName(CXXScopeSpec &SS,
|
|
bool TemplateKW,
|
|
TemplateDecl *Template);
|
|
|
|
/// \brief Build a new template name given a nested name specifier and the
|
|
/// name that is referred to as a template.
|
|
///
|
|
/// By default, performs semantic analysis to determine whether the name can
|
|
/// be resolved to a specific template, then builds the appropriate kind of
|
|
/// template name. Subclasses may override this routine to provide different
|
|
/// behavior.
|
|
TemplateName RebuildTemplateName(CXXScopeSpec &SS,
|
|
const IdentifierInfo &Name,
|
|
SourceLocation NameLoc,
|
|
QualType ObjectType,
|
|
NamedDecl *FirstQualifierInScope);
|
|
|
|
/// \brief Build a new template name given a nested name specifier and the
|
|
/// overloaded operator name that is referred to as a template.
|
|
///
|
|
/// By default, performs semantic analysis to determine whether the name can
|
|
/// be resolved to a specific template, then builds the appropriate kind of
|
|
/// template name. Subclasses may override this routine to provide different
|
|
/// behavior.
|
|
TemplateName RebuildTemplateName(CXXScopeSpec &SS,
|
|
OverloadedOperatorKind Operator,
|
|
SourceLocation NameLoc,
|
|
QualType ObjectType);
|
|
|
|
/// \brief Build a new template name given a template template parameter pack
|
|
/// and the
|
|
///
|
|
/// By default, performs semantic analysis to determine whether the name can
|
|
/// be resolved to a specific template, then builds the appropriate kind of
|
|
/// template name. Subclasses may override this routine to provide different
|
|
/// behavior.
|
|
TemplateName RebuildTemplateName(TemplateTemplateParmDecl *Param,
|
|
const TemplateArgument &ArgPack) {
|
|
return getSema().Context.getSubstTemplateTemplateParmPack(Param, ArgPack);
|
|
}
|
|
|
|
/// \brief Build a new compound statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildCompoundStmt(SourceLocation LBraceLoc,
|
|
MultiStmtArg Statements,
|
|
SourceLocation RBraceLoc,
|
|
bool IsStmtExpr) {
|
|
return getSema().ActOnCompoundStmt(LBraceLoc, RBraceLoc, Statements,
|
|
IsStmtExpr);
|
|
}
|
|
|
|
/// \brief Build a new case statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildCaseStmt(SourceLocation CaseLoc,
|
|
Expr *LHS,
|
|
SourceLocation EllipsisLoc,
|
|
Expr *RHS,
|
|
SourceLocation ColonLoc) {
|
|
return getSema().ActOnCaseStmt(CaseLoc, LHS, EllipsisLoc, RHS,
|
|
ColonLoc);
|
|
}
|
|
|
|
/// \brief Attach the body to a new case statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildCaseStmtBody(Stmt *S, Stmt *Body) {
|
|
getSema().ActOnCaseStmtBody(S, Body);
|
|
return S;
|
|
}
|
|
|
|
/// \brief Build a new default statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildDefaultStmt(SourceLocation DefaultLoc,
|
|
SourceLocation ColonLoc,
|
|
Stmt *SubStmt) {
|
|
return getSema().ActOnDefaultStmt(DefaultLoc, ColonLoc, SubStmt,
|
|
/*CurScope=*/0);
|
|
}
|
|
|
|
/// \brief Build a new label statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildLabelStmt(SourceLocation IdentLoc, LabelDecl *L,
|
|
SourceLocation ColonLoc, Stmt *SubStmt) {
|
|
return SemaRef.ActOnLabelStmt(IdentLoc, L, ColonLoc, SubStmt);
|
|
}
|
|
|
|
/// \brief Build a new label statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildAttributedStmt(SourceLocation AttrLoc,
|
|
ArrayRef<const Attr*> Attrs,
|
|
Stmt *SubStmt) {
|
|
return SemaRef.ActOnAttributedStmt(AttrLoc, Attrs, SubStmt);
|
|
}
|
|
|
|
/// \brief Build a new "if" statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildIfStmt(SourceLocation IfLoc, Sema::FullExprArg Cond,
|
|
VarDecl *CondVar, Stmt *Then,
|
|
SourceLocation ElseLoc, Stmt *Else) {
|
|
return getSema().ActOnIfStmt(IfLoc, Cond, CondVar, Then, ElseLoc, Else);
|
|
}
|
|
|
|
/// \brief Start building a new switch statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildSwitchStmtStart(SourceLocation SwitchLoc,
|
|
Expr *Cond, VarDecl *CondVar) {
|
|
return getSema().ActOnStartOfSwitchStmt(SwitchLoc, Cond,
|
|
CondVar);
|
|
}
|
|
|
|
/// \brief Attach the body to the switch statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildSwitchStmtBody(SourceLocation SwitchLoc,
|
|
Stmt *Switch, Stmt *Body) {
|
|
return getSema().ActOnFinishSwitchStmt(SwitchLoc, Switch, Body);
|
|
}
|
|
|
|
/// \brief Build a new while statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildWhileStmt(SourceLocation WhileLoc, Sema::FullExprArg Cond,
|
|
VarDecl *CondVar, Stmt *Body) {
|
|
return getSema().ActOnWhileStmt(WhileLoc, Cond, CondVar, Body);
|
|
}
|
|
|
|
/// \brief Build a new do-while statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildDoStmt(SourceLocation DoLoc, Stmt *Body,
|
|
SourceLocation WhileLoc, SourceLocation LParenLoc,
|
|
Expr *Cond, SourceLocation RParenLoc) {
|
|
return getSema().ActOnDoStmt(DoLoc, Body, WhileLoc, LParenLoc,
|
|
Cond, RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new for statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
|
|
Stmt *Init, Sema::FullExprArg Cond,
|
|
VarDecl *CondVar, Sema::FullExprArg Inc,
|
|
SourceLocation RParenLoc, Stmt *Body) {
|
|
return getSema().ActOnForStmt(ForLoc, LParenLoc, Init, Cond,
|
|
CondVar, Inc, RParenLoc, Body);
|
|
}
|
|
|
|
/// \brief Build a new goto statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
|
|
LabelDecl *Label) {
|
|
return getSema().ActOnGotoStmt(GotoLoc, LabelLoc, Label);
|
|
}
|
|
|
|
/// \brief Build a new indirect goto statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildIndirectGotoStmt(SourceLocation GotoLoc,
|
|
SourceLocation StarLoc,
|
|
Expr *Target) {
|
|
return getSema().ActOnIndirectGotoStmt(GotoLoc, StarLoc, Target);
|
|
}
|
|
|
|
/// \brief Build a new return statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildReturnStmt(SourceLocation ReturnLoc, Expr *Result) {
|
|
return getSema().ActOnReturnStmt(ReturnLoc, Result);
|
|
}
|
|
|
|
/// \brief Build a new declaration statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildDeclStmt(llvm::MutableArrayRef<Decl *> Decls,
|
|
SourceLocation StartLoc, SourceLocation EndLoc) {
|
|
Sema::DeclGroupPtrTy DG = getSema().BuildDeclaratorGroup(Decls);
|
|
return getSema().ActOnDeclStmt(DG, StartLoc, EndLoc);
|
|
}
|
|
|
|
/// \brief Build a new inline asm statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
|
|
bool IsVolatile, unsigned NumOutputs,
|
|
unsigned NumInputs, IdentifierInfo **Names,
|
|
MultiExprArg Constraints, MultiExprArg Exprs,
|
|
Expr *AsmString, MultiExprArg Clobbers,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().ActOnGCCAsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs,
|
|
NumInputs, Names, Constraints, Exprs,
|
|
AsmString, Clobbers, RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new MS style inline asm statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
|
|
ArrayRef<Token> AsmToks,
|
|
StringRef AsmString,
|
|
unsigned NumOutputs, unsigned NumInputs,
|
|
ArrayRef<StringRef> Constraints,
|
|
ArrayRef<StringRef> Clobbers,
|
|
ArrayRef<Expr*> Exprs,
|
|
SourceLocation EndLoc) {
|
|
return getSema().ActOnMSAsmStmt(AsmLoc, LBraceLoc, AsmToks, AsmString,
|
|
NumOutputs, NumInputs,
|
|
Constraints, Clobbers, Exprs, EndLoc);
|
|
}
|
|
|
|
/// \brief Build a new Objective-C \@try statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildObjCAtTryStmt(SourceLocation AtLoc,
|
|
Stmt *TryBody,
|
|
MultiStmtArg CatchStmts,
|
|
Stmt *Finally) {
|
|
return getSema().ActOnObjCAtTryStmt(AtLoc, TryBody, CatchStmts,
|
|
Finally);
|
|
}
|
|
|
|
/// \brief Rebuild an Objective-C exception declaration.
|
|
///
|
|
/// By default, performs semantic analysis to build the new declaration.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl,
|
|
TypeSourceInfo *TInfo, QualType T) {
|
|
return getSema().BuildObjCExceptionDecl(TInfo, T,
|
|
ExceptionDecl->getInnerLocStart(),
|
|
ExceptionDecl->getLocation(),
|
|
ExceptionDecl->getIdentifier());
|
|
}
|
|
|
|
/// \brief Build a new Objective-C \@catch statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildObjCAtCatchStmt(SourceLocation AtLoc,
|
|
SourceLocation RParenLoc,
|
|
VarDecl *Var,
|
|
Stmt *Body) {
|
|
return getSema().ActOnObjCAtCatchStmt(AtLoc, RParenLoc,
|
|
Var, Body);
|
|
}
|
|
|
|
/// \brief Build a new Objective-C \@finally statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildObjCAtFinallyStmt(SourceLocation AtLoc,
|
|
Stmt *Body) {
|
|
return getSema().ActOnObjCAtFinallyStmt(AtLoc, Body);
|
|
}
|
|
|
|
/// \brief Build a new Objective-C \@throw statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildObjCAtThrowStmt(SourceLocation AtLoc,
|
|
Expr *Operand) {
|
|
return getSema().BuildObjCAtThrowStmt(AtLoc, Operand);
|
|
}
|
|
|
|
/// \brief Build a new OpenMP parallel directive.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildOMPParallelDirective(ArrayRef<OMPClause *> Clauses,
|
|
Stmt *AStmt,
|
|
SourceLocation StartLoc,
|
|
SourceLocation EndLoc) {
|
|
return getSema().ActOnOpenMPParallelDirective(Clauses, AStmt,
|
|
StartLoc, EndLoc);
|
|
}
|
|
|
|
/// \brief Build a new OpenMP 'default' clause.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OMPClause *RebuildOMPDefaultClause(OpenMPDefaultClauseKind Kind,
|
|
SourceLocation KindKwLoc,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc) {
|
|
return getSema().ActOnOpenMPDefaultClause(Kind, KindKwLoc,
|
|
StartLoc, LParenLoc, EndLoc);
|
|
}
|
|
|
|
/// \brief Build a new OpenMP 'private' clause.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OMPClause *RebuildOMPPrivateClause(ArrayRef<Expr *> VarList,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc) {
|
|
return getSema().ActOnOpenMPPrivateClause(VarList, StartLoc, LParenLoc,
|
|
EndLoc);
|
|
}
|
|
|
|
/// \brief Build a new OpenMP 'firstprivate' clause.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
OMPClause *RebuildOMPFirstprivateClause(ArrayRef<Expr *> VarList,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc) {
|
|
return getSema().ActOnOpenMPFirstprivateClause(VarList, StartLoc, LParenLoc,
|
|
EndLoc);
|
|
}
|
|
|
|
OMPClause *RebuildOMPSharedClause(ArrayRef<Expr *> VarList,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc) {
|
|
return getSema().ActOnOpenMPSharedClause(VarList, StartLoc, LParenLoc,
|
|
EndLoc);
|
|
}
|
|
|
|
/// \brief Rebuild the operand to an Objective-C \@synchronized statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildObjCAtSynchronizedOperand(SourceLocation atLoc,
|
|
Expr *object) {
|
|
return getSema().ActOnObjCAtSynchronizedOperand(atLoc, object);
|
|
}
|
|
|
|
/// \brief Build a new Objective-C \@synchronized statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc,
|
|
Expr *Object, Stmt *Body) {
|
|
return getSema().ActOnObjCAtSynchronizedStmt(AtLoc, Object, Body);
|
|
}
|
|
|
|
/// \brief Build a new Objective-C \@autoreleasepool statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc,
|
|
Stmt *Body) {
|
|
return getSema().ActOnObjCAutoreleasePoolStmt(AtLoc, Body);
|
|
}
|
|
|
|
/// \brief Build a new Objective-C fast enumeration statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildObjCForCollectionStmt(SourceLocation ForLoc,
|
|
Stmt *Element,
|
|
Expr *Collection,
|
|
SourceLocation RParenLoc,
|
|
Stmt *Body) {
|
|
StmtResult ForEachStmt = getSema().ActOnObjCForCollectionStmt(ForLoc,
|
|
Element,
|
|
Collection,
|
|
RParenLoc);
|
|
if (ForEachStmt.isInvalid())
|
|
return StmtError();
|
|
|
|
return getSema().FinishObjCForCollectionStmt(ForEachStmt.take(), Body);
|
|
}
|
|
|
|
/// \brief Build a new C++ exception declaration.
|
|
///
|
|
/// By default, performs semantic analysis to build the new decaration.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl,
|
|
TypeSourceInfo *Declarator,
|
|
SourceLocation StartLoc,
|
|
SourceLocation IdLoc,
|
|
IdentifierInfo *Id) {
|
|
VarDecl *Var = getSema().BuildExceptionDeclaration(0, Declarator,
|
|
StartLoc, IdLoc, Id);
|
|
if (Var)
|
|
getSema().CurContext->addDecl(Var);
|
|
return Var;
|
|
}
|
|
|
|
/// \brief Build a new C++ catch statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildCXXCatchStmt(SourceLocation CatchLoc,
|
|
VarDecl *ExceptionDecl,
|
|
Stmt *Handler) {
|
|
return Owned(new (getSema().Context) CXXCatchStmt(CatchLoc, ExceptionDecl,
|
|
Handler));
|
|
}
|
|
|
|
/// \brief Build a new C++ try statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildCXXTryStmt(SourceLocation TryLoc, Stmt *TryBlock,
|
|
ArrayRef<Stmt *> Handlers) {
|
|
return getSema().ActOnCXXTryBlock(TryLoc, TryBlock, Handlers);
|
|
}
|
|
|
|
/// \brief Build a new C++0x range-based for statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildCXXForRangeStmt(SourceLocation ForLoc,
|
|
SourceLocation ColonLoc,
|
|
Stmt *Range, Stmt *BeginEnd,
|
|
Expr *Cond, Expr *Inc,
|
|
Stmt *LoopVar,
|
|
SourceLocation RParenLoc) {
|
|
// If we've just learned that the range is actually an Objective-C
|
|
// collection, treat this as an Objective-C fast enumeration loop.
|
|
if (DeclStmt *RangeStmt = dyn_cast<DeclStmt>(Range)) {
|
|
if (RangeStmt->isSingleDecl()) {
|
|
if (VarDecl *RangeVar = dyn_cast<VarDecl>(RangeStmt->getSingleDecl())) {
|
|
if (RangeVar->isInvalidDecl())
|
|
return StmtError();
|
|
|
|
Expr *RangeExpr = RangeVar->getInit();
|
|
if (!RangeExpr->isTypeDependent() &&
|
|
RangeExpr->getType()->isObjCObjectPointerType())
|
|
return getSema().ActOnObjCForCollectionStmt(ForLoc, LoopVar, RangeExpr,
|
|
RParenLoc);
|
|
}
|
|
}
|
|
}
|
|
|
|
return getSema().BuildCXXForRangeStmt(ForLoc, ColonLoc, Range, BeginEnd,
|
|
Cond, Inc, LoopVar, RParenLoc,
|
|
Sema::BFRK_Rebuild);
|
|
}
|
|
|
|
/// \brief Build a new C++0x range-based for statement.
|
|
///
|
|
/// By default, performs semantic analysis to build the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult RebuildMSDependentExistsStmt(SourceLocation KeywordLoc,
|
|
bool IsIfExists,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
DeclarationNameInfo NameInfo,
|
|
Stmt *Nested) {
|
|
return getSema().BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
|
|
QualifierLoc, NameInfo, Nested);
|
|
}
|
|
|
|
/// \brief Attach body to a C++0x range-based for statement.
|
|
///
|
|
/// By default, performs semantic analysis to finish the new statement.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body) {
|
|
return getSema().FinishCXXForRangeStmt(ForRange, Body);
|
|
}
|
|
|
|
StmtResult RebuildSEHTryStmt(bool IsCXXTry, SourceLocation TryLoc,
|
|
Stmt *TryBlock, Stmt *Handler) {
|
|
return getSema().ActOnSEHTryBlock(IsCXXTry, TryLoc, TryBlock, Handler);
|
|
}
|
|
|
|
StmtResult RebuildSEHExceptStmt(SourceLocation Loc, Expr *FilterExpr,
|
|
Stmt *Block) {
|
|
return getSema().ActOnSEHExceptBlock(Loc, FilterExpr, Block);
|
|
}
|
|
|
|
StmtResult RebuildSEHFinallyStmt(SourceLocation Loc, Stmt *Block) {
|
|
return getSema().ActOnSEHFinallyBlock(Loc, Block);
|
|
}
|
|
|
|
/// \brief Build a new expression that references a declaration.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildDeclarationNameExpr(const CXXScopeSpec &SS,
|
|
LookupResult &R,
|
|
bool RequiresADL) {
|
|
return getSema().BuildDeclarationNameExpr(SS, R, RequiresADL);
|
|
}
|
|
|
|
|
|
/// \brief Build a new expression that references a declaration.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
|
|
ValueDecl *VD,
|
|
const DeclarationNameInfo &NameInfo,
|
|
TemplateArgumentListInfo *TemplateArgs) {
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(QualifierLoc);
|
|
|
|
// FIXME: loses template args.
|
|
|
|
return getSema().BuildDeclarationNameExpr(SS, NameInfo, VD);
|
|
}
|
|
|
|
/// \brief Build a new expression in parentheses.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildParenExpr(Expr *SubExpr, SourceLocation LParen,
|
|
SourceLocation RParen) {
|
|
return getSema().ActOnParenExpr(LParen, RParen, SubExpr);
|
|
}
|
|
|
|
/// \brief Build a new pseudo-destructor expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCXXPseudoDestructorExpr(Expr *Base,
|
|
SourceLocation OperatorLoc,
|
|
bool isArrow,
|
|
CXXScopeSpec &SS,
|
|
TypeSourceInfo *ScopeType,
|
|
SourceLocation CCLoc,
|
|
SourceLocation TildeLoc,
|
|
PseudoDestructorTypeStorage Destroyed);
|
|
|
|
/// \brief Build a new unary operator expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildUnaryOperator(SourceLocation OpLoc,
|
|
UnaryOperatorKind Opc,
|
|
Expr *SubExpr) {
|
|
return getSema().BuildUnaryOp(/*Scope=*/0, OpLoc, Opc, SubExpr);
|
|
}
|
|
|
|
/// \brief Build a new builtin offsetof expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildOffsetOfExpr(SourceLocation OperatorLoc,
|
|
TypeSourceInfo *Type,
|
|
Sema::OffsetOfComponent *Components,
|
|
unsigned NumComponents,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildBuiltinOffsetOf(OperatorLoc, Type, Components,
|
|
NumComponents, RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new sizeof, alignof or vec_step expression with a
|
|
/// type argument.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildUnaryExprOrTypeTrait(TypeSourceInfo *TInfo,
|
|
SourceLocation OpLoc,
|
|
UnaryExprOrTypeTrait ExprKind,
|
|
SourceRange R) {
|
|
return getSema().CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, R);
|
|
}
|
|
|
|
/// \brief Build a new sizeof, alignof or vec step expression with an
|
|
/// expression argument.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildUnaryExprOrTypeTrait(Expr *SubExpr, SourceLocation OpLoc,
|
|
UnaryExprOrTypeTrait ExprKind,
|
|
SourceRange R) {
|
|
ExprResult Result
|
|
= getSema().CreateUnaryExprOrTypeTraitExpr(SubExpr, OpLoc, ExprKind);
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// \brief Build a new array subscript expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildArraySubscriptExpr(Expr *LHS,
|
|
SourceLocation LBracketLoc,
|
|
Expr *RHS,
|
|
SourceLocation RBracketLoc) {
|
|
return getSema().ActOnArraySubscriptExpr(/*Scope=*/0, LHS,
|
|
LBracketLoc, RHS,
|
|
RBracketLoc);
|
|
}
|
|
|
|
/// \brief Build a new call expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
|
|
MultiExprArg Args,
|
|
SourceLocation RParenLoc,
|
|
Expr *ExecConfig = 0) {
|
|
return getSema().ActOnCallExpr(/*Scope=*/0, Callee, LParenLoc,
|
|
Args, RParenLoc, ExecConfig);
|
|
}
|
|
|
|
/// \brief Build a new member access expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildMemberExpr(Expr *Base, SourceLocation OpLoc,
|
|
bool isArrow,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &MemberNameInfo,
|
|
ValueDecl *Member,
|
|
NamedDecl *FoundDecl,
|
|
const TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
NamedDecl *FirstQualifierInScope) {
|
|
ExprResult BaseResult = getSema().PerformMemberExprBaseConversion(Base,
|
|
isArrow);
|
|
if (!Member->getDeclName()) {
|
|
// We have a reference to an unnamed field. This is always the
|
|
// base of an anonymous struct/union member access, i.e. the
|
|
// field is always of record type.
|
|
assert(!QualifierLoc && "Can't have an unnamed field with a qualifier!");
|
|
assert(Member->getType()->isRecordType() &&
|
|
"unnamed member not of record type?");
|
|
|
|
BaseResult =
|
|
getSema().PerformObjectMemberConversion(BaseResult.take(),
|
|
QualifierLoc.getNestedNameSpecifier(),
|
|
FoundDecl, Member);
|
|
if (BaseResult.isInvalid())
|
|
return ExprError();
|
|
Base = BaseResult.take();
|
|
ExprValueKind VK = isArrow ? VK_LValue : Base->getValueKind();
|
|
MemberExpr *ME =
|
|
new (getSema().Context) MemberExpr(Base, isArrow,
|
|
Member, MemberNameInfo,
|
|
cast<FieldDecl>(Member)->getType(),
|
|
VK, OK_Ordinary);
|
|
return getSema().Owned(ME);
|
|
}
|
|
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(QualifierLoc);
|
|
|
|
Base = BaseResult.take();
|
|
QualType BaseType = Base->getType();
|
|
|
|
// FIXME: this involves duplicating earlier analysis in a lot of
|
|
// cases; we should avoid this when possible.
|
|
LookupResult R(getSema(), MemberNameInfo, Sema::LookupMemberName);
|
|
R.addDecl(FoundDecl);
|
|
R.resolveKind();
|
|
|
|
return getSema().BuildMemberReferenceExpr(Base, BaseType, OpLoc, isArrow,
|
|
SS, TemplateKWLoc,
|
|
FirstQualifierInScope,
|
|
R, ExplicitTemplateArgs);
|
|
}
|
|
|
|
/// \brief Build a new binary operator expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildBinaryOperator(SourceLocation OpLoc,
|
|
BinaryOperatorKind Opc,
|
|
Expr *LHS, Expr *RHS) {
|
|
return getSema().BuildBinOp(/*Scope=*/0, OpLoc, Opc, LHS, RHS);
|
|
}
|
|
|
|
/// \brief Build a new conditional operator expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildConditionalOperator(Expr *Cond,
|
|
SourceLocation QuestionLoc,
|
|
Expr *LHS,
|
|
SourceLocation ColonLoc,
|
|
Expr *RHS) {
|
|
return getSema().ActOnConditionalOp(QuestionLoc, ColonLoc, Cond,
|
|
LHS, RHS);
|
|
}
|
|
|
|
/// \brief Build a new C-style cast expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCStyleCastExpr(SourceLocation LParenLoc,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation RParenLoc,
|
|
Expr *SubExpr) {
|
|
return getSema().BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc,
|
|
SubExpr);
|
|
}
|
|
|
|
/// \brief Build a new compound literal expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCompoundLiteralExpr(SourceLocation LParenLoc,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation RParenLoc,
|
|
Expr *Init) {
|
|
return getSema().BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc,
|
|
Init);
|
|
}
|
|
|
|
/// \brief Build a new extended vector element access expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildExtVectorElementExpr(Expr *Base,
|
|
SourceLocation OpLoc,
|
|
SourceLocation AccessorLoc,
|
|
IdentifierInfo &Accessor) {
|
|
|
|
CXXScopeSpec SS;
|
|
DeclarationNameInfo NameInfo(&Accessor, AccessorLoc);
|
|
return getSema().BuildMemberReferenceExpr(Base, Base->getType(),
|
|
OpLoc, /*IsArrow*/ false,
|
|
SS, SourceLocation(),
|
|
/*FirstQualifierInScope*/ 0,
|
|
NameInfo,
|
|
/* TemplateArgs */ 0);
|
|
}
|
|
|
|
/// \brief Build a new initializer list expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildInitList(SourceLocation LBraceLoc,
|
|
MultiExprArg Inits,
|
|
SourceLocation RBraceLoc,
|
|
QualType ResultTy) {
|
|
ExprResult Result
|
|
= SemaRef.ActOnInitList(LBraceLoc, Inits, RBraceLoc);
|
|
if (Result.isInvalid() || ResultTy->isDependentType())
|
|
return Result;
|
|
|
|
// Patch in the result type we were given, which may have been computed
|
|
// when the initial InitListExpr was built.
|
|
InitListExpr *ILE = cast<InitListExpr>((Expr *)Result.get());
|
|
ILE->setType(ResultTy);
|
|
return Result;
|
|
}
|
|
|
|
/// \brief Build a new designated initializer expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildDesignatedInitExpr(Designation &Desig,
|
|
MultiExprArg ArrayExprs,
|
|
SourceLocation EqualOrColonLoc,
|
|
bool GNUSyntax,
|
|
Expr *Init) {
|
|
ExprResult Result
|
|
= SemaRef.ActOnDesignatedInitializer(Desig, EqualOrColonLoc, GNUSyntax,
|
|
Init);
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// \brief Build a new value-initialized expression.
|
|
///
|
|
/// By default, builds the implicit value initialization without performing
|
|
/// any semantic analysis. Subclasses may override this routine to provide
|
|
/// different behavior.
|
|
ExprResult RebuildImplicitValueInitExpr(QualType T) {
|
|
return SemaRef.Owned(new (SemaRef.Context) ImplicitValueInitExpr(T));
|
|
}
|
|
|
|
/// \brief Build a new \c va_arg expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildVAArgExpr(SourceLocation BuiltinLoc,
|
|
Expr *SubExpr, TypeSourceInfo *TInfo,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildVAArgExpr(BuiltinLoc,
|
|
SubExpr, TInfo,
|
|
RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new expression list in parentheses.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildParenListExpr(SourceLocation LParenLoc,
|
|
MultiExprArg SubExprs,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().ActOnParenListExpr(LParenLoc, RParenLoc, SubExprs);
|
|
}
|
|
|
|
/// \brief Build a new address-of-label expression.
|
|
///
|
|
/// By default, performs semantic analysis, using the name of the label
|
|
/// rather than attempting to map the label statement itself.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildAddrLabelExpr(SourceLocation AmpAmpLoc,
|
|
SourceLocation LabelLoc, LabelDecl *Label) {
|
|
return getSema().ActOnAddrLabel(AmpAmpLoc, LabelLoc, Label);
|
|
}
|
|
|
|
/// \brief Build a new GNU statement expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildStmtExpr(SourceLocation LParenLoc,
|
|
Stmt *SubStmt,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().ActOnStmtExpr(LParenLoc, SubStmt, RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new __builtin_choose_expr expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildChooseExpr(SourceLocation BuiltinLoc,
|
|
Expr *Cond, Expr *LHS, Expr *RHS,
|
|
SourceLocation RParenLoc) {
|
|
return SemaRef.ActOnChooseExpr(BuiltinLoc,
|
|
Cond, LHS, RHS,
|
|
RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new generic selection expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildGenericSelectionExpr(SourceLocation KeyLoc,
|
|
SourceLocation DefaultLoc,
|
|
SourceLocation RParenLoc,
|
|
Expr *ControllingExpr,
|
|
ArrayRef<TypeSourceInfo *> Types,
|
|
ArrayRef<Expr *> Exprs) {
|
|
return getSema().CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
|
|
ControllingExpr, Types, Exprs);
|
|
}
|
|
|
|
/// \brief Build a new overloaded operator call expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// The semantic analysis provides the behavior of template instantiation,
|
|
/// copying with transformations that turn what looks like an overloaded
|
|
/// operator call into a use of a builtin operator, performing
|
|
/// argument-dependent lookup, etc. Subclasses may override this routine to
|
|
/// provide different behavior.
|
|
ExprResult RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
|
|
SourceLocation OpLoc,
|
|
Expr *Callee,
|
|
Expr *First,
|
|
Expr *Second);
|
|
|
|
/// \brief Build a new C++ "named" cast expression, such as static_cast or
|
|
/// reinterpret_cast.
|
|
///
|
|
/// By default, this routine dispatches to one of the more-specific routines
|
|
/// for a particular named case, e.g., RebuildCXXStaticCastExpr().
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCXXNamedCastExpr(SourceLocation OpLoc,
|
|
Stmt::StmtClass Class,
|
|
SourceLocation LAngleLoc,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation RAngleLoc,
|
|
SourceLocation LParenLoc,
|
|
Expr *SubExpr,
|
|
SourceLocation RParenLoc) {
|
|
switch (Class) {
|
|
case Stmt::CXXStaticCastExprClass:
|
|
return getDerived().RebuildCXXStaticCastExpr(OpLoc, LAngleLoc, TInfo,
|
|
RAngleLoc, LParenLoc,
|
|
SubExpr, RParenLoc);
|
|
|
|
case Stmt::CXXDynamicCastExprClass:
|
|
return getDerived().RebuildCXXDynamicCastExpr(OpLoc, LAngleLoc, TInfo,
|
|
RAngleLoc, LParenLoc,
|
|
SubExpr, RParenLoc);
|
|
|
|
case Stmt::CXXReinterpretCastExprClass:
|
|
return getDerived().RebuildCXXReinterpretCastExpr(OpLoc, LAngleLoc, TInfo,
|
|
RAngleLoc, LParenLoc,
|
|
SubExpr,
|
|
RParenLoc);
|
|
|
|
case Stmt::CXXConstCastExprClass:
|
|
return getDerived().RebuildCXXConstCastExpr(OpLoc, LAngleLoc, TInfo,
|
|
RAngleLoc, LParenLoc,
|
|
SubExpr, RParenLoc);
|
|
|
|
default:
|
|
llvm_unreachable("Invalid C++ named cast");
|
|
}
|
|
}
|
|
|
|
/// \brief Build a new C++ static_cast expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCXXStaticCastExpr(SourceLocation OpLoc,
|
|
SourceLocation LAngleLoc,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation RAngleLoc,
|
|
SourceLocation LParenLoc,
|
|
Expr *SubExpr,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildCXXNamedCast(OpLoc, tok::kw_static_cast,
|
|
TInfo, SubExpr,
|
|
SourceRange(LAngleLoc, RAngleLoc),
|
|
SourceRange(LParenLoc, RParenLoc));
|
|
}
|
|
|
|
/// \brief Build a new C++ dynamic_cast expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCXXDynamicCastExpr(SourceLocation OpLoc,
|
|
SourceLocation LAngleLoc,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation RAngleLoc,
|
|
SourceLocation LParenLoc,
|
|
Expr *SubExpr,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildCXXNamedCast(OpLoc, tok::kw_dynamic_cast,
|
|
TInfo, SubExpr,
|
|
SourceRange(LAngleLoc, RAngleLoc),
|
|
SourceRange(LParenLoc, RParenLoc));
|
|
}
|
|
|
|
/// \brief Build a new C++ reinterpret_cast expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCXXReinterpretCastExpr(SourceLocation OpLoc,
|
|
SourceLocation LAngleLoc,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation RAngleLoc,
|
|
SourceLocation LParenLoc,
|
|
Expr *SubExpr,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildCXXNamedCast(OpLoc, tok::kw_reinterpret_cast,
|
|
TInfo, SubExpr,
|
|
SourceRange(LAngleLoc, RAngleLoc),
|
|
SourceRange(LParenLoc, RParenLoc));
|
|
}
|
|
|
|
/// \brief Build a new C++ const_cast expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCXXConstCastExpr(SourceLocation OpLoc,
|
|
SourceLocation LAngleLoc,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation RAngleLoc,
|
|
SourceLocation LParenLoc,
|
|
Expr *SubExpr,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildCXXNamedCast(OpLoc, tok::kw_const_cast,
|
|
TInfo, SubExpr,
|
|
SourceRange(LAngleLoc, RAngleLoc),
|
|
SourceRange(LParenLoc, RParenLoc));
|
|
}
|
|
|
|
/// \brief Build a new C++ functional-style cast expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo,
|
|
SourceLocation LParenLoc,
|
|
Expr *Sub,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildCXXTypeConstructExpr(TInfo, LParenLoc,
|
|
MultiExprArg(&Sub, 1),
|
|
RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new C++ typeid(type) expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
|
|
SourceLocation TypeidLoc,
|
|
TypeSourceInfo *Operand,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
|
|
RParenLoc);
|
|
}
|
|
|
|
|
|
/// \brief Build a new C++ typeid(expr) expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
|
|
SourceLocation TypeidLoc,
|
|
Expr *Operand,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
|
|
RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new C++ __uuidof(type) expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType,
|
|
SourceLocation TypeidLoc,
|
|
TypeSourceInfo *Operand,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand,
|
|
RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new C++ __uuidof(expr) expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType,
|
|
SourceLocation TypeidLoc,
|
|
Expr *Operand,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand,
|
|
RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new C++ "this" expression.
|
|
///
|
|
/// By default, builds a new "this" expression without performing any
|
|
/// semantic analysis. Subclasses may override this routine to provide
|
|
/// different behavior.
|
|
ExprResult RebuildCXXThisExpr(SourceLocation ThisLoc,
|
|
QualType ThisType,
|
|
bool isImplicit) {
|
|
getSema().CheckCXXThisCapture(ThisLoc);
|
|
return getSema().Owned(
|
|
new (getSema().Context) CXXThisExpr(ThisLoc, ThisType,
|
|
isImplicit));
|
|
}
|
|
|
|
/// \brief Build a new C++ throw expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCXXThrowExpr(SourceLocation ThrowLoc, Expr *Sub,
|
|
bool IsThrownVariableInScope) {
|
|
return getSema().BuildCXXThrow(ThrowLoc, Sub, IsThrownVariableInScope);
|
|
}
|
|
|
|
/// \brief Build a new C++ default-argument expression.
|
|
///
|
|
/// By default, builds a new default-argument expression, which does not
|
|
/// require any semantic analysis. Subclasses may override this routine to
|
|
/// provide different behavior.
|
|
ExprResult RebuildCXXDefaultArgExpr(SourceLocation Loc,
|
|
ParmVarDecl *Param) {
|
|
return getSema().Owned(CXXDefaultArgExpr::Create(getSema().Context, Loc,
|
|
Param));
|
|
}
|
|
|
|
/// \brief Build a new C++11 default-initialization expression.
|
|
///
|
|
/// By default, builds a new default field initialization expression, which
|
|
/// does not require any semantic analysis. Subclasses may override this
|
|
/// routine to provide different behavior.
|
|
ExprResult RebuildCXXDefaultInitExpr(SourceLocation Loc,
|
|
FieldDecl *Field) {
|
|
return getSema().Owned(CXXDefaultInitExpr::Create(getSema().Context, Loc,
|
|
Field));
|
|
}
|
|
|
|
/// \brief Build a new C++ zero-initialization expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCXXScalarValueInitExpr(TypeSourceInfo *TSInfo,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc,
|
|
None, RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new C++ "new" expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCXXNewExpr(SourceLocation StartLoc,
|
|
bool UseGlobal,
|
|
SourceLocation PlacementLParen,
|
|
MultiExprArg PlacementArgs,
|
|
SourceLocation PlacementRParen,
|
|
SourceRange TypeIdParens,
|
|
QualType AllocatedType,
|
|
TypeSourceInfo *AllocatedTypeInfo,
|
|
Expr *ArraySize,
|
|
SourceRange DirectInitRange,
|
|
Expr *Initializer) {
|
|
return getSema().BuildCXXNew(StartLoc, UseGlobal,
|
|
PlacementLParen,
|
|
PlacementArgs,
|
|
PlacementRParen,
|
|
TypeIdParens,
|
|
AllocatedType,
|
|
AllocatedTypeInfo,
|
|
ArraySize,
|
|
DirectInitRange,
|
|
Initializer);
|
|
}
|
|
|
|
/// \brief Build a new C++ "delete" expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCXXDeleteExpr(SourceLocation StartLoc,
|
|
bool IsGlobalDelete,
|
|
bool IsArrayForm,
|
|
Expr *Operand) {
|
|
return getSema().ActOnCXXDelete(StartLoc, IsGlobalDelete, IsArrayForm,
|
|
Operand);
|
|
}
|
|
|
|
/// \brief Build a new unary type trait expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildUnaryTypeTrait(UnaryTypeTrait Trait,
|
|
SourceLocation StartLoc,
|
|
TypeSourceInfo *T,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildUnaryTypeTrait(Trait, StartLoc, T, RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new binary type trait expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildBinaryTypeTrait(BinaryTypeTrait Trait,
|
|
SourceLocation StartLoc,
|
|
TypeSourceInfo *LhsT,
|
|
TypeSourceInfo *RhsT,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildBinaryTypeTrait(Trait, StartLoc, LhsT, RhsT, RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new type trait expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildTypeTrait(TypeTrait Trait,
|
|
SourceLocation StartLoc,
|
|
ArrayRef<TypeSourceInfo *> Args,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildTypeTrait(Trait, StartLoc, Args, RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new array type trait expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildArrayTypeTrait(ArrayTypeTrait Trait,
|
|
SourceLocation StartLoc,
|
|
TypeSourceInfo *TSInfo,
|
|
Expr *DimExpr,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildArrayTypeTrait(Trait, StartLoc, TSInfo, DimExpr, RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new expression trait expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildExpressionTrait(ExpressionTrait Trait,
|
|
SourceLocation StartLoc,
|
|
Expr *Queried,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildExpressionTrait(Trait, StartLoc, Queried, RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new (previously unresolved) declaration reference
|
|
/// expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildDependentScopeDeclRefExpr(
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
bool IsAddressOfOperand) {
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(QualifierLoc);
|
|
|
|
if (TemplateArgs || TemplateKWLoc.isValid())
|
|
return getSema().BuildQualifiedTemplateIdExpr(SS, TemplateKWLoc,
|
|
NameInfo, TemplateArgs);
|
|
|
|
return getSema().BuildQualifiedDeclarationNameExpr(SS, NameInfo,
|
|
IsAddressOfOperand);
|
|
}
|
|
|
|
/// \brief Build a new template-id expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildTemplateIdExpr(const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
LookupResult &R,
|
|
bool RequiresADL,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
return getSema().BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL,
|
|
TemplateArgs);
|
|
}
|
|
|
|
/// \brief Build a new object-construction expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCXXConstructExpr(QualType T,
|
|
SourceLocation Loc,
|
|
CXXConstructorDecl *Constructor,
|
|
bool IsElidable,
|
|
MultiExprArg Args,
|
|
bool HadMultipleCandidates,
|
|
bool ListInitialization,
|
|
bool RequiresZeroInit,
|
|
CXXConstructExpr::ConstructionKind ConstructKind,
|
|
SourceRange ParenRange) {
|
|
SmallVector<Expr*, 8> ConvertedArgs;
|
|
if (getSema().CompleteConstructorCall(Constructor, Args, Loc,
|
|
ConvertedArgs))
|
|
return ExprError();
|
|
|
|
return getSema().BuildCXXConstructExpr(Loc, T, Constructor, IsElidable,
|
|
ConvertedArgs,
|
|
HadMultipleCandidates,
|
|
ListInitialization,
|
|
RequiresZeroInit, ConstructKind,
|
|
ParenRange);
|
|
}
|
|
|
|
/// \brief Build a new object-construction expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCXXTemporaryObjectExpr(TypeSourceInfo *TSInfo,
|
|
SourceLocation LParenLoc,
|
|
MultiExprArg Args,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildCXXTypeConstructExpr(TSInfo,
|
|
LParenLoc,
|
|
Args,
|
|
RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new object-construction expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCXXUnresolvedConstructExpr(TypeSourceInfo *TSInfo,
|
|
SourceLocation LParenLoc,
|
|
MultiExprArg Args,
|
|
SourceLocation RParenLoc) {
|
|
return getSema().BuildCXXTypeConstructExpr(TSInfo,
|
|
LParenLoc,
|
|
Args,
|
|
RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new member reference expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCXXDependentScopeMemberExpr(Expr *BaseE,
|
|
QualType BaseType,
|
|
bool IsArrow,
|
|
SourceLocation OperatorLoc,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation TemplateKWLoc,
|
|
NamedDecl *FirstQualifierInScope,
|
|
const DeclarationNameInfo &MemberNameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(QualifierLoc);
|
|
|
|
return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
|
|
OperatorLoc, IsArrow,
|
|
SS, TemplateKWLoc,
|
|
FirstQualifierInScope,
|
|
MemberNameInfo,
|
|
TemplateArgs);
|
|
}
|
|
|
|
/// \brief Build a new member reference expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildUnresolvedMemberExpr(Expr *BaseE, QualType BaseType,
|
|
SourceLocation OperatorLoc,
|
|
bool IsArrow,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
SourceLocation TemplateKWLoc,
|
|
NamedDecl *FirstQualifierInScope,
|
|
LookupResult &R,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(QualifierLoc);
|
|
|
|
return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
|
|
OperatorLoc, IsArrow,
|
|
SS, TemplateKWLoc,
|
|
FirstQualifierInScope,
|
|
R, TemplateArgs);
|
|
}
|
|
|
|
/// \brief Build a new noexcept expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildCXXNoexceptExpr(SourceRange Range, Expr *Arg) {
|
|
return SemaRef.BuildCXXNoexceptExpr(Range.getBegin(), Arg, Range.getEnd());
|
|
}
|
|
|
|
/// \brief Build a new expression to compute the length of a parameter pack.
|
|
ExprResult RebuildSizeOfPackExpr(SourceLocation OperatorLoc, NamedDecl *Pack,
|
|
SourceLocation PackLoc,
|
|
SourceLocation RParenLoc,
|
|
Optional<unsigned> Length) {
|
|
if (Length)
|
|
return new (SemaRef.Context) SizeOfPackExpr(SemaRef.Context.getSizeType(),
|
|
OperatorLoc, Pack, PackLoc,
|
|
RParenLoc, *Length);
|
|
|
|
return new (SemaRef.Context) SizeOfPackExpr(SemaRef.Context.getSizeType(),
|
|
OperatorLoc, Pack, PackLoc,
|
|
RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new Objective-C boxed expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) {
|
|
return getSema().BuildObjCBoxedExpr(SR, ValueExpr);
|
|
}
|
|
|
|
/// \brief Build a new Objective-C array literal.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildObjCArrayLiteral(SourceRange Range,
|
|
Expr **Elements, unsigned NumElements) {
|
|
return getSema().BuildObjCArrayLiteral(Range,
|
|
MultiExprArg(Elements, NumElements));
|
|
}
|
|
|
|
ExprResult RebuildObjCSubscriptRefExpr(SourceLocation RB,
|
|
Expr *Base, Expr *Key,
|
|
ObjCMethodDecl *getterMethod,
|
|
ObjCMethodDecl *setterMethod) {
|
|
return getSema().BuildObjCSubscriptExpression(RB, Base, Key,
|
|
getterMethod, setterMethod);
|
|
}
|
|
|
|
/// \brief Build a new Objective-C dictionary literal.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildObjCDictionaryLiteral(SourceRange Range,
|
|
ObjCDictionaryElement *Elements,
|
|
unsigned NumElements) {
|
|
return getSema().BuildObjCDictionaryLiteral(Range, Elements, NumElements);
|
|
}
|
|
|
|
/// \brief Build a new Objective-C \@encode expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildObjCEncodeExpr(SourceLocation AtLoc,
|
|
TypeSourceInfo *EncodeTypeInfo,
|
|
SourceLocation RParenLoc) {
|
|
return SemaRef.Owned(SemaRef.BuildObjCEncodeExpression(AtLoc, EncodeTypeInfo,
|
|
RParenLoc));
|
|
}
|
|
|
|
/// \brief Build a new Objective-C class message.
|
|
ExprResult RebuildObjCMessageExpr(TypeSourceInfo *ReceiverTypeInfo,
|
|
Selector Sel,
|
|
ArrayRef<SourceLocation> SelectorLocs,
|
|
ObjCMethodDecl *Method,
|
|
SourceLocation LBracLoc,
|
|
MultiExprArg Args,
|
|
SourceLocation RBracLoc) {
|
|
return SemaRef.BuildClassMessage(ReceiverTypeInfo,
|
|
ReceiverTypeInfo->getType(),
|
|
/*SuperLoc=*/SourceLocation(),
|
|
Sel, Method, LBracLoc, SelectorLocs,
|
|
RBracLoc, Args);
|
|
}
|
|
|
|
/// \brief Build a new Objective-C instance message.
|
|
ExprResult RebuildObjCMessageExpr(Expr *Receiver,
|
|
Selector Sel,
|
|
ArrayRef<SourceLocation> SelectorLocs,
|
|
ObjCMethodDecl *Method,
|
|
SourceLocation LBracLoc,
|
|
MultiExprArg Args,
|
|
SourceLocation RBracLoc) {
|
|
return SemaRef.BuildInstanceMessage(Receiver,
|
|
Receiver->getType(),
|
|
/*SuperLoc=*/SourceLocation(),
|
|
Sel, Method, LBracLoc, SelectorLocs,
|
|
RBracLoc, Args);
|
|
}
|
|
|
|
/// \brief Build a new Objective-C ivar reference expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildObjCIvarRefExpr(Expr *BaseArg, ObjCIvarDecl *Ivar,
|
|
SourceLocation IvarLoc,
|
|
bool IsArrow, bool IsFreeIvar) {
|
|
// FIXME: We lose track of the IsFreeIvar bit.
|
|
CXXScopeSpec SS;
|
|
ExprResult Base = getSema().Owned(BaseArg);
|
|
LookupResult R(getSema(), Ivar->getDeclName(), IvarLoc,
|
|
Sema::LookupMemberName);
|
|
ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow,
|
|
/*FIME:*/IvarLoc,
|
|
SS, 0,
|
|
false);
|
|
if (Result.isInvalid() || Base.isInvalid())
|
|
return ExprError();
|
|
|
|
if (Result.get())
|
|
return Result;
|
|
|
|
return getSema().BuildMemberReferenceExpr(Base.get(), Base.get()->getType(),
|
|
/*FIXME:*/IvarLoc, IsArrow,
|
|
SS, SourceLocation(),
|
|
/*FirstQualifierInScope=*/0,
|
|
R,
|
|
/*TemplateArgs=*/0);
|
|
}
|
|
|
|
/// \brief Build a new Objective-C property reference expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildObjCPropertyRefExpr(Expr *BaseArg,
|
|
ObjCPropertyDecl *Property,
|
|
SourceLocation PropertyLoc) {
|
|
CXXScopeSpec SS;
|
|
ExprResult Base = getSema().Owned(BaseArg);
|
|
LookupResult R(getSema(), Property->getDeclName(), PropertyLoc,
|
|
Sema::LookupMemberName);
|
|
bool IsArrow = false;
|
|
ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow,
|
|
/*FIME:*/PropertyLoc,
|
|
SS, 0, false);
|
|
if (Result.isInvalid() || Base.isInvalid())
|
|
return ExprError();
|
|
|
|
if (Result.get())
|
|
return Result;
|
|
|
|
return getSema().BuildMemberReferenceExpr(Base.get(), Base.get()->getType(),
|
|
/*FIXME:*/PropertyLoc, IsArrow,
|
|
SS, SourceLocation(),
|
|
/*FirstQualifierInScope=*/0,
|
|
R,
|
|
/*TemplateArgs=*/0);
|
|
}
|
|
|
|
/// \brief Build a new Objective-C property reference expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildObjCPropertyRefExpr(Expr *Base, QualType T,
|
|
ObjCMethodDecl *Getter,
|
|
ObjCMethodDecl *Setter,
|
|
SourceLocation PropertyLoc) {
|
|
// Since these expressions can only be value-dependent, we do not
|
|
// need to perform semantic analysis again.
|
|
return Owned(
|
|
new (getSema().Context) ObjCPropertyRefExpr(Getter, Setter, T,
|
|
VK_LValue, OK_ObjCProperty,
|
|
PropertyLoc, Base));
|
|
}
|
|
|
|
/// \brief Build a new Objective-C "isa" expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildObjCIsaExpr(Expr *BaseArg, SourceLocation IsaLoc,
|
|
SourceLocation OpLoc,
|
|
bool IsArrow) {
|
|
CXXScopeSpec SS;
|
|
ExprResult Base = getSema().Owned(BaseArg);
|
|
LookupResult R(getSema(), &getSema().Context.Idents.get("isa"), IsaLoc,
|
|
Sema::LookupMemberName);
|
|
ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow,
|
|
OpLoc,
|
|
SS, 0, false);
|
|
if (Result.isInvalid() || Base.isInvalid())
|
|
return ExprError();
|
|
|
|
if (Result.get())
|
|
return Result;
|
|
|
|
return getSema().BuildMemberReferenceExpr(Base.get(), Base.get()->getType(),
|
|
OpLoc, IsArrow,
|
|
SS, SourceLocation(),
|
|
/*FirstQualifierInScope=*/0,
|
|
R,
|
|
/*TemplateArgs=*/0);
|
|
}
|
|
|
|
/// \brief Build a new shuffle vector expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildShuffleVectorExpr(SourceLocation BuiltinLoc,
|
|
MultiExprArg SubExprs,
|
|
SourceLocation RParenLoc) {
|
|
// Find the declaration for __builtin_shufflevector
|
|
const IdentifierInfo &Name
|
|
= SemaRef.Context.Idents.get("__builtin_shufflevector");
|
|
TranslationUnitDecl *TUDecl = SemaRef.Context.getTranslationUnitDecl();
|
|
DeclContext::lookup_result Lookup = TUDecl->lookup(DeclarationName(&Name));
|
|
assert(!Lookup.empty() && "No __builtin_shufflevector?");
|
|
|
|
// Build a reference to the __builtin_shufflevector builtin
|
|
FunctionDecl *Builtin = cast<FunctionDecl>(Lookup.front());
|
|
Expr *Callee = new (SemaRef.Context) DeclRefExpr(Builtin, false,
|
|
SemaRef.Context.BuiltinFnTy,
|
|
VK_RValue, BuiltinLoc);
|
|
QualType CalleePtrTy = SemaRef.Context.getPointerType(Builtin->getType());
|
|
Callee = SemaRef.ImpCastExprToType(Callee, CalleePtrTy,
|
|
CK_BuiltinFnToFnPtr).take();
|
|
|
|
// Build the CallExpr
|
|
ExprResult TheCall = SemaRef.Owned(
|
|
new (SemaRef.Context) CallExpr(SemaRef.Context, Callee, SubExprs,
|
|
Builtin->getCallResultType(),
|
|
Expr::getValueKindForType(Builtin->getResultType()),
|
|
RParenLoc));
|
|
|
|
// Type-check the __builtin_shufflevector expression.
|
|
return SemaRef.SemaBuiltinShuffleVector(cast<CallExpr>(TheCall.take()));
|
|
}
|
|
|
|
/// \brief Build a new convert vector expression.
|
|
ExprResult RebuildConvertVectorExpr(SourceLocation BuiltinLoc,
|
|
Expr *SrcExpr, TypeSourceInfo *DstTInfo,
|
|
SourceLocation RParenLoc) {
|
|
return SemaRef.SemaConvertVectorExpr(SrcExpr, DstTInfo,
|
|
BuiltinLoc, RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a new template argument pack expansion.
|
|
///
|
|
/// By default, performs semantic analysis to build a new pack expansion
|
|
/// for a template argument. Subclasses may override this routine to provide
|
|
/// different behavior.
|
|
TemplateArgumentLoc RebuildPackExpansion(TemplateArgumentLoc Pattern,
|
|
SourceLocation EllipsisLoc,
|
|
Optional<unsigned> NumExpansions) {
|
|
switch (Pattern.getArgument().getKind()) {
|
|
case TemplateArgument::Expression: {
|
|
ExprResult Result
|
|
= getSema().CheckPackExpansion(Pattern.getSourceExpression(),
|
|
EllipsisLoc, NumExpansions);
|
|
if (Result.isInvalid())
|
|
return TemplateArgumentLoc();
|
|
|
|
return TemplateArgumentLoc(Result.get(), Result.get());
|
|
}
|
|
|
|
case TemplateArgument::Template:
|
|
return TemplateArgumentLoc(TemplateArgument(
|
|
Pattern.getArgument().getAsTemplate(),
|
|
NumExpansions),
|
|
Pattern.getTemplateQualifierLoc(),
|
|
Pattern.getTemplateNameLoc(),
|
|
EllipsisLoc);
|
|
|
|
case TemplateArgument::Null:
|
|
case TemplateArgument::Integral:
|
|
case TemplateArgument::Declaration:
|
|
case TemplateArgument::Pack:
|
|
case TemplateArgument::TemplateExpansion:
|
|
case TemplateArgument::NullPtr:
|
|
llvm_unreachable("Pack expansion pattern has no parameter packs");
|
|
|
|
case TemplateArgument::Type:
|
|
if (TypeSourceInfo *Expansion
|
|
= getSema().CheckPackExpansion(Pattern.getTypeSourceInfo(),
|
|
EllipsisLoc,
|
|
NumExpansions))
|
|
return TemplateArgumentLoc(TemplateArgument(Expansion->getType()),
|
|
Expansion);
|
|
break;
|
|
}
|
|
|
|
return TemplateArgumentLoc();
|
|
}
|
|
|
|
/// \brief Build a new expression pack expansion.
|
|
///
|
|
/// By default, performs semantic analysis to build a new pack expansion
|
|
/// for an expression. Subclasses may override this routine to provide
|
|
/// different behavior.
|
|
ExprResult RebuildPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
|
|
Optional<unsigned> NumExpansions) {
|
|
return getSema().CheckPackExpansion(Pattern, EllipsisLoc, NumExpansions);
|
|
}
|
|
|
|
/// \brief Build a new atomic operation expression.
|
|
///
|
|
/// By default, performs semantic analysis to build the new expression.
|
|
/// Subclasses may override this routine to provide different behavior.
|
|
ExprResult RebuildAtomicExpr(SourceLocation BuiltinLoc,
|
|
MultiExprArg SubExprs,
|
|
QualType RetTy,
|
|
AtomicExpr::AtomicOp Op,
|
|
SourceLocation RParenLoc) {
|
|
// Just create the expression; there is not any interesting semantic
|
|
// analysis here because we can't actually build an AtomicExpr until
|
|
// we are sure it is semantically sound.
|
|
return new (SemaRef.Context) AtomicExpr(BuiltinLoc, SubExprs, RetTy, Op,
|
|
RParenLoc);
|
|
}
|
|
|
|
private:
|
|
TypeLoc TransformTypeInObjectScope(TypeLoc TL,
|
|
QualType ObjectType,
|
|
NamedDecl *FirstQualifierInScope,
|
|
CXXScopeSpec &SS);
|
|
|
|
TypeSourceInfo *TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
|
|
QualType ObjectType,
|
|
NamedDecl *FirstQualifierInScope,
|
|
CXXScopeSpec &SS);
|
|
};
|
|
|
|
template<typename Derived>
|
|
StmtResult TreeTransform<Derived>::TransformStmt(Stmt *S) {
|
|
if (!S)
|
|
return SemaRef.Owned(S);
|
|
|
|
switch (S->getStmtClass()) {
|
|
case Stmt::NoStmtClass: break;
|
|
|
|
// Transform individual statement nodes
|
|
#define STMT(Node, Parent) \
|
|
case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(S));
|
|
#define ABSTRACT_STMT(Node)
|
|
#define EXPR(Node, Parent)
|
|
#include "clang/AST/StmtNodes.inc"
|
|
|
|
// Transform expressions by calling TransformExpr.
|
|
#define STMT(Node, Parent)
|
|
#define ABSTRACT_STMT(Stmt)
|
|
#define EXPR(Node, Parent) case Stmt::Node##Class:
|
|
#include "clang/AST/StmtNodes.inc"
|
|
{
|
|
ExprResult E = getDerived().TransformExpr(cast<Expr>(S));
|
|
if (E.isInvalid())
|
|
return StmtError();
|
|
|
|
return getSema().ActOnExprStmt(E);
|
|
}
|
|
}
|
|
|
|
return SemaRef.Owned(S);
|
|
}
|
|
|
|
template<typename Derived>
|
|
OMPClause *TreeTransform<Derived>::TransformOMPClause(OMPClause *S) {
|
|
if (!S)
|
|
return S;
|
|
|
|
switch (S->getClauseKind()) {
|
|
default: break;
|
|
// Transform individual clause nodes
|
|
#define OPENMP_CLAUSE(Name, Class) \
|
|
case OMPC_ ## Name : \
|
|
return getDerived().Transform ## Class(cast<Class>(S));
|
|
#include "clang/Basic/OpenMPKinds.def"
|
|
}
|
|
|
|
return S;
|
|
}
|
|
|
|
|
|
template<typename Derived>
|
|
ExprResult TreeTransform<Derived>::TransformExpr(Expr *E) {
|
|
if (!E)
|
|
return SemaRef.Owned(E);
|
|
|
|
switch (E->getStmtClass()) {
|
|
case Stmt::NoStmtClass: break;
|
|
#define STMT(Node, Parent) case Stmt::Node##Class: break;
|
|
#define ABSTRACT_STMT(Stmt)
|
|
#define EXPR(Node, Parent) \
|
|
case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(E));
|
|
#include "clang/AST/StmtNodes.inc"
|
|
}
|
|
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult TreeTransform<Derived>::TransformInitializer(Expr *Init,
|
|
bool CXXDirectInit) {
|
|
// Initializers are instantiated like expressions, except that various outer
|
|
// layers are stripped.
|
|
if (!Init)
|
|
return SemaRef.Owned(Init);
|
|
|
|
if (ExprWithCleanups *ExprTemp = dyn_cast<ExprWithCleanups>(Init))
|
|
Init = ExprTemp->getSubExpr();
|
|
|
|
if (MaterializeTemporaryExpr *MTE = dyn_cast<MaterializeTemporaryExpr>(Init))
|
|
Init = MTE->GetTemporaryExpr();
|
|
|
|
while (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(Init))
|
|
Init = Binder->getSubExpr();
|
|
|
|
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Init))
|
|
Init = ICE->getSubExprAsWritten();
|
|
|
|
if (CXXStdInitializerListExpr *ILE =
|
|
dyn_cast<CXXStdInitializerListExpr>(Init))
|
|
return TransformInitializer(ILE->getSubExpr(), CXXDirectInit);
|
|
|
|
// If this is not a direct-initializer, we only need to reconstruct
|
|
// InitListExprs. Other forms of copy-initialization will be a no-op if
|
|
// the initializer is already the right type.
|
|
CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init);
|
|
if (!CXXDirectInit && !(Construct && Construct->isListInitialization()))
|
|
return getDerived().TransformExpr(Init);
|
|
|
|
// Revert value-initialization back to empty parens.
|
|
if (CXXScalarValueInitExpr *VIE = dyn_cast<CXXScalarValueInitExpr>(Init)) {
|
|
SourceRange Parens = VIE->getSourceRange();
|
|
return getDerived().RebuildParenListExpr(Parens.getBegin(), None,
|
|
Parens.getEnd());
|
|
}
|
|
|
|
// FIXME: We shouldn't build ImplicitValueInitExprs for direct-initialization.
|
|
if (isa<ImplicitValueInitExpr>(Init))
|
|
return getDerived().RebuildParenListExpr(SourceLocation(), None,
|
|
SourceLocation());
|
|
|
|
// Revert initialization by constructor back to a parenthesized or braced list
|
|
// of expressions. Any other form of initializer can just be reused directly.
|
|
if (!Construct || isa<CXXTemporaryObjectExpr>(Construct))
|
|
return getDerived().TransformExpr(Init);
|
|
|
|
SmallVector<Expr*, 8> NewArgs;
|
|
bool ArgChanged = false;
|
|
if (getDerived().TransformExprs(Construct->getArgs(), Construct->getNumArgs(),
|
|
/*IsCall*/true, NewArgs, &ArgChanged))
|
|
return ExprError();
|
|
|
|
// If this was list initialization, revert to list form.
|
|
if (Construct->isListInitialization())
|
|
return getDerived().RebuildInitList(Construct->getLocStart(), NewArgs,
|
|
Construct->getLocEnd(),
|
|
Construct->getType());
|
|
|
|
// Build a ParenListExpr to represent anything else.
|
|
SourceRange Parens = Construct->getParenOrBraceRange();
|
|
return getDerived().RebuildParenListExpr(Parens.getBegin(), NewArgs,
|
|
Parens.getEnd());
|
|
}
|
|
|
|
template<typename Derived>
|
|
bool TreeTransform<Derived>::TransformExprs(Expr **Inputs,
|
|
unsigned NumInputs,
|
|
bool IsCall,
|
|
SmallVectorImpl<Expr *> &Outputs,
|
|
bool *ArgChanged) {
|
|
for (unsigned I = 0; I != NumInputs; ++I) {
|
|
// If requested, drop call arguments that need to be dropped.
|
|
if (IsCall && getDerived().DropCallArgument(Inputs[I])) {
|
|
if (ArgChanged)
|
|
*ArgChanged = true;
|
|
|
|
break;
|
|
}
|
|
|
|
if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(Inputs[I])) {
|
|
Expr *Pattern = Expansion->getPattern();
|
|
|
|
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
|
|
getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
|
|
assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
|
|
|
|
// Determine whether the set of unexpanded parameter packs can and should
|
|
// be expanded.
|
|
bool Expand = true;
|
|
bool RetainExpansion = false;
|
|
Optional<unsigned> OrigNumExpansions = Expansion->getNumExpansions();
|
|
Optional<unsigned> NumExpansions = OrigNumExpansions;
|
|
if (getDerived().TryExpandParameterPacks(Expansion->getEllipsisLoc(),
|
|
Pattern->getSourceRange(),
|
|
Unexpanded,
|
|
Expand, RetainExpansion,
|
|
NumExpansions))
|
|
return true;
|
|
|
|
if (!Expand) {
|
|
// The transform has determined that we should perform a simple
|
|
// transformation on the pack expansion, producing another pack
|
|
// expansion.
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
|
|
ExprResult OutPattern = getDerived().TransformExpr(Pattern);
|
|
if (OutPattern.isInvalid())
|
|
return true;
|
|
|
|
ExprResult Out = getDerived().RebuildPackExpansion(OutPattern.get(),
|
|
Expansion->getEllipsisLoc(),
|
|
NumExpansions);
|
|
if (Out.isInvalid())
|
|
return true;
|
|
|
|
if (ArgChanged)
|
|
*ArgChanged = true;
|
|
Outputs.push_back(Out.get());
|
|
continue;
|
|
}
|
|
|
|
// Record right away that the argument was changed. This needs
|
|
// to happen even if the array expands to nothing.
|
|
if (ArgChanged) *ArgChanged = true;
|
|
|
|
// The transform has determined that we should perform an elementwise
|
|
// expansion of the pattern. Do so.
|
|
for (unsigned I = 0; I != *NumExpansions; ++I) {
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
|
|
ExprResult Out = getDerived().TransformExpr(Pattern);
|
|
if (Out.isInvalid())
|
|
return true;
|
|
|
|
if (Out.get()->containsUnexpandedParameterPack()) {
|
|
Out = RebuildPackExpansion(Out.get(), Expansion->getEllipsisLoc(),
|
|
OrigNumExpansions);
|
|
if (Out.isInvalid())
|
|
return true;
|
|
}
|
|
|
|
Outputs.push_back(Out.get());
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
ExprResult Result =
|
|
IsCall ? getDerived().TransformInitializer(Inputs[I], /*DirectInit*/false)
|
|
: getDerived().TransformExpr(Inputs[I]);
|
|
if (Result.isInvalid())
|
|
return true;
|
|
|
|
if (Result.get() != Inputs[I] && ArgChanged)
|
|
*ArgChanged = true;
|
|
|
|
Outputs.push_back(Result.get());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template<typename Derived>
|
|
NestedNameSpecifierLoc
|
|
TreeTransform<Derived>::TransformNestedNameSpecifierLoc(
|
|
NestedNameSpecifierLoc NNS,
|
|
QualType ObjectType,
|
|
NamedDecl *FirstQualifierInScope) {
|
|
SmallVector<NestedNameSpecifierLoc, 4> Qualifiers;
|
|
for (NestedNameSpecifierLoc Qualifier = NNS; Qualifier;
|
|
Qualifier = Qualifier.getPrefix())
|
|
Qualifiers.push_back(Qualifier);
|
|
|
|
CXXScopeSpec SS;
|
|
while (!Qualifiers.empty()) {
|
|
NestedNameSpecifierLoc Q = Qualifiers.pop_back_val();
|
|
NestedNameSpecifier *QNNS = Q.getNestedNameSpecifier();
|
|
|
|
switch (QNNS->getKind()) {
|
|
case NestedNameSpecifier::Identifier:
|
|
if (SemaRef.BuildCXXNestedNameSpecifier(/*Scope=*/0,
|
|
*QNNS->getAsIdentifier(),
|
|
Q.getLocalBeginLoc(),
|
|
Q.getLocalEndLoc(),
|
|
ObjectType, false, SS,
|
|
FirstQualifierInScope, false))
|
|
return NestedNameSpecifierLoc();
|
|
|
|
break;
|
|
|
|
case NestedNameSpecifier::Namespace: {
|
|
NamespaceDecl *NS
|
|
= cast_or_null<NamespaceDecl>(
|
|
getDerived().TransformDecl(
|
|
Q.getLocalBeginLoc(),
|
|
QNNS->getAsNamespace()));
|
|
SS.Extend(SemaRef.Context, NS, Q.getLocalBeginLoc(), Q.getLocalEndLoc());
|
|
break;
|
|
}
|
|
|
|
case NestedNameSpecifier::NamespaceAlias: {
|
|
NamespaceAliasDecl *Alias
|
|
= cast_or_null<NamespaceAliasDecl>(
|
|
getDerived().TransformDecl(Q.getLocalBeginLoc(),
|
|
QNNS->getAsNamespaceAlias()));
|
|
SS.Extend(SemaRef.Context, Alias, Q.getLocalBeginLoc(),
|
|
Q.getLocalEndLoc());
|
|
break;
|
|
}
|
|
|
|
case NestedNameSpecifier::Global:
|
|
// There is no meaningful transformation that one could perform on the
|
|
// global scope.
|
|
SS.MakeGlobal(SemaRef.Context, Q.getBeginLoc());
|
|
break;
|
|
|
|
case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
case NestedNameSpecifier::TypeSpec: {
|
|
TypeLoc TL = TransformTypeInObjectScope(Q.getTypeLoc(), ObjectType,
|
|
FirstQualifierInScope, SS);
|
|
|
|
if (!TL)
|
|
return NestedNameSpecifierLoc();
|
|
|
|
if (TL.getType()->isDependentType() || TL.getType()->isRecordType() ||
|
|
(SemaRef.getLangOpts().CPlusPlus11 &&
|
|
TL.getType()->isEnumeralType())) {
|
|
assert(!TL.getType().hasLocalQualifiers() &&
|
|
"Can't get cv-qualifiers here");
|
|
if (TL.getType()->isEnumeralType())
|
|
SemaRef.Diag(TL.getBeginLoc(),
|
|
diag::warn_cxx98_compat_enum_nested_name_spec);
|
|
SS.Extend(SemaRef.Context, /*FIXME:*/SourceLocation(), TL,
|
|
Q.getLocalEndLoc());
|
|
break;
|
|
}
|
|
// If the nested-name-specifier is an invalid type def, don't emit an
|
|
// error because a previous error should have already been emitted.
|
|
TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>();
|
|
if (!TTL || !TTL.getTypedefNameDecl()->isInvalidDecl()) {
|
|
SemaRef.Diag(TL.getBeginLoc(), diag::err_nested_name_spec_non_tag)
|
|
<< TL.getType() << SS.getRange();
|
|
}
|
|
return NestedNameSpecifierLoc();
|
|
}
|
|
}
|
|
|
|
// The qualifier-in-scope and object type only apply to the leftmost entity.
|
|
FirstQualifierInScope = 0;
|
|
ObjectType = QualType();
|
|
}
|
|
|
|
// Don't rebuild the nested-name-specifier if we don't have to.
|
|
if (SS.getScopeRep() == NNS.getNestedNameSpecifier() &&
|
|
!getDerived().AlwaysRebuild())
|
|
return NNS;
|
|
|
|
// If we can re-use the source-location data from the original
|
|
// nested-name-specifier, do so.
|
|
if (SS.location_size() == NNS.getDataLength() &&
|
|
memcmp(SS.location_data(), NNS.getOpaqueData(), SS.location_size()) == 0)
|
|
return NestedNameSpecifierLoc(SS.getScopeRep(), NNS.getOpaqueData());
|
|
|
|
// Allocate new nested-name-specifier location information.
|
|
return SS.getWithLocInContext(SemaRef.Context);
|
|
}
|
|
|
|
template<typename Derived>
|
|
DeclarationNameInfo
|
|
TreeTransform<Derived>
|
|
::TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo) {
|
|
DeclarationName Name = NameInfo.getName();
|
|
if (!Name)
|
|
return DeclarationNameInfo();
|
|
|
|
switch (Name.getNameKind()) {
|
|
case DeclarationName::Identifier:
|
|
case DeclarationName::ObjCZeroArgSelector:
|
|
case DeclarationName::ObjCOneArgSelector:
|
|
case DeclarationName::ObjCMultiArgSelector:
|
|
case DeclarationName::CXXOperatorName:
|
|
case DeclarationName::CXXLiteralOperatorName:
|
|
case DeclarationName::CXXUsingDirective:
|
|
return NameInfo;
|
|
|
|
case DeclarationName::CXXConstructorName:
|
|
case DeclarationName::CXXDestructorName:
|
|
case DeclarationName::CXXConversionFunctionName: {
|
|
TypeSourceInfo *NewTInfo;
|
|
CanQualType NewCanTy;
|
|
if (TypeSourceInfo *OldTInfo = NameInfo.getNamedTypeInfo()) {
|
|
NewTInfo = getDerived().TransformType(OldTInfo);
|
|
if (!NewTInfo)
|
|
return DeclarationNameInfo();
|
|
NewCanTy = SemaRef.Context.getCanonicalType(NewTInfo->getType());
|
|
}
|
|
else {
|
|
NewTInfo = 0;
|
|
TemporaryBase Rebase(*this, NameInfo.getLoc(), Name);
|
|
QualType NewT = getDerived().TransformType(Name.getCXXNameType());
|
|
if (NewT.isNull())
|
|
return DeclarationNameInfo();
|
|
NewCanTy = SemaRef.Context.getCanonicalType(NewT);
|
|
}
|
|
|
|
DeclarationName NewName
|
|
= SemaRef.Context.DeclarationNames.getCXXSpecialName(Name.getNameKind(),
|
|
NewCanTy);
|
|
DeclarationNameInfo NewNameInfo(NameInfo);
|
|
NewNameInfo.setName(NewName);
|
|
NewNameInfo.setNamedTypeInfo(NewTInfo);
|
|
return NewNameInfo;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Unknown name kind.");
|
|
}
|
|
|
|
template<typename Derived>
|
|
TemplateName
|
|
TreeTransform<Derived>::TransformTemplateName(CXXScopeSpec &SS,
|
|
TemplateName Name,
|
|
SourceLocation NameLoc,
|
|
QualType ObjectType,
|
|
NamedDecl *FirstQualifierInScope) {
|
|
if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) {
|
|
TemplateDecl *Template = QTN->getTemplateDecl();
|
|
assert(Template && "qualified template name must refer to a template");
|
|
|
|
TemplateDecl *TransTemplate
|
|
= cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
|
|
Template));
|
|
if (!TransTemplate)
|
|
return TemplateName();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
SS.getScopeRep() == QTN->getQualifier() &&
|
|
TransTemplate == Template)
|
|
return Name;
|
|
|
|
return getDerived().RebuildTemplateName(SS, QTN->hasTemplateKeyword(),
|
|
TransTemplate);
|
|
}
|
|
|
|
if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
|
|
if (SS.getScopeRep()) {
|
|
// These apply to the scope specifier, not the template.
|
|
ObjectType = QualType();
|
|
FirstQualifierInScope = 0;
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
SS.getScopeRep() == DTN->getQualifier() &&
|
|
ObjectType.isNull())
|
|
return Name;
|
|
|
|
if (DTN->isIdentifier()) {
|
|
return getDerived().RebuildTemplateName(SS,
|
|
*DTN->getIdentifier(),
|
|
NameLoc,
|
|
ObjectType,
|
|
FirstQualifierInScope);
|
|
}
|
|
|
|
return getDerived().RebuildTemplateName(SS, DTN->getOperator(), NameLoc,
|
|
ObjectType);
|
|
}
|
|
|
|
if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
|
|
TemplateDecl *TransTemplate
|
|
= cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
|
|
Template));
|
|
if (!TransTemplate)
|
|
return TemplateName();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
TransTemplate == Template)
|
|
return Name;
|
|
|
|
return TemplateName(TransTemplate);
|
|
}
|
|
|
|
if (SubstTemplateTemplateParmPackStorage *SubstPack
|
|
= Name.getAsSubstTemplateTemplateParmPack()) {
|
|
TemplateTemplateParmDecl *TransParam
|
|
= cast_or_null<TemplateTemplateParmDecl>(
|
|
getDerived().TransformDecl(NameLoc, SubstPack->getParameterPack()));
|
|
if (!TransParam)
|
|
return TemplateName();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
TransParam == SubstPack->getParameterPack())
|
|
return Name;
|
|
|
|
return getDerived().RebuildTemplateName(TransParam,
|
|
SubstPack->getArgumentPack());
|
|
}
|
|
|
|
// These should be getting filtered out before they reach the AST.
|
|
llvm_unreachable("overloaded function decl survived to here");
|
|
}
|
|
|
|
template<typename Derived>
|
|
void TreeTransform<Derived>::InventTemplateArgumentLoc(
|
|
const TemplateArgument &Arg,
|
|
TemplateArgumentLoc &Output) {
|
|
SourceLocation Loc = getDerived().getBaseLocation();
|
|
switch (Arg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("null template argument in TreeTransform");
|
|
break;
|
|
|
|
case TemplateArgument::Type:
|
|
Output = TemplateArgumentLoc(Arg,
|
|
SemaRef.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
|
|
|
|
break;
|
|
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion: {
|
|
NestedNameSpecifierLocBuilder Builder;
|
|
TemplateName Template = Arg.getAsTemplate();
|
|
if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
|
|
Builder.MakeTrivial(SemaRef.Context, DTN->getQualifier(), Loc);
|
|
else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
|
|
Builder.MakeTrivial(SemaRef.Context, QTN->getQualifier(), Loc);
|
|
|
|
if (Arg.getKind() == TemplateArgument::Template)
|
|
Output = TemplateArgumentLoc(Arg,
|
|
Builder.getWithLocInContext(SemaRef.Context),
|
|
Loc);
|
|
else
|
|
Output = TemplateArgumentLoc(Arg,
|
|
Builder.getWithLocInContext(SemaRef.Context),
|
|
Loc, Loc);
|
|
|
|
break;
|
|
}
|
|
|
|
case TemplateArgument::Expression:
|
|
Output = TemplateArgumentLoc(Arg, Arg.getAsExpr());
|
|
break;
|
|
|
|
case TemplateArgument::Declaration:
|
|
case TemplateArgument::Integral:
|
|
case TemplateArgument::Pack:
|
|
case TemplateArgument::NullPtr:
|
|
Output = TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
|
|
break;
|
|
}
|
|
}
|
|
|
|
template<typename Derived>
|
|
bool TreeTransform<Derived>::TransformTemplateArgument(
|
|
const TemplateArgumentLoc &Input,
|
|
TemplateArgumentLoc &Output) {
|
|
const TemplateArgument &Arg = Input.getArgument();
|
|
switch (Arg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
case TemplateArgument::Integral:
|
|
case TemplateArgument::Pack:
|
|
case TemplateArgument::Declaration:
|
|
case TemplateArgument::NullPtr:
|
|
llvm_unreachable("Unexpected TemplateArgument");
|
|
|
|
case TemplateArgument::Type: {
|
|
TypeSourceInfo *DI = Input.getTypeSourceInfo();
|
|
if (DI == NULL)
|
|
DI = InventTypeSourceInfo(Input.getArgument().getAsType());
|
|
|
|
DI = getDerived().TransformType(DI);
|
|
if (!DI) return true;
|
|
|
|
Output = TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
|
|
return false;
|
|
}
|
|
|
|
case TemplateArgument::Template: {
|
|
NestedNameSpecifierLoc QualifierLoc = Input.getTemplateQualifierLoc();
|
|
if (QualifierLoc) {
|
|
QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc);
|
|
if (!QualifierLoc)
|
|
return true;
|
|
}
|
|
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(QualifierLoc);
|
|
TemplateName Template
|
|
= getDerived().TransformTemplateName(SS, Arg.getAsTemplate(),
|
|
Input.getTemplateNameLoc());
|
|
if (Template.isNull())
|
|
return true;
|
|
|
|
Output = TemplateArgumentLoc(TemplateArgument(Template), QualifierLoc,
|
|
Input.getTemplateNameLoc());
|
|
return false;
|
|
}
|
|
|
|
case TemplateArgument::TemplateExpansion:
|
|
llvm_unreachable("Caller should expand pack expansions");
|
|
|
|
case TemplateArgument::Expression: {
|
|
// Template argument expressions are constant expressions.
|
|
EnterExpressionEvaluationContext Unevaluated(getSema(),
|
|
Sema::ConstantEvaluated);
|
|
|
|
Expr *InputExpr = Input.getSourceExpression();
|
|
if (!InputExpr) InputExpr = Input.getArgument().getAsExpr();
|
|
|
|
ExprResult E = getDerived().TransformExpr(InputExpr);
|
|
E = SemaRef.ActOnConstantExpression(E);
|
|
if (E.isInvalid()) return true;
|
|
Output = TemplateArgumentLoc(TemplateArgument(E.take()), E.take());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Work around bogus GCC warning
|
|
return true;
|
|
}
|
|
|
|
/// \brief Iterator adaptor that invents template argument location information
|
|
/// for each of the template arguments in its underlying iterator.
|
|
template<typename Derived, typename InputIterator>
|
|
class TemplateArgumentLocInventIterator {
|
|
TreeTransform<Derived> &Self;
|
|
InputIterator Iter;
|
|
|
|
public:
|
|
typedef TemplateArgumentLoc value_type;
|
|
typedef TemplateArgumentLoc reference;
|
|
typedef typename std::iterator_traits<InputIterator>::difference_type
|
|
difference_type;
|
|
typedef std::input_iterator_tag iterator_category;
|
|
|
|
class pointer {
|
|
TemplateArgumentLoc Arg;
|
|
|
|
public:
|
|
explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
|
|
|
|
const TemplateArgumentLoc *operator->() const { return &Arg; }
|
|
};
|
|
|
|
TemplateArgumentLocInventIterator() { }
|
|
|
|
explicit TemplateArgumentLocInventIterator(TreeTransform<Derived> &Self,
|
|
InputIterator Iter)
|
|
: Self(Self), Iter(Iter) { }
|
|
|
|
TemplateArgumentLocInventIterator &operator++() {
|
|
++Iter;
|
|
return *this;
|
|
}
|
|
|
|
TemplateArgumentLocInventIterator operator++(int) {
|
|
TemplateArgumentLocInventIterator Old(*this);
|
|
++(*this);
|
|
return Old;
|
|
}
|
|
|
|
reference operator*() const {
|
|
TemplateArgumentLoc Result;
|
|
Self.InventTemplateArgumentLoc(*Iter, Result);
|
|
return Result;
|
|
}
|
|
|
|
pointer operator->() const { return pointer(**this); }
|
|
|
|
friend bool operator==(const TemplateArgumentLocInventIterator &X,
|
|
const TemplateArgumentLocInventIterator &Y) {
|
|
return X.Iter == Y.Iter;
|
|
}
|
|
|
|
friend bool operator!=(const TemplateArgumentLocInventIterator &X,
|
|
const TemplateArgumentLocInventIterator &Y) {
|
|
return X.Iter != Y.Iter;
|
|
}
|
|
};
|
|
|
|
template<typename Derived>
|
|
template<typename InputIterator>
|
|
bool TreeTransform<Derived>::TransformTemplateArguments(InputIterator First,
|
|
InputIterator Last,
|
|
TemplateArgumentListInfo &Outputs) {
|
|
for (; First != Last; ++First) {
|
|
TemplateArgumentLoc Out;
|
|
TemplateArgumentLoc In = *First;
|
|
|
|
if (In.getArgument().getKind() == TemplateArgument::Pack) {
|
|
// Unpack argument packs, which we translate them into separate
|
|
// arguments.
|
|
// FIXME: We could do much better if we could guarantee that the
|
|
// TemplateArgumentLocInfo for the pack expansion would be usable for
|
|
// all of the template arguments in the argument pack.
|
|
typedef TemplateArgumentLocInventIterator<Derived,
|
|
TemplateArgument::pack_iterator>
|
|
PackLocIterator;
|
|
if (TransformTemplateArguments(PackLocIterator(*this,
|
|
In.getArgument().pack_begin()),
|
|
PackLocIterator(*this,
|
|
In.getArgument().pack_end()),
|
|
Outputs))
|
|
return true;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (In.getArgument().isPackExpansion()) {
|
|
// We have a pack expansion, for which we will be substituting into
|
|
// the pattern.
|
|
SourceLocation Ellipsis;
|
|
Optional<unsigned> OrigNumExpansions;
|
|
TemplateArgumentLoc Pattern
|
|
= getSema().getTemplateArgumentPackExpansionPattern(
|
|
In, Ellipsis, OrigNumExpansions);
|
|
|
|
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
|
|
getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
|
|
assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
|
|
|
|
// Determine whether the set of unexpanded parameter packs can and should
|
|
// be expanded.
|
|
bool Expand = true;
|
|
bool RetainExpansion = false;
|
|
Optional<unsigned> NumExpansions = OrigNumExpansions;
|
|
if (getDerived().TryExpandParameterPacks(Ellipsis,
|
|
Pattern.getSourceRange(),
|
|
Unexpanded,
|
|
Expand,
|
|
RetainExpansion,
|
|
NumExpansions))
|
|
return true;
|
|
|
|
if (!Expand) {
|
|
// The transform has determined that we should perform a simple
|
|
// transformation on the pack expansion, producing another pack
|
|
// expansion.
|
|
TemplateArgumentLoc OutPattern;
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
|
|
if (getDerived().TransformTemplateArgument(Pattern, OutPattern))
|
|
return true;
|
|
|
|
Out = getDerived().RebuildPackExpansion(OutPattern, Ellipsis,
|
|
NumExpansions);
|
|
if (Out.getArgument().isNull())
|
|
return true;
|
|
|
|
Outputs.addArgument(Out);
|
|
continue;
|
|
}
|
|
|
|
// The transform has determined that we should perform an elementwise
|
|
// expansion of the pattern. Do so.
|
|
for (unsigned I = 0; I != *NumExpansions; ++I) {
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
|
|
|
|
if (getDerived().TransformTemplateArgument(Pattern, Out))
|
|
return true;
|
|
|
|
if (Out.getArgument().containsUnexpandedParameterPack()) {
|
|
Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
|
|
OrigNumExpansions);
|
|
if (Out.getArgument().isNull())
|
|
return true;
|
|
}
|
|
|
|
Outputs.addArgument(Out);
|
|
}
|
|
|
|
// If we're supposed to retain a pack expansion, do so by temporarily
|
|
// forgetting the partially-substituted parameter pack.
|
|
if (RetainExpansion) {
|
|
ForgetPartiallySubstitutedPackRAII Forget(getDerived());
|
|
|
|
if (getDerived().TransformTemplateArgument(Pattern, Out))
|
|
return true;
|
|
|
|
Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
|
|
OrigNumExpansions);
|
|
if (Out.getArgument().isNull())
|
|
return true;
|
|
|
|
Outputs.addArgument(Out);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// The simple case:
|
|
if (getDerived().TransformTemplateArgument(In, Out))
|
|
return true;
|
|
|
|
Outputs.addArgument(Out);
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type transformation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformType(QualType T) {
|
|
if (getDerived().AlreadyTransformed(T))
|
|
return T;
|
|
|
|
// Temporary workaround. All of these transformations should
|
|
// eventually turn into transformations on TypeLocs.
|
|
TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T,
|
|
getDerived().getBaseLocation());
|
|
|
|
TypeSourceInfo *NewDI = getDerived().TransformType(DI);
|
|
|
|
if (!NewDI)
|
|
return QualType();
|
|
|
|
return NewDI->getType();
|
|
}
|
|
|
|
template<typename Derived>
|
|
TypeSourceInfo *TreeTransform<Derived>::TransformType(TypeSourceInfo *DI) {
|
|
// Refine the base location to the type's location.
|
|
TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(),
|
|
getDerived().getBaseEntity());
|
|
if (getDerived().AlreadyTransformed(DI->getType()))
|
|
return DI;
|
|
|
|
TypeLocBuilder TLB;
|
|
|
|
TypeLoc TL = DI->getTypeLoc();
|
|
TLB.reserve(TL.getFullDataSize());
|
|
|
|
QualType Result = getDerived().TransformType(TLB, TL);
|
|
if (Result.isNull())
|
|
return 0;
|
|
|
|
return TLB.getTypeSourceInfo(SemaRef.Context, Result);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformType(TypeLocBuilder &TLB, TypeLoc T) {
|
|
switch (T.getTypeLocClass()) {
|
|
#define ABSTRACT_TYPELOC(CLASS, PARENT)
|
|
#define TYPELOC(CLASS, PARENT) \
|
|
case TypeLoc::CLASS: \
|
|
return getDerived().Transform##CLASS##Type(TLB, \
|
|
T.castAs<CLASS##TypeLoc>());
|
|
#include "clang/AST/TypeLocNodes.def"
|
|
}
|
|
|
|
llvm_unreachable("unhandled type loc!");
|
|
}
|
|
|
|
/// FIXME: By default, this routine adds type qualifiers only to types
|
|
/// that can have qualifiers, and silently suppresses those qualifiers
|
|
/// that are not permitted (e.g., qualifiers on reference or function
|
|
/// types). This is the right thing for template instantiation, but
|
|
/// probably not for other clients.
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformQualifiedType(TypeLocBuilder &TLB,
|
|
QualifiedTypeLoc T) {
|
|
Qualifiers Quals = T.getType().getLocalQualifiers();
|
|
|
|
QualType Result = getDerived().TransformType(TLB, T.getUnqualifiedLoc());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
|
|
// Silently suppress qualifiers if the result type can't be qualified.
|
|
// FIXME: this is the right thing for template instantiation, but
|
|
// probably not for other clients.
|
|
if (Result->isFunctionType() || Result->isReferenceType())
|
|
return Result;
|
|
|
|
// Suppress Objective-C lifetime qualifiers if they don't make sense for the
|
|
// resulting type.
|
|
if (Quals.hasObjCLifetime()) {
|
|
if (!Result->isObjCLifetimeType() && !Result->isDependentType())
|
|
Quals.removeObjCLifetime();
|
|
else if (Result.getObjCLifetime()) {
|
|
// Objective-C ARC:
|
|
// A lifetime qualifier applied to a substituted template parameter
|
|
// overrides the lifetime qualifier from the template argument.
|
|
const AutoType *AutoTy;
|
|
if (const SubstTemplateTypeParmType *SubstTypeParam
|
|
= dyn_cast<SubstTemplateTypeParmType>(Result)) {
|
|
QualType Replacement = SubstTypeParam->getReplacementType();
|
|
Qualifiers Qs = Replacement.getQualifiers();
|
|
Qs.removeObjCLifetime();
|
|
Replacement
|
|
= SemaRef.Context.getQualifiedType(Replacement.getUnqualifiedType(),
|
|
Qs);
|
|
Result = SemaRef.Context.getSubstTemplateTypeParmType(
|
|
SubstTypeParam->getReplacedParameter(),
|
|
Replacement);
|
|
TLB.TypeWasModifiedSafely(Result);
|
|
} else if ((AutoTy = dyn_cast<AutoType>(Result)) && AutoTy->isDeduced()) {
|
|
// 'auto' types behave the same way as template parameters.
|
|
QualType Deduced = AutoTy->getDeducedType();
|
|
Qualifiers Qs = Deduced.getQualifiers();
|
|
Qs.removeObjCLifetime();
|
|
Deduced = SemaRef.Context.getQualifiedType(Deduced.getUnqualifiedType(),
|
|
Qs);
|
|
Result = SemaRef.Context.getAutoType(Deduced, AutoTy->isDecltypeAuto(),
|
|
AutoTy->isDependentType());
|
|
TLB.TypeWasModifiedSafely(Result);
|
|
} else {
|
|
// Otherwise, complain about the addition of a qualifier to an
|
|
// already-qualified type.
|
|
SourceRange R = T.getUnqualifiedLoc().getSourceRange();
|
|
SemaRef.Diag(R.getBegin(), diag::err_attr_objc_ownership_redundant)
|
|
<< Result << R;
|
|
|
|
Quals.removeObjCLifetime();
|
|
}
|
|
}
|
|
}
|
|
if (!Quals.empty()) {
|
|
Result = SemaRef.BuildQualifiedType(Result, T.getBeginLoc(), Quals);
|
|
// BuildQualifiedType might not add qualifiers if they are invalid.
|
|
if (Result.hasLocalQualifiers())
|
|
TLB.push<QualifiedTypeLoc>(Result);
|
|
// No location information to preserve.
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
TypeLoc
|
|
TreeTransform<Derived>::TransformTypeInObjectScope(TypeLoc TL,
|
|
QualType ObjectType,
|
|
NamedDecl *UnqualLookup,
|
|
CXXScopeSpec &SS) {
|
|
QualType T = TL.getType();
|
|
if (getDerived().AlreadyTransformed(T))
|
|
return TL;
|
|
|
|
TypeLocBuilder TLB;
|
|
QualType Result;
|
|
|
|
if (isa<TemplateSpecializationType>(T)) {
|
|
TemplateSpecializationTypeLoc SpecTL =
|
|
TL.castAs<TemplateSpecializationTypeLoc>();
|
|
|
|
TemplateName Template =
|
|
getDerived().TransformTemplateName(SS,
|
|
SpecTL.getTypePtr()->getTemplateName(),
|
|
SpecTL.getTemplateNameLoc(),
|
|
ObjectType, UnqualLookup);
|
|
if (Template.isNull())
|
|
return TypeLoc();
|
|
|
|
Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL,
|
|
Template);
|
|
} else if (isa<DependentTemplateSpecializationType>(T)) {
|
|
DependentTemplateSpecializationTypeLoc SpecTL =
|
|
TL.castAs<DependentTemplateSpecializationTypeLoc>();
|
|
|
|
TemplateName Template
|
|
= getDerived().RebuildTemplateName(SS,
|
|
*SpecTL.getTypePtr()->getIdentifier(),
|
|
SpecTL.getTemplateNameLoc(),
|
|
ObjectType, UnqualLookup);
|
|
if (Template.isNull())
|
|
return TypeLoc();
|
|
|
|
Result = getDerived().TransformDependentTemplateSpecializationType(TLB,
|
|
SpecTL,
|
|
Template,
|
|
SS);
|
|
} else {
|
|
// Nothing special needs to be done for these.
|
|
Result = getDerived().TransformType(TLB, TL);
|
|
}
|
|
|
|
if (Result.isNull())
|
|
return TypeLoc();
|
|
|
|
return TLB.getTypeSourceInfo(SemaRef.Context, Result)->getTypeLoc();
|
|
}
|
|
|
|
template<typename Derived>
|
|
TypeSourceInfo *
|
|
TreeTransform<Derived>::TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
|
|
QualType ObjectType,
|
|
NamedDecl *UnqualLookup,
|
|
CXXScopeSpec &SS) {
|
|
// FIXME: Painfully copy-paste from the above!
|
|
|
|
QualType T = TSInfo->getType();
|
|
if (getDerived().AlreadyTransformed(T))
|
|
return TSInfo;
|
|
|
|
TypeLocBuilder TLB;
|
|
QualType Result;
|
|
|
|
TypeLoc TL = TSInfo->getTypeLoc();
|
|
if (isa<TemplateSpecializationType>(T)) {
|
|
TemplateSpecializationTypeLoc SpecTL =
|
|
TL.castAs<TemplateSpecializationTypeLoc>();
|
|
|
|
TemplateName Template
|
|
= getDerived().TransformTemplateName(SS,
|
|
SpecTL.getTypePtr()->getTemplateName(),
|
|
SpecTL.getTemplateNameLoc(),
|
|
ObjectType, UnqualLookup);
|
|
if (Template.isNull())
|
|
return 0;
|
|
|
|
Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL,
|
|
Template);
|
|
} else if (isa<DependentTemplateSpecializationType>(T)) {
|
|
DependentTemplateSpecializationTypeLoc SpecTL =
|
|
TL.castAs<DependentTemplateSpecializationTypeLoc>();
|
|
|
|
TemplateName Template
|
|
= getDerived().RebuildTemplateName(SS,
|
|
*SpecTL.getTypePtr()->getIdentifier(),
|
|
SpecTL.getTemplateNameLoc(),
|
|
ObjectType, UnqualLookup);
|
|
if (Template.isNull())
|
|
return 0;
|
|
|
|
Result = getDerived().TransformDependentTemplateSpecializationType(TLB,
|
|
SpecTL,
|
|
Template,
|
|
SS);
|
|
} else {
|
|
// Nothing special needs to be done for these.
|
|
Result = getDerived().TransformType(TLB, TL);
|
|
}
|
|
|
|
if (Result.isNull())
|
|
return 0;
|
|
|
|
return TLB.getTypeSourceInfo(SemaRef.Context, Result);
|
|
}
|
|
|
|
template <class TyLoc> static inline
|
|
QualType TransformTypeSpecType(TypeLocBuilder &TLB, TyLoc T) {
|
|
TyLoc NewT = TLB.push<TyLoc>(T.getType());
|
|
NewT.setNameLoc(T.getNameLoc());
|
|
return T.getType();
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformBuiltinType(TypeLocBuilder &TLB,
|
|
BuiltinTypeLoc T) {
|
|
BuiltinTypeLoc NewT = TLB.push<BuiltinTypeLoc>(T.getType());
|
|
NewT.setBuiltinLoc(T.getBuiltinLoc());
|
|
if (T.needsExtraLocalData())
|
|
NewT.getWrittenBuiltinSpecs() = T.getWrittenBuiltinSpecs();
|
|
return T.getType();
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformComplexType(TypeLocBuilder &TLB,
|
|
ComplexTypeLoc T) {
|
|
// FIXME: recurse?
|
|
return TransformTypeSpecType(TLB, T);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformDecayedType(TypeLocBuilder &TLB,
|
|
DecayedTypeLoc TL) {
|
|
QualType OriginalType = getDerived().TransformType(TLB, TL.getOriginalLoc());
|
|
if (OriginalType.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
OriginalType != TL.getOriginalLoc().getType())
|
|
Result = SemaRef.Context.getDecayedType(OriginalType);
|
|
TLB.push<DecayedTypeLoc>(Result);
|
|
// Nothing to set for DecayedTypeLoc.
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformPointerType(TypeLocBuilder &TLB,
|
|
PointerTypeLoc TL) {
|
|
QualType PointeeType
|
|
= getDerived().TransformType(TLB, TL.getPointeeLoc());
|
|
if (PointeeType.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (PointeeType->getAs<ObjCObjectType>()) {
|
|
// A dependent pointer type 'T *' has is being transformed such
|
|
// that an Objective-C class type is being replaced for 'T'. The
|
|
// resulting pointer type is an ObjCObjectPointerType, not a
|
|
// PointerType.
|
|
Result = SemaRef.Context.getObjCObjectPointerType(PointeeType);
|
|
|
|
ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result);
|
|
NewT.setStarLoc(TL.getStarLoc());
|
|
return Result;
|
|
}
|
|
|
|
if (getDerived().AlwaysRebuild() ||
|
|
PointeeType != TL.getPointeeLoc().getType()) {
|
|
Result = getDerived().RebuildPointerType(PointeeType, TL.getSigilLoc());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
// Objective-C ARC can add lifetime qualifiers to the type that we're
|
|
// pointing to.
|
|
TLB.TypeWasModifiedSafely(Result->getPointeeType());
|
|
|
|
PointerTypeLoc NewT = TLB.push<PointerTypeLoc>(Result);
|
|
NewT.setSigilLoc(TL.getSigilLoc());
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformBlockPointerType(TypeLocBuilder &TLB,
|
|
BlockPointerTypeLoc TL) {
|
|
QualType PointeeType
|
|
= getDerived().TransformType(TLB, TL.getPointeeLoc());
|
|
if (PointeeType.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
PointeeType != TL.getPointeeLoc().getType()) {
|
|
Result = getDerived().RebuildBlockPointerType(PointeeType,
|
|
TL.getSigilLoc());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
BlockPointerTypeLoc NewT = TLB.push<BlockPointerTypeLoc>(Result);
|
|
NewT.setSigilLoc(TL.getSigilLoc());
|
|
return Result;
|
|
}
|
|
|
|
/// Transforms a reference type. Note that somewhat paradoxically we
|
|
/// don't care whether the type itself is an l-value type or an r-value
|
|
/// type; we only care if the type was *written* as an l-value type
|
|
/// or an r-value type.
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformReferenceType(TypeLocBuilder &TLB,
|
|
ReferenceTypeLoc TL) {
|
|
const ReferenceType *T = TL.getTypePtr();
|
|
|
|
// Note that this works with the pointee-as-written.
|
|
QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
|
|
if (PointeeType.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
PointeeType != T->getPointeeTypeAsWritten()) {
|
|
Result = getDerived().RebuildReferenceType(PointeeType,
|
|
T->isSpelledAsLValue(),
|
|
TL.getSigilLoc());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
// Objective-C ARC can add lifetime qualifiers to the type that we're
|
|
// referring to.
|
|
TLB.TypeWasModifiedSafely(
|
|
Result->getAs<ReferenceType>()->getPointeeTypeAsWritten());
|
|
|
|
// r-value references can be rebuilt as l-value references.
|
|
ReferenceTypeLoc NewTL;
|
|
if (isa<LValueReferenceType>(Result))
|
|
NewTL = TLB.push<LValueReferenceTypeLoc>(Result);
|
|
else
|
|
NewTL = TLB.push<RValueReferenceTypeLoc>(Result);
|
|
NewTL.setSigilLoc(TL.getSigilLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformLValueReferenceType(TypeLocBuilder &TLB,
|
|
LValueReferenceTypeLoc TL) {
|
|
return TransformReferenceType(TLB, TL);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformRValueReferenceType(TypeLocBuilder &TLB,
|
|
RValueReferenceTypeLoc TL) {
|
|
return TransformReferenceType(TLB, TL);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformMemberPointerType(TypeLocBuilder &TLB,
|
|
MemberPointerTypeLoc TL) {
|
|
QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
|
|
if (PointeeType.isNull())
|
|
return QualType();
|
|
|
|
TypeSourceInfo* OldClsTInfo = TL.getClassTInfo();
|
|
TypeSourceInfo* NewClsTInfo = 0;
|
|
if (OldClsTInfo) {
|
|
NewClsTInfo = getDerived().TransformType(OldClsTInfo);
|
|
if (!NewClsTInfo)
|
|
return QualType();
|
|
}
|
|
|
|
const MemberPointerType *T = TL.getTypePtr();
|
|
QualType OldClsType = QualType(T->getClass(), 0);
|
|
QualType NewClsType;
|
|
if (NewClsTInfo)
|
|
NewClsType = NewClsTInfo->getType();
|
|
else {
|
|
NewClsType = getDerived().TransformType(OldClsType);
|
|
if (NewClsType.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
PointeeType != T->getPointeeType() ||
|
|
NewClsType != OldClsType) {
|
|
Result = getDerived().RebuildMemberPointerType(PointeeType, NewClsType,
|
|
TL.getStarLoc());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
MemberPointerTypeLoc NewTL = TLB.push<MemberPointerTypeLoc>(Result);
|
|
NewTL.setSigilLoc(TL.getSigilLoc());
|
|
NewTL.setClassTInfo(NewClsTInfo);
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformConstantArrayType(TypeLocBuilder &TLB,
|
|
ConstantArrayTypeLoc TL) {
|
|
const ConstantArrayType *T = TL.getTypePtr();
|
|
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
|
|
if (ElementType.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
ElementType != T->getElementType()) {
|
|
Result = getDerived().RebuildConstantArrayType(ElementType,
|
|
T->getSizeModifier(),
|
|
T->getSize(),
|
|
T->getIndexTypeCVRQualifiers(),
|
|
TL.getBracketsRange());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
// We might have either a ConstantArrayType or a VariableArrayType now:
|
|
// a ConstantArrayType is allowed to have an element type which is a
|
|
// VariableArrayType if the type is dependent. Fortunately, all array
|
|
// types have the same location layout.
|
|
ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
|
|
NewTL.setLBracketLoc(TL.getLBracketLoc());
|
|
NewTL.setRBracketLoc(TL.getRBracketLoc());
|
|
|
|
Expr *Size = TL.getSizeExpr();
|
|
if (Size) {
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef,
|
|
Sema::ConstantEvaluated);
|
|
Size = getDerived().TransformExpr(Size).template takeAs<Expr>();
|
|
Size = SemaRef.ActOnConstantExpression(Size).take();
|
|
}
|
|
NewTL.setSizeExpr(Size);
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformIncompleteArrayType(
|
|
TypeLocBuilder &TLB,
|
|
IncompleteArrayTypeLoc TL) {
|
|
const IncompleteArrayType *T = TL.getTypePtr();
|
|
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
|
|
if (ElementType.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
ElementType != T->getElementType()) {
|
|
Result = getDerived().RebuildIncompleteArrayType(ElementType,
|
|
T->getSizeModifier(),
|
|
T->getIndexTypeCVRQualifiers(),
|
|
TL.getBracketsRange());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
IncompleteArrayTypeLoc NewTL = TLB.push<IncompleteArrayTypeLoc>(Result);
|
|
NewTL.setLBracketLoc(TL.getLBracketLoc());
|
|
NewTL.setRBracketLoc(TL.getRBracketLoc());
|
|
NewTL.setSizeExpr(0);
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformVariableArrayType(TypeLocBuilder &TLB,
|
|
VariableArrayTypeLoc TL) {
|
|
const VariableArrayType *T = TL.getTypePtr();
|
|
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
|
|
if (ElementType.isNull())
|
|
return QualType();
|
|
|
|
ExprResult SizeResult
|
|
= getDerived().TransformExpr(T->getSizeExpr());
|
|
if (SizeResult.isInvalid())
|
|
return QualType();
|
|
|
|
Expr *Size = SizeResult.take();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
ElementType != T->getElementType() ||
|
|
Size != T->getSizeExpr()) {
|
|
Result = getDerived().RebuildVariableArrayType(ElementType,
|
|
T->getSizeModifier(),
|
|
Size,
|
|
T->getIndexTypeCVRQualifiers(),
|
|
TL.getBracketsRange());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
VariableArrayTypeLoc NewTL = TLB.push<VariableArrayTypeLoc>(Result);
|
|
NewTL.setLBracketLoc(TL.getLBracketLoc());
|
|
NewTL.setRBracketLoc(TL.getRBracketLoc());
|
|
NewTL.setSizeExpr(Size);
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformDependentSizedArrayType(TypeLocBuilder &TLB,
|
|
DependentSizedArrayTypeLoc TL) {
|
|
const DependentSizedArrayType *T = TL.getTypePtr();
|
|
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
|
|
if (ElementType.isNull())
|
|
return QualType();
|
|
|
|
// Array bounds are constant expressions.
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef,
|
|
Sema::ConstantEvaluated);
|
|
|
|
// Prefer the expression from the TypeLoc; the other may have been uniqued.
|
|
Expr *origSize = TL.getSizeExpr();
|
|
if (!origSize) origSize = T->getSizeExpr();
|
|
|
|
ExprResult sizeResult
|
|
= getDerived().TransformExpr(origSize);
|
|
sizeResult = SemaRef.ActOnConstantExpression(sizeResult);
|
|
if (sizeResult.isInvalid())
|
|
return QualType();
|
|
|
|
Expr *size = sizeResult.get();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
ElementType != T->getElementType() ||
|
|
size != origSize) {
|
|
Result = getDerived().RebuildDependentSizedArrayType(ElementType,
|
|
T->getSizeModifier(),
|
|
size,
|
|
T->getIndexTypeCVRQualifiers(),
|
|
TL.getBracketsRange());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
// We might have any sort of array type now, but fortunately they
|
|
// all have the same location layout.
|
|
ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
|
|
NewTL.setLBracketLoc(TL.getLBracketLoc());
|
|
NewTL.setRBracketLoc(TL.getRBracketLoc());
|
|
NewTL.setSizeExpr(size);
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformDependentSizedExtVectorType(
|
|
TypeLocBuilder &TLB,
|
|
DependentSizedExtVectorTypeLoc TL) {
|
|
const DependentSizedExtVectorType *T = TL.getTypePtr();
|
|
|
|
// FIXME: ext vector locs should be nested
|
|
QualType ElementType = getDerived().TransformType(T->getElementType());
|
|
if (ElementType.isNull())
|
|
return QualType();
|
|
|
|
// Vector sizes are constant expressions.
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef,
|
|
Sema::ConstantEvaluated);
|
|
|
|
ExprResult Size = getDerived().TransformExpr(T->getSizeExpr());
|
|
Size = SemaRef.ActOnConstantExpression(Size);
|
|
if (Size.isInvalid())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
ElementType != T->getElementType() ||
|
|
Size.get() != T->getSizeExpr()) {
|
|
Result = getDerived().RebuildDependentSizedExtVectorType(ElementType,
|
|
Size.take(),
|
|
T->getAttributeLoc());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
// Result might be dependent or not.
|
|
if (isa<DependentSizedExtVectorType>(Result)) {
|
|
DependentSizedExtVectorTypeLoc NewTL
|
|
= TLB.push<DependentSizedExtVectorTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
} else {
|
|
ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformVectorType(TypeLocBuilder &TLB,
|
|
VectorTypeLoc TL) {
|
|
const VectorType *T = TL.getTypePtr();
|
|
QualType ElementType = getDerived().TransformType(T->getElementType());
|
|
if (ElementType.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
ElementType != T->getElementType()) {
|
|
Result = getDerived().RebuildVectorType(ElementType, T->getNumElements(),
|
|
T->getVectorKind());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformExtVectorType(TypeLocBuilder &TLB,
|
|
ExtVectorTypeLoc TL) {
|
|
const VectorType *T = TL.getTypePtr();
|
|
QualType ElementType = getDerived().TransformType(T->getElementType());
|
|
if (ElementType.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
ElementType != T->getElementType()) {
|
|
Result = getDerived().RebuildExtVectorType(ElementType,
|
|
T->getNumElements(),
|
|
/*FIXME*/ SourceLocation());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template <typename Derived>
|
|
ParmVarDecl *TreeTransform<Derived>::TransformFunctionTypeParam(
|
|
ParmVarDecl *OldParm, int indexAdjustment, Optional<unsigned> NumExpansions,
|
|
bool ExpectParameterPack) {
|
|
TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo();
|
|
TypeSourceInfo *NewDI = 0;
|
|
|
|
if (NumExpansions && isa<PackExpansionType>(OldDI->getType())) {
|
|
// If we're substituting into a pack expansion type and we know the
|
|
// length we want to expand to, just substitute for the pattern.
|
|
TypeLoc OldTL = OldDI->getTypeLoc();
|
|
PackExpansionTypeLoc OldExpansionTL = OldTL.castAs<PackExpansionTypeLoc>();
|
|
|
|
TypeLocBuilder TLB;
|
|
TypeLoc NewTL = OldDI->getTypeLoc();
|
|
TLB.reserve(NewTL.getFullDataSize());
|
|
|
|
QualType Result = getDerived().TransformType(TLB,
|
|
OldExpansionTL.getPatternLoc());
|
|
if (Result.isNull())
|
|
return 0;
|
|
|
|
Result = RebuildPackExpansionType(Result,
|
|
OldExpansionTL.getPatternLoc().getSourceRange(),
|
|
OldExpansionTL.getEllipsisLoc(),
|
|
NumExpansions);
|
|
if (Result.isNull())
|
|
return 0;
|
|
|
|
PackExpansionTypeLoc NewExpansionTL
|
|
= TLB.push<PackExpansionTypeLoc>(Result);
|
|
NewExpansionTL.setEllipsisLoc(OldExpansionTL.getEllipsisLoc());
|
|
NewDI = TLB.getTypeSourceInfo(SemaRef.Context, Result);
|
|
} else
|
|
NewDI = getDerived().TransformType(OldDI);
|
|
if (!NewDI)
|
|
return 0;
|
|
|
|
if (NewDI == OldDI && indexAdjustment == 0)
|
|
return OldParm;
|
|
|
|
ParmVarDecl *newParm = ParmVarDecl::Create(SemaRef.Context,
|
|
OldParm->getDeclContext(),
|
|
OldParm->getInnerLocStart(),
|
|
OldParm->getLocation(),
|
|
OldParm->getIdentifier(),
|
|
NewDI->getType(),
|
|
NewDI,
|
|
OldParm->getStorageClass(),
|
|
/* DefArg */ NULL);
|
|
newParm->setScopeInfo(OldParm->getFunctionScopeDepth(),
|
|
OldParm->getFunctionScopeIndex() + indexAdjustment);
|
|
return newParm;
|
|
}
|
|
|
|
template<typename Derived>
|
|
bool TreeTransform<Derived>::
|
|
TransformFunctionTypeParams(SourceLocation Loc,
|
|
ParmVarDecl **Params, unsigned NumParams,
|
|
const QualType *ParamTypes,
|
|
SmallVectorImpl<QualType> &OutParamTypes,
|
|
SmallVectorImpl<ParmVarDecl*> *PVars) {
|
|
int indexAdjustment = 0;
|
|
|
|
for (unsigned i = 0; i != NumParams; ++i) {
|
|
if (ParmVarDecl *OldParm = Params[i]) {
|
|
assert(OldParm->getFunctionScopeIndex() == i);
|
|
|
|
Optional<unsigned> NumExpansions;
|
|
ParmVarDecl *NewParm = 0;
|
|
if (OldParm->isParameterPack()) {
|
|
// We have a function parameter pack that may need to be expanded.
|
|
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
|
|
|
|
// Find the parameter packs that could be expanded.
|
|
TypeLoc TL = OldParm->getTypeSourceInfo()->getTypeLoc();
|
|
PackExpansionTypeLoc ExpansionTL = TL.castAs<PackExpansionTypeLoc>();
|
|
TypeLoc Pattern = ExpansionTL.getPatternLoc();
|
|
SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded);
|
|
assert(Unexpanded.size() > 0 && "Could not find parameter packs!");
|
|
|
|
// Determine whether we should expand the parameter packs.
|
|
bool ShouldExpand = false;
|
|
bool RetainExpansion = false;
|
|
Optional<unsigned> OrigNumExpansions =
|
|
ExpansionTL.getTypePtr()->getNumExpansions();
|
|
NumExpansions = OrigNumExpansions;
|
|
if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
|
|
Pattern.getSourceRange(),
|
|
Unexpanded,
|
|
ShouldExpand,
|
|
RetainExpansion,
|
|
NumExpansions)) {
|
|
return true;
|
|
}
|
|
|
|
if (ShouldExpand) {
|
|
// Expand the function parameter pack into multiple, separate
|
|
// parameters.
|
|
getDerived().ExpandingFunctionParameterPack(OldParm);
|
|
for (unsigned I = 0; I != *NumExpansions; ++I) {
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
|
|
ParmVarDecl *NewParm
|
|
= getDerived().TransformFunctionTypeParam(OldParm,
|
|
indexAdjustment++,
|
|
OrigNumExpansions,
|
|
/*ExpectParameterPack=*/false);
|
|
if (!NewParm)
|
|
return true;
|
|
|
|
OutParamTypes.push_back(NewParm->getType());
|
|
if (PVars)
|
|
PVars->push_back(NewParm);
|
|
}
|
|
|
|
// If we're supposed to retain a pack expansion, do so by temporarily
|
|
// forgetting the partially-substituted parameter pack.
|
|
if (RetainExpansion) {
|
|
ForgetPartiallySubstitutedPackRAII Forget(getDerived());
|
|
ParmVarDecl *NewParm
|
|
= getDerived().TransformFunctionTypeParam(OldParm,
|
|
indexAdjustment++,
|
|
OrigNumExpansions,
|
|
/*ExpectParameterPack=*/false);
|
|
if (!NewParm)
|
|
return true;
|
|
|
|
OutParamTypes.push_back(NewParm->getType());
|
|
if (PVars)
|
|
PVars->push_back(NewParm);
|
|
}
|
|
|
|
// The next parameter should have the same adjustment as the
|
|
// last thing we pushed, but we post-incremented indexAdjustment
|
|
// on every push. Also, if we push nothing, the adjustment should
|
|
// go down by one.
|
|
indexAdjustment--;
|
|
|
|
// We're done with the pack expansion.
|
|
continue;
|
|
}
|
|
|
|
// We'll substitute the parameter now without expanding the pack
|
|
// expansion.
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
|
|
NewParm = getDerived().TransformFunctionTypeParam(OldParm,
|
|
indexAdjustment,
|
|
NumExpansions,
|
|
/*ExpectParameterPack=*/true);
|
|
} else {
|
|
NewParm = getDerived().TransformFunctionTypeParam(
|
|
OldParm, indexAdjustment, None, /*ExpectParameterPack=*/ false);
|
|
}
|
|
|
|
if (!NewParm)
|
|
return true;
|
|
|
|
OutParamTypes.push_back(NewParm->getType());
|
|
if (PVars)
|
|
PVars->push_back(NewParm);
|
|
continue;
|
|
}
|
|
|
|
// Deal with the possibility that we don't have a parameter
|
|
// declaration for this parameter.
|
|
QualType OldType = ParamTypes[i];
|
|
bool IsPackExpansion = false;
|
|
Optional<unsigned> NumExpansions;
|
|
QualType NewType;
|
|
if (const PackExpansionType *Expansion
|
|
= dyn_cast<PackExpansionType>(OldType)) {
|
|
// We have a function parameter pack that may need to be expanded.
|
|
QualType Pattern = Expansion->getPattern();
|
|
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
|
|
getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
|
|
|
|
// Determine whether we should expand the parameter packs.
|
|
bool ShouldExpand = false;
|
|
bool RetainExpansion = false;
|
|
if (getDerived().TryExpandParameterPacks(Loc, SourceRange(),
|
|
Unexpanded,
|
|
ShouldExpand,
|
|
RetainExpansion,
|
|
NumExpansions)) {
|
|
return true;
|
|
}
|
|
|
|
if (ShouldExpand) {
|
|
// Expand the function parameter pack into multiple, separate
|
|
// parameters.
|
|
for (unsigned I = 0; I != *NumExpansions; ++I) {
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
|
|
QualType NewType = getDerived().TransformType(Pattern);
|
|
if (NewType.isNull())
|
|
return true;
|
|
|
|
OutParamTypes.push_back(NewType);
|
|
if (PVars)
|
|
PVars->push_back(0);
|
|
}
|
|
|
|
// We're done with the pack expansion.
|
|
continue;
|
|
}
|
|
|
|
// If we're supposed to retain a pack expansion, do so by temporarily
|
|
// forgetting the partially-substituted parameter pack.
|
|
if (RetainExpansion) {
|
|
ForgetPartiallySubstitutedPackRAII Forget(getDerived());
|
|
QualType NewType = getDerived().TransformType(Pattern);
|
|
if (NewType.isNull())
|
|
return true;
|
|
|
|
OutParamTypes.push_back(NewType);
|
|
if (PVars)
|
|
PVars->push_back(0);
|
|
}
|
|
|
|
// We'll substitute the parameter now without expanding the pack
|
|
// expansion.
|
|
OldType = Expansion->getPattern();
|
|
IsPackExpansion = true;
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
|
|
NewType = getDerived().TransformType(OldType);
|
|
} else {
|
|
NewType = getDerived().TransformType(OldType);
|
|
}
|
|
|
|
if (NewType.isNull())
|
|
return true;
|
|
|
|
if (IsPackExpansion)
|
|
NewType = getSema().Context.getPackExpansionType(NewType,
|
|
NumExpansions);
|
|
|
|
OutParamTypes.push_back(NewType);
|
|
if (PVars)
|
|
PVars->push_back(0);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
if (PVars) {
|
|
for (unsigned i = 0, e = PVars->size(); i != e; ++i)
|
|
if (ParmVarDecl *parm = (*PVars)[i])
|
|
assert(parm->getFunctionScopeIndex() == i);
|
|
}
|
|
#endif
|
|
|
|
return false;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB,
|
|
FunctionProtoTypeLoc TL) {
|
|
return getDerived().TransformFunctionProtoType(TLB, TL, 0, 0);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB,
|
|
FunctionProtoTypeLoc TL,
|
|
CXXRecordDecl *ThisContext,
|
|
unsigned ThisTypeQuals) {
|
|
// Transform the parameters and return type.
|
|
//
|
|
// We are required to instantiate the params and return type in source order.
|
|
// When the function has a trailing return type, we instantiate the
|
|
// parameters before the return type, since the return type can then refer
|
|
// to the parameters themselves (via decltype, sizeof, etc.).
|
|
//
|
|
SmallVector<QualType, 4> ParamTypes;
|
|
SmallVector<ParmVarDecl*, 4> ParamDecls;
|
|
const FunctionProtoType *T = TL.getTypePtr();
|
|
|
|
QualType ResultType;
|
|
|
|
if (T->hasTrailingReturn()) {
|
|
if (getDerived().TransformFunctionTypeParams(TL.getBeginLoc(),
|
|
TL.getParmArray(),
|
|
TL.getNumArgs(),
|
|
TL.getTypePtr()->arg_type_begin(),
|
|
ParamTypes, &ParamDecls))
|
|
return QualType();
|
|
|
|
{
|
|
// C++11 [expr.prim.general]p3:
|
|
// If a declaration declares a member function or member function
|
|
// template of a class X, the expression this is a prvalue of type
|
|
// "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
|
|
// and the end of the function-definition, member-declarator, or
|
|
// declarator.
|
|
Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, ThisTypeQuals);
|
|
|
|
ResultType = getDerived().TransformType(TLB, TL.getResultLoc());
|
|
if (ResultType.isNull())
|
|
return QualType();
|
|
}
|
|
}
|
|
else {
|
|
ResultType = getDerived().TransformType(TLB, TL.getResultLoc());
|
|
if (ResultType.isNull())
|
|
return QualType();
|
|
|
|
if (getDerived().TransformFunctionTypeParams(TL.getBeginLoc(),
|
|
TL.getParmArray(),
|
|
TL.getNumArgs(),
|
|
TL.getTypePtr()->arg_type_begin(),
|
|
ParamTypes, &ParamDecls))
|
|
return QualType();
|
|
}
|
|
|
|
// FIXME: Need to transform the exception-specification too.
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
ResultType != T->getResultType() ||
|
|
T->getNumArgs() != ParamTypes.size() ||
|
|
!std::equal(T->arg_type_begin(), T->arg_type_end(), ParamTypes.begin())) {
|
|
Result = getDerived().RebuildFunctionProtoType(ResultType, ParamTypes,
|
|
T->getExtProtoInfo());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
|
|
NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
|
|
NewTL.setLParenLoc(TL.getLParenLoc());
|
|
NewTL.setRParenLoc(TL.getRParenLoc());
|
|
NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
|
|
for (unsigned i = 0, e = NewTL.getNumArgs(); i != e; ++i)
|
|
NewTL.setArg(i, ParamDecls[i]);
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformFunctionNoProtoType(
|
|
TypeLocBuilder &TLB,
|
|
FunctionNoProtoTypeLoc TL) {
|
|
const FunctionNoProtoType *T = TL.getTypePtr();
|
|
QualType ResultType = getDerived().TransformType(TLB, TL.getResultLoc());
|
|
if (ResultType.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
ResultType != T->getResultType())
|
|
Result = getDerived().RebuildFunctionNoProtoType(ResultType);
|
|
|
|
FunctionNoProtoTypeLoc NewTL = TLB.push<FunctionNoProtoTypeLoc>(Result);
|
|
NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
|
|
NewTL.setLParenLoc(TL.getLParenLoc());
|
|
NewTL.setRParenLoc(TL.getRParenLoc());
|
|
NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived> QualType
|
|
TreeTransform<Derived>::TransformUnresolvedUsingType(TypeLocBuilder &TLB,
|
|
UnresolvedUsingTypeLoc TL) {
|
|
const UnresolvedUsingType *T = TL.getTypePtr();
|
|
Decl *D = getDerived().TransformDecl(TL.getNameLoc(), T->getDecl());
|
|
if (!D)
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() || D != T->getDecl()) {
|
|
Result = getDerived().RebuildUnresolvedUsingType(D);
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
// We might get an arbitrary type spec type back. We should at
|
|
// least always get a type spec type, though.
|
|
TypeSpecTypeLoc NewTL = TLB.pushTypeSpec(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformTypedefType(TypeLocBuilder &TLB,
|
|
TypedefTypeLoc TL) {
|
|
const TypedefType *T = TL.getTypePtr();
|
|
TypedefNameDecl *Typedef
|
|
= cast_or_null<TypedefNameDecl>(getDerived().TransformDecl(TL.getNameLoc(),
|
|
T->getDecl()));
|
|
if (!Typedef)
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
Typedef != T->getDecl()) {
|
|
Result = getDerived().RebuildTypedefType(Typedef);
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
TypedefTypeLoc NewTL = TLB.push<TypedefTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformTypeOfExprType(TypeLocBuilder &TLB,
|
|
TypeOfExprTypeLoc TL) {
|
|
// typeof expressions are not potentially evaluated contexts
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
|
|
Sema::ReuseLambdaContextDecl);
|
|
|
|
ExprResult E = getDerived().TransformExpr(TL.getUnderlyingExpr());
|
|
if (E.isInvalid())
|
|
return QualType();
|
|
|
|
E = SemaRef.HandleExprEvaluationContextForTypeof(E.get());
|
|
if (E.isInvalid())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
E.get() != TL.getUnderlyingExpr()) {
|
|
Result = getDerived().RebuildTypeOfExprType(E.get(), TL.getTypeofLoc());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
else E.take();
|
|
|
|
TypeOfExprTypeLoc NewTL = TLB.push<TypeOfExprTypeLoc>(Result);
|
|
NewTL.setTypeofLoc(TL.getTypeofLoc());
|
|
NewTL.setLParenLoc(TL.getLParenLoc());
|
|
NewTL.setRParenLoc(TL.getRParenLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformTypeOfType(TypeLocBuilder &TLB,
|
|
TypeOfTypeLoc TL) {
|
|
TypeSourceInfo* Old_Under_TI = TL.getUnderlyingTInfo();
|
|
TypeSourceInfo* New_Under_TI = getDerived().TransformType(Old_Under_TI);
|
|
if (!New_Under_TI)
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() || New_Under_TI != Old_Under_TI) {
|
|
Result = getDerived().RebuildTypeOfType(New_Under_TI->getType());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
TypeOfTypeLoc NewTL = TLB.push<TypeOfTypeLoc>(Result);
|
|
NewTL.setTypeofLoc(TL.getTypeofLoc());
|
|
NewTL.setLParenLoc(TL.getLParenLoc());
|
|
NewTL.setRParenLoc(TL.getRParenLoc());
|
|
NewTL.setUnderlyingTInfo(New_Under_TI);
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformDecltypeType(TypeLocBuilder &TLB,
|
|
DecltypeTypeLoc TL) {
|
|
const DecltypeType *T = TL.getTypePtr();
|
|
|
|
// decltype expressions are not potentially evaluated contexts
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated, 0,
|
|
/*IsDecltype=*/ true);
|
|
|
|
ExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr());
|
|
if (E.isInvalid())
|
|
return QualType();
|
|
|
|
E = getSema().ActOnDecltypeExpression(E.take());
|
|
if (E.isInvalid())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
E.get() != T->getUnderlyingExpr()) {
|
|
Result = getDerived().RebuildDecltypeType(E.get(), TL.getNameLoc());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
else E.take();
|
|
|
|
DecltypeTypeLoc NewTL = TLB.push<DecltypeTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformUnaryTransformType(
|
|
TypeLocBuilder &TLB,
|
|
UnaryTransformTypeLoc TL) {
|
|
QualType Result = TL.getType();
|
|
if (Result->isDependentType()) {
|
|
const UnaryTransformType *T = TL.getTypePtr();
|
|
QualType NewBase =
|
|
getDerived().TransformType(TL.getUnderlyingTInfo())->getType();
|
|
Result = getDerived().RebuildUnaryTransformType(NewBase,
|
|
T->getUTTKind(),
|
|
TL.getKWLoc());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
UnaryTransformTypeLoc NewTL = TLB.push<UnaryTransformTypeLoc>(Result);
|
|
NewTL.setKWLoc(TL.getKWLoc());
|
|
NewTL.setParensRange(TL.getParensRange());
|
|
NewTL.setUnderlyingTInfo(TL.getUnderlyingTInfo());
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformAutoType(TypeLocBuilder &TLB,
|
|
AutoTypeLoc TL) {
|
|
const AutoType *T = TL.getTypePtr();
|
|
QualType OldDeduced = T->getDeducedType();
|
|
QualType NewDeduced;
|
|
if (!OldDeduced.isNull()) {
|
|
NewDeduced = getDerived().TransformType(OldDeduced);
|
|
if (NewDeduced.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced ||
|
|
T->isDependentType()) {
|
|
Result = getDerived().RebuildAutoType(NewDeduced, T->isDecltypeAuto());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformRecordType(TypeLocBuilder &TLB,
|
|
RecordTypeLoc TL) {
|
|
const RecordType *T = TL.getTypePtr();
|
|
RecordDecl *Record
|
|
= cast_or_null<RecordDecl>(getDerived().TransformDecl(TL.getNameLoc(),
|
|
T->getDecl()));
|
|
if (!Record)
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
Record != T->getDecl()) {
|
|
Result = getDerived().RebuildRecordType(Record);
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformEnumType(TypeLocBuilder &TLB,
|
|
EnumTypeLoc TL) {
|
|
const EnumType *T = TL.getTypePtr();
|
|
EnumDecl *Enum
|
|
= cast_or_null<EnumDecl>(getDerived().TransformDecl(TL.getNameLoc(),
|
|
T->getDecl()));
|
|
if (!Enum)
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
Enum != T->getDecl()) {
|
|
Result = getDerived().RebuildEnumType(Enum);
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
EnumTypeLoc NewTL = TLB.push<EnumTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformInjectedClassNameType(
|
|
TypeLocBuilder &TLB,
|
|
InjectedClassNameTypeLoc TL) {
|
|
Decl *D = getDerived().TransformDecl(TL.getNameLoc(),
|
|
TL.getTypePtr()->getDecl());
|
|
if (!D) return QualType();
|
|
|
|
QualType T = SemaRef.Context.getTypeDeclType(cast<TypeDecl>(D));
|
|
TLB.pushTypeSpec(T).setNameLoc(TL.getNameLoc());
|
|
return T;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformTemplateTypeParmType(
|
|
TypeLocBuilder &TLB,
|
|
TemplateTypeParmTypeLoc TL) {
|
|
return TransformTypeSpecType(TLB, TL);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmType(
|
|
TypeLocBuilder &TLB,
|
|
SubstTemplateTypeParmTypeLoc TL) {
|
|
const SubstTemplateTypeParmType *T = TL.getTypePtr();
|
|
|
|
// Substitute into the replacement type, which itself might involve something
|
|
// that needs to be transformed. This only tends to occur with default
|
|
// template arguments of template template parameters.
|
|
TemporaryBase Rebase(*this, TL.getNameLoc(), DeclarationName());
|
|
QualType Replacement = getDerived().TransformType(T->getReplacementType());
|
|
if (Replacement.isNull())
|
|
return QualType();
|
|
|
|
// Always canonicalize the replacement type.
|
|
Replacement = SemaRef.Context.getCanonicalType(Replacement);
|
|
QualType Result
|
|
= SemaRef.Context.getSubstTemplateTypeParmType(T->getReplacedParameter(),
|
|
Replacement);
|
|
|
|
// Propagate type-source information.
|
|
SubstTemplateTypeParmTypeLoc NewTL
|
|
= TLB.push<SubstTemplateTypeParmTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
return Result;
|
|
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmPackType(
|
|
TypeLocBuilder &TLB,
|
|
SubstTemplateTypeParmPackTypeLoc TL) {
|
|
return TransformTypeSpecType(TLB, TL);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
|
|
TypeLocBuilder &TLB,
|
|
TemplateSpecializationTypeLoc TL) {
|
|
const TemplateSpecializationType *T = TL.getTypePtr();
|
|
|
|
// The nested-name-specifier never matters in a TemplateSpecializationType,
|
|
// because we can't have a dependent nested-name-specifier anyway.
|
|
CXXScopeSpec SS;
|
|
TemplateName Template
|
|
= getDerived().TransformTemplateName(SS, T->getTemplateName(),
|
|
TL.getTemplateNameLoc());
|
|
if (Template.isNull())
|
|
return QualType();
|
|
|
|
return getDerived().TransformTemplateSpecializationType(TLB, TL, Template);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformAtomicType(TypeLocBuilder &TLB,
|
|
AtomicTypeLoc TL) {
|
|
QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc());
|
|
if (ValueType.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
ValueType != TL.getValueLoc().getType()) {
|
|
Result = getDerived().RebuildAtomicType(ValueType, TL.getKWLoc());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
AtomicTypeLoc NewTL = TLB.push<AtomicTypeLoc>(Result);
|
|
NewTL.setKWLoc(TL.getKWLoc());
|
|
NewTL.setLParenLoc(TL.getLParenLoc());
|
|
NewTL.setRParenLoc(TL.getRParenLoc());
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// \brief Simple iterator that traverses the template arguments in a
|
|
/// container that provides a \c getArgLoc() member function.
|
|
///
|
|
/// This iterator is intended to be used with the iterator form of
|
|
/// \c TreeTransform<Derived>::TransformTemplateArguments().
|
|
template<typename ArgLocContainer>
|
|
class TemplateArgumentLocContainerIterator {
|
|
ArgLocContainer *Container;
|
|
unsigned Index;
|
|
|
|
public:
|
|
typedef TemplateArgumentLoc value_type;
|
|
typedef TemplateArgumentLoc reference;
|
|
typedef int difference_type;
|
|
typedef std::input_iterator_tag iterator_category;
|
|
|
|
class pointer {
|
|
TemplateArgumentLoc Arg;
|
|
|
|
public:
|
|
explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
|
|
|
|
const TemplateArgumentLoc *operator->() const {
|
|
return &Arg;
|
|
}
|
|
};
|
|
|
|
|
|
TemplateArgumentLocContainerIterator() {}
|
|
|
|
TemplateArgumentLocContainerIterator(ArgLocContainer &Container,
|
|
unsigned Index)
|
|
: Container(&Container), Index(Index) { }
|
|
|
|
TemplateArgumentLocContainerIterator &operator++() {
|
|
++Index;
|
|
return *this;
|
|
}
|
|
|
|
TemplateArgumentLocContainerIterator operator++(int) {
|
|
TemplateArgumentLocContainerIterator Old(*this);
|
|
++(*this);
|
|
return Old;
|
|
}
|
|
|
|
TemplateArgumentLoc operator*() const {
|
|
return Container->getArgLoc(Index);
|
|
}
|
|
|
|
pointer operator->() const {
|
|
return pointer(Container->getArgLoc(Index));
|
|
}
|
|
|
|
friend bool operator==(const TemplateArgumentLocContainerIterator &X,
|
|
const TemplateArgumentLocContainerIterator &Y) {
|
|
return X.Container == Y.Container && X.Index == Y.Index;
|
|
}
|
|
|
|
friend bool operator!=(const TemplateArgumentLocContainerIterator &X,
|
|
const TemplateArgumentLocContainerIterator &Y) {
|
|
return !(X == Y);
|
|
}
|
|
};
|
|
|
|
|
|
template <typename Derived>
|
|
QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
|
|
TypeLocBuilder &TLB,
|
|
TemplateSpecializationTypeLoc TL,
|
|
TemplateName Template) {
|
|
TemplateArgumentListInfo NewTemplateArgs;
|
|
NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
|
|
NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
|
|
typedef TemplateArgumentLocContainerIterator<TemplateSpecializationTypeLoc>
|
|
ArgIterator;
|
|
if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
|
|
ArgIterator(TL, TL.getNumArgs()),
|
|
NewTemplateArgs))
|
|
return QualType();
|
|
|
|
// FIXME: maybe don't rebuild if all the template arguments are the same.
|
|
|
|
QualType Result =
|
|
getDerived().RebuildTemplateSpecializationType(Template,
|
|
TL.getTemplateNameLoc(),
|
|
NewTemplateArgs);
|
|
|
|
if (!Result.isNull()) {
|
|
// Specializations of template template parameters are represented as
|
|
// TemplateSpecializationTypes, and substitution of type alias templates
|
|
// within a dependent context can transform them into
|
|
// DependentTemplateSpecializationTypes.
|
|
if (isa<DependentTemplateSpecializationType>(Result)) {
|
|
DependentTemplateSpecializationTypeLoc NewTL
|
|
= TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
|
|
NewTL.setElaboratedKeywordLoc(SourceLocation());
|
|
NewTL.setQualifierLoc(NestedNameSpecifierLoc());
|
|
NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
|
|
NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
|
|
NewTL.setLAngleLoc(TL.getLAngleLoc());
|
|
NewTL.setRAngleLoc(TL.getRAngleLoc());
|
|
for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
|
|
NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
|
|
return Result;
|
|
}
|
|
|
|
TemplateSpecializationTypeLoc NewTL
|
|
= TLB.push<TemplateSpecializationTypeLoc>(Result);
|
|
NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
|
|
NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
|
|
NewTL.setLAngleLoc(TL.getLAngleLoc());
|
|
NewTL.setRAngleLoc(TL.getRAngleLoc());
|
|
for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
|
|
NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
template <typename Derived>
|
|
QualType TreeTransform<Derived>::TransformDependentTemplateSpecializationType(
|
|
TypeLocBuilder &TLB,
|
|
DependentTemplateSpecializationTypeLoc TL,
|
|
TemplateName Template,
|
|
CXXScopeSpec &SS) {
|
|
TemplateArgumentListInfo NewTemplateArgs;
|
|
NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
|
|
NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
|
|
typedef TemplateArgumentLocContainerIterator<
|
|
DependentTemplateSpecializationTypeLoc> ArgIterator;
|
|
if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
|
|
ArgIterator(TL, TL.getNumArgs()),
|
|
NewTemplateArgs))
|
|
return QualType();
|
|
|
|
// FIXME: maybe don't rebuild if all the template arguments are the same.
|
|
|
|
if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
|
|
QualType Result
|
|
= getSema().Context.getDependentTemplateSpecializationType(
|
|
TL.getTypePtr()->getKeyword(),
|
|
DTN->getQualifier(),
|
|
DTN->getIdentifier(),
|
|
NewTemplateArgs);
|
|
|
|
DependentTemplateSpecializationTypeLoc NewTL
|
|
= TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
|
|
NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
|
|
NewTL.setQualifierLoc(SS.getWithLocInContext(SemaRef.Context));
|
|
NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
|
|
NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
|
|
NewTL.setLAngleLoc(TL.getLAngleLoc());
|
|
NewTL.setRAngleLoc(TL.getRAngleLoc());
|
|
for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
|
|
NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
|
|
return Result;
|
|
}
|
|
|
|
QualType Result
|
|
= getDerived().RebuildTemplateSpecializationType(Template,
|
|
TL.getTemplateNameLoc(),
|
|
NewTemplateArgs);
|
|
|
|
if (!Result.isNull()) {
|
|
/// FIXME: Wrap this in an elaborated-type-specifier?
|
|
TemplateSpecializationTypeLoc NewTL
|
|
= TLB.push<TemplateSpecializationTypeLoc>(Result);
|
|
NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
|
|
NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
|
|
NewTL.setLAngleLoc(TL.getLAngleLoc());
|
|
NewTL.setRAngleLoc(TL.getRAngleLoc());
|
|
for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
|
|
NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformElaboratedType(TypeLocBuilder &TLB,
|
|
ElaboratedTypeLoc TL) {
|
|
const ElaboratedType *T = TL.getTypePtr();
|
|
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
// NOTE: the qualifier in an ElaboratedType is optional.
|
|
if (TL.getQualifierLoc()) {
|
|
QualifierLoc
|
|
= getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
|
|
if (!QualifierLoc)
|
|
return QualType();
|
|
}
|
|
|
|
QualType NamedT = getDerived().TransformType(TLB, TL.getNamedTypeLoc());
|
|
if (NamedT.isNull())
|
|
return QualType();
|
|
|
|
// C++0x [dcl.type.elab]p2:
|
|
// If the identifier resolves to a typedef-name or the simple-template-id
|
|
// resolves to an alias template specialization, the
|
|
// elaborated-type-specifier is ill-formed.
|
|
if (T->getKeyword() != ETK_None && T->getKeyword() != ETK_Typename) {
|
|
if (const TemplateSpecializationType *TST =
|
|
NamedT->getAs<TemplateSpecializationType>()) {
|
|
TemplateName Template = TST->getTemplateName();
|
|
if (TypeAliasTemplateDecl *TAT =
|
|
dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
|
|
SemaRef.Diag(TL.getNamedTypeLoc().getBeginLoc(),
|
|
diag::err_tag_reference_non_tag) << 4;
|
|
SemaRef.Diag(TAT->getLocation(), diag::note_declared_at);
|
|
}
|
|
}
|
|
}
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
QualifierLoc != TL.getQualifierLoc() ||
|
|
NamedT != T->getNamedType()) {
|
|
Result = getDerived().RebuildElaboratedType(TL.getElaboratedKeywordLoc(),
|
|
T->getKeyword(),
|
|
QualifierLoc, NamedT);
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
|
|
NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
|
|
NewTL.setQualifierLoc(QualifierLoc);
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformAttributedType(
|
|
TypeLocBuilder &TLB,
|
|
AttributedTypeLoc TL) {
|
|
const AttributedType *oldType = TL.getTypePtr();
|
|
QualType modifiedType = getDerived().TransformType(TLB, TL.getModifiedLoc());
|
|
if (modifiedType.isNull())
|
|
return QualType();
|
|
|
|
QualType result = TL.getType();
|
|
|
|
// FIXME: dependent operand expressions?
|
|
if (getDerived().AlwaysRebuild() ||
|
|
modifiedType != oldType->getModifiedType()) {
|
|
// TODO: this is really lame; we should really be rebuilding the
|
|
// equivalent type from first principles.
|
|
QualType equivalentType
|
|
= getDerived().TransformType(oldType->getEquivalentType());
|
|
if (equivalentType.isNull())
|
|
return QualType();
|
|
result = SemaRef.Context.getAttributedType(oldType->getAttrKind(),
|
|
modifiedType,
|
|
equivalentType);
|
|
}
|
|
|
|
AttributedTypeLoc newTL = TLB.push<AttributedTypeLoc>(result);
|
|
newTL.setAttrNameLoc(TL.getAttrNameLoc());
|
|
if (TL.hasAttrOperand())
|
|
newTL.setAttrOperandParensRange(TL.getAttrOperandParensRange());
|
|
if (TL.hasAttrExprOperand())
|
|
newTL.setAttrExprOperand(TL.getAttrExprOperand());
|
|
else if (TL.hasAttrEnumOperand())
|
|
newTL.setAttrEnumOperandLoc(TL.getAttrEnumOperandLoc());
|
|
|
|
return result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformParenType(TypeLocBuilder &TLB,
|
|
ParenTypeLoc TL) {
|
|
QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc());
|
|
if (Inner.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
Inner != TL.getInnerLoc().getType()) {
|
|
Result = getDerived().RebuildParenType(Inner);
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
ParenTypeLoc NewTL = TLB.push<ParenTypeLoc>(Result);
|
|
NewTL.setLParenLoc(TL.getLParenLoc());
|
|
NewTL.setRParenLoc(TL.getRParenLoc());
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformDependentNameType(TypeLocBuilder &TLB,
|
|
DependentNameTypeLoc TL) {
|
|
const DependentNameType *T = TL.getTypePtr();
|
|
|
|
NestedNameSpecifierLoc QualifierLoc
|
|
= getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
|
|
if (!QualifierLoc)
|
|
return QualType();
|
|
|
|
QualType Result
|
|
= getDerived().RebuildDependentNameType(T->getKeyword(),
|
|
TL.getElaboratedKeywordLoc(),
|
|
QualifierLoc,
|
|
T->getIdentifier(),
|
|
TL.getNameLoc());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
|
|
if (const ElaboratedType* ElabT = Result->getAs<ElaboratedType>()) {
|
|
QualType NamedT = ElabT->getNamedType();
|
|
TLB.pushTypeSpec(NamedT).setNameLoc(TL.getNameLoc());
|
|
|
|
ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
|
|
NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
|
|
NewTL.setQualifierLoc(QualifierLoc);
|
|
} else {
|
|
DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result);
|
|
NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
|
|
NewTL.setQualifierLoc(QualifierLoc);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::
|
|
TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
|
|
DependentTemplateSpecializationTypeLoc TL) {
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
if (TL.getQualifierLoc()) {
|
|
QualifierLoc
|
|
= getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
|
|
if (!QualifierLoc)
|
|
return QualType();
|
|
}
|
|
|
|
return getDerived()
|
|
.TransformDependentTemplateSpecializationType(TLB, TL, QualifierLoc);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::
|
|
TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
|
|
DependentTemplateSpecializationTypeLoc TL,
|
|
NestedNameSpecifierLoc QualifierLoc) {
|
|
const DependentTemplateSpecializationType *T = TL.getTypePtr();
|
|
|
|
TemplateArgumentListInfo NewTemplateArgs;
|
|
NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
|
|
NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
|
|
|
|
typedef TemplateArgumentLocContainerIterator<
|
|
DependentTemplateSpecializationTypeLoc> ArgIterator;
|
|
if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
|
|
ArgIterator(TL, TL.getNumArgs()),
|
|
NewTemplateArgs))
|
|
return QualType();
|
|
|
|
QualType Result
|
|
= getDerived().RebuildDependentTemplateSpecializationType(T->getKeyword(),
|
|
QualifierLoc,
|
|
T->getIdentifier(),
|
|
TL.getTemplateNameLoc(),
|
|
NewTemplateArgs);
|
|
if (Result.isNull())
|
|
return QualType();
|
|
|
|
if (const ElaboratedType *ElabT = dyn_cast<ElaboratedType>(Result)) {
|
|
QualType NamedT = ElabT->getNamedType();
|
|
|
|
// Copy information relevant to the template specialization.
|
|
TemplateSpecializationTypeLoc NamedTL
|
|
= TLB.push<TemplateSpecializationTypeLoc>(NamedT);
|
|
NamedTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
|
|
NamedTL.setTemplateNameLoc(TL.getTemplateNameLoc());
|
|
NamedTL.setLAngleLoc(TL.getLAngleLoc());
|
|
NamedTL.setRAngleLoc(TL.getRAngleLoc());
|
|
for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
|
|
NamedTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
|
|
|
|
// Copy information relevant to the elaborated type.
|
|
ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
|
|
NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
|
|
NewTL.setQualifierLoc(QualifierLoc);
|
|
} else if (isa<DependentTemplateSpecializationType>(Result)) {
|
|
DependentTemplateSpecializationTypeLoc SpecTL
|
|
= TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
|
|
SpecTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
|
|
SpecTL.setQualifierLoc(QualifierLoc);
|
|
SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
|
|
SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc());
|
|
SpecTL.setLAngleLoc(TL.getLAngleLoc());
|
|
SpecTL.setRAngleLoc(TL.getRAngleLoc());
|
|
for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
|
|
SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
|
|
} else {
|
|
TemplateSpecializationTypeLoc SpecTL
|
|
= TLB.push<TemplateSpecializationTypeLoc>(Result);
|
|
SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
|
|
SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc());
|
|
SpecTL.setLAngleLoc(TL.getLAngleLoc());
|
|
SpecTL.setRAngleLoc(TL.getRAngleLoc());
|
|
for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
|
|
SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::TransformPackExpansionType(TypeLocBuilder &TLB,
|
|
PackExpansionTypeLoc TL) {
|
|
QualType Pattern
|
|
= getDerived().TransformType(TLB, TL.getPatternLoc());
|
|
if (Pattern.isNull())
|
|
return QualType();
|
|
|
|
QualType Result = TL.getType();
|
|
if (getDerived().AlwaysRebuild() ||
|
|
Pattern != TL.getPatternLoc().getType()) {
|
|
Result = getDerived().RebuildPackExpansionType(Pattern,
|
|
TL.getPatternLoc().getSourceRange(),
|
|
TL.getEllipsisLoc(),
|
|
TL.getTypePtr()->getNumExpansions());
|
|
if (Result.isNull())
|
|
return QualType();
|
|
}
|
|
|
|
PackExpansionTypeLoc NewT = TLB.push<PackExpansionTypeLoc>(Result);
|
|
NewT.setEllipsisLoc(TL.getEllipsisLoc());
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformObjCInterfaceType(TypeLocBuilder &TLB,
|
|
ObjCInterfaceTypeLoc TL) {
|
|
// ObjCInterfaceType is never dependent.
|
|
TLB.pushFullCopy(TL);
|
|
return TL.getType();
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformObjCObjectType(TypeLocBuilder &TLB,
|
|
ObjCObjectTypeLoc TL) {
|
|
// ObjCObjectType is never dependent.
|
|
TLB.pushFullCopy(TL);
|
|
return TL.getType();
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::TransformObjCObjectPointerType(TypeLocBuilder &TLB,
|
|
ObjCObjectPointerTypeLoc TL) {
|
|
// ObjCObjectPointerType is never dependent.
|
|
TLB.pushFullCopy(TL);
|
|
return TL.getType();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Statement transformation
|
|
//===----------------------------------------------------------------------===//
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformNullStmt(NullStmt *S) {
|
|
return SemaRef.Owned(S);
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S) {
|
|
return getDerived().TransformCompoundStmt(S, false);
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S,
|
|
bool IsStmtExpr) {
|
|
Sema::CompoundScopeRAII CompoundScope(getSema());
|
|
|
|
bool SubStmtInvalid = false;
|
|
bool SubStmtChanged = false;
|
|
SmallVector<Stmt*, 8> Statements;
|
|
for (CompoundStmt::body_iterator B = S->body_begin(), BEnd = S->body_end();
|
|
B != BEnd; ++B) {
|
|
StmtResult Result = getDerived().TransformStmt(*B);
|
|
if (Result.isInvalid()) {
|
|
// Immediately fail if this was a DeclStmt, since it's very
|
|
// likely that this will cause problems for future statements.
|
|
if (isa<DeclStmt>(*B))
|
|
return StmtError();
|
|
|
|
// Otherwise, just keep processing substatements and fail later.
|
|
SubStmtInvalid = true;
|
|
continue;
|
|
}
|
|
|
|
SubStmtChanged = SubStmtChanged || Result.get() != *B;
|
|
Statements.push_back(Result.takeAs<Stmt>());
|
|
}
|
|
|
|
if (SubStmtInvalid)
|
|
return StmtError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
!SubStmtChanged)
|
|
return SemaRef.Owned(S);
|
|
|
|
return getDerived().RebuildCompoundStmt(S->getLBracLoc(),
|
|
Statements,
|
|
S->getRBracLoc(),
|
|
IsStmtExpr);
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformCaseStmt(CaseStmt *S) {
|
|
ExprResult LHS, RHS;
|
|
{
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef,
|
|
Sema::ConstantEvaluated);
|
|
|
|
// Transform the left-hand case value.
|
|
LHS = getDerived().TransformExpr(S->getLHS());
|
|
LHS = SemaRef.ActOnConstantExpression(LHS);
|
|
if (LHS.isInvalid())
|
|
return StmtError();
|
|
|
|
// Transform the right-hand case value (for the GNU case-range extension).
|
|
RHS = getDerived().TransformExpr(S->getRHS());
|
|
RHS = SemaRef.ActOnConstantExpression(RHS);
|
|
if (RHS.isInvalid())
|
|
return StmtError();
|
|
}
|
|
|
|
// Build the case statement.
|
|
// Case statements are always rebuilt so that they will attached to their
|
|
// transformed switch statement.
|
|
StmtResult Case = getDerived().RebuildCaseStmt(S->getCaseLoc(),
|
|
LHS.get(),
|
|
S->getEllipsisLoc(),
|
|
RHS.get(),
|
|
S->getColonLoc());
|
|
if (Case.isInvalid())
|
|
return StmtError();
|
|
|
|
// Transform the statement following the case
|
|
StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
|
|
if (SubStmt.isInvalid())
|
|
return StmtError();
|
|
|
|
// Attach the body to the case statement
|
|
return getDerived().RebuildCaseStmtBody(Case.get(), SubStmt.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformDefaultStmt(DefaultStmt *S) {
|
|
// Transform the statement following the default case
|
|
StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
|
|
if (SubStmt.isInvalid())
|
|
return StmtError();
|
|
|
|
// Default statements are always rebuilt
|
|
return getDerived().RebuildDefaultStmt(S->getDefaultLoc(), S->getColonLoc(),
|
|
SubStmt.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformLabelStmt(LabelStmt *S) {
|
|
StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
|
|
if (SubStmt.isInvalid())
|
|
return StmtError();
|
|
|
|
Decl *LD = getDerived().TransformDecl(S->getDecl()->getLocation(),
|
|
S->getDecl());
|
|
if (!LD)
|
|
return StmtError();
|
|
|
|
|
|
// FIXME: Pass the real colon location in.
|
|
return getDerived().RebuildLabelStmt(S->getIdentLoc(),
|
|
cast<LabelDecl>(LD), SourceLocation(),
|
|
SubStmt.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformAttributedStmt(AttributedStmt *S) {
|
|
StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt());
|
|
if (SubStmt.isInvalid())
|
|
return StmtError();
|
|
|
|
// TODO: transform attributes
|
|
if (SubStmt.get() == S->getSubStmt() /* && attrs are the same */)
|
|
return S;
|
|
|
|
return getDerived().RebuildAttributedStmt(S->getAttrLoc(),
|
|
S->getAttrs(),
|
|
SubStmt.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformIfStmt(IfStmt *S) {
|
|
// Transform the condition
|
|
ExprResult Cond;
|
|
VarDecl *ConditionVar = 0;
|
|
if (S->getConditionVariable()) {
|
|
ConditionVar
|
|
= cast_or_null<VarDecl>(
|
|
getDerived().TransformDefinition(
|
|
S->getConditionVariable()->getLocation(),
|
|
S->getConditionVariable()));
|
|
if (!ConditionVar)
|
|
return StmtError();
|
|
} else {
|
|
Cond = getDerived().TransformExpr(S->getCond());
|
|
|
|
if (Cond.isInvalid())
|
|
return StmtError();
|
|
|
|
// Convert the condition to a boolean value.
|
|
if (S->getCond()) {
|
|
ExprResult CondE = getSema().ActOnBooleanCondition(0, S->getIfLoc(),
|
|
Cond.get());
|
|
if (CondE.isInvalid())
|
|
return StmtError();
|
|
|
|
Cond = CondE.get();
|
|
}
|
|
}
|
|
|
|
Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.take()));
|
|
if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
|
|
return StmtError();
|
|
|
|
// Transform the "then" branch.
|
|
StmtResult Then = getDerived().TransformStmt(S->getThen());
|
|
if (Then.isInvalid())
|
|
return StmtError();
|
|
|
|
// Transform the "else" branch.
|
|
StmtResult Else = getDerived().TransformStmt(S->getElse());
|
|
if (Else.isInvalid())
|
|
return StmtError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
FullCond.get() == S->getCond() &&
|
|
ConditionVar == S->getConditionVariable() &&
|
|
Then.get() == S->getThen() &&
|
|
Else.get() == S->getElse())
|
|
return SemaRef.Owned(S);
|
|
|
|
return getDerived().RebuildIfStmt(S->getIfLoc(), FullCond, ConditionVar,
|
|
Then.get(),
|
|
S->getElseLoc(), Else.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformSwitchStmt(SwitchStmt *S) {
|
|
// Transform the condition.
|
|
ExprResult Cond;
|
|
VarDecl *ConditionVar = 0;
|
|
if (S->getConditionVariable()) {
|
|
ConditionVar
|
|
= cast_or_null<VarDecl>(
|
|
getDerived().TransformDefinition(
|
|
S->getConditionVariable()->getLocation(),
|
|
S->getConditionVariable()));
|
|
if (!ConditionVar)
|
|
return StmtError();
|
|
} else {
|
|
Cond = getDerived().TransformExpr(S->getCond());
|
|
|
|
if (Cond.isInvalid())
|
|
return StmtError();
|
|
}
|
|
|
|
// Rebuild the switch statement.
|
|
StmtResult Switch
|
|
= getDerived().RebuildSwitchStmtStart(S->getSwitchLoc(), Cond.get(),
|
|
ConditionVar);
|
|
if (Switch.isInvalid())
|
|
return StmtError();
|
|
|
|
// Transform the body of the switch statement.
|
|
StmtResult Body = getDerived().TransformStmt(S->getBody());
|
|
if (Body.isInvalid())
|
|
return StmtError();
|
|
|
|
// Complete the switch statement.
|
|
return getDerived().RebuildSwitchStmtBody(S->getSwitchLoc(), Switch.get(),
|
|
Body.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformWhileStmt(WhileStmt *S) {
|
|
// Transform the condition
|
|
ExprResult Cond;
|
|
VarDecl *ConditionVar = 0;
|
|
if (S->getConditionVariable()) {
|
|
ConditionVar
|
|
= cast_or_null<VarDecl>(
|
|
getDerived().TransformDefinition(
|
|
S->getConditionVariable()->getLocation(),
|
|
S->getConditionVariable()));
|
|
if (!ConditionVar)
|
|
return StmtError();
|
|
} else {
|
|
Cond = getDerived().TransformExpr(S->getCond());
|
|
|
|
if (Cond.isInvalid())
|
|
return StmtError();
|
|
|
|
if (S->getCond()) {
|
|
// Convert the condition to a boolean value.
|
|
ExprResult CondE = getSema().ActOnBooleanCondition(0, S->getWhileLoc(),
|
|
Cond.get());
|
|
if (CondE.isInvalid())
|
|
return StmtError();
|
|
Cond = CondE;
|
|
}
|
|
}
|
|
|
|
Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.take()));
|
|
if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
|
|
return StmtError();
|
|
|
|
// Transform the body
|
|
StmtResult Body = getDerived().TransformStmt(S->getBody());
|
|
if (Body.isInvalid())
|
|
return StmtError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
FullCond.get() == S->getCond() &&
|
|
ConditionVar == S->getConditionVariable() &&
|
|
Body.get() == S->getBody())
|
|
return Owned(S);
|
|
|
|
return getDerived().RebuildWhileStmt(S->getWhileLoc(), FullCond,
|
|
ConditionVar, Body.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformDoStmt(DoStmt *S) {
|
|
// Transform the body
|
|
StmtResult Body = getDerived().TransformStmt(S->getBody());
|
|
if (Body.isInvalid())
|
|
return StmtError();
|
|
|
|
// Transform the condition
|
|
ExprResult Cond = getDerived().TransformExpr(S->getCond());
|
|
if (Cond.isInvalid())
|
|
return StmtError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Cond.get() == S->getCond() &&
|
|
Body.get() == S->getBody())
|
|
return SemaRef.Owned(S);
|
|
|
|
return getDerived().RebuildDoStmt(S->getDoLoc(), Body.get(), S->getWhileLoc(),
|
|
/*FIXME:*/S->getWhileLoc(), Cond.get(),
|
|
S->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformForStmt(ForStmt *S) {
|
|
// Transform the initialization statement
|
|
StmtResult Init = getDerived().TransformStmt(S->getInit());
|
|
if (Init.isInvalid())
|
|
return StmtError();
|
|
|
|
// Transform the condition
|
|
ExprResult Cond;
|
|
VarDecl *ConditionVar = 0;
|
|
if (S->getConditionVariable()) {
|
|
ConditionVar
|
|
= cast_or_null<VarDecl>(
|
|
getDerived().TransformDefinition(
|
|
S->getConditionVariable()->getLocation(),
|
|
S->getConditionVariable()));
|
|
if (!ConditionVar)
|
|
return StmtError();
|
|
} else {
|
|
Cond = getDerived().TransformExpr(S->getCond());
|
|
|
|
if (Cond.isInvalid())
|
|
return StmtError();
|
|
|
|
if (S->getCond()) {
|
|
// Convert the condition to a boolean value.
|
|
ExprResult CondE = getSema().ActOnBooleanCondition(0, S->getForLoc(),
|
|
Cond.get());
|
|
if (CondE.isInvalid())
|
|
return StmtError();
|
|
|
|
Cond = CondE.get();
|
|
}
|
|
}
|
|
|
|
Sema::FullExprArg FullCond(getSema().MakeFullExpr(Cond.take()));
|
|
if (!S->getConditionVariable() && S->getCond() && !FullCond.get())
|
|
return StmtError();
|
|
|
|
// Transform the increment
|
|
ExprResult Inc = getDerived().TransformExpr(S->getInc());
|
|
if (Inc.isInvalid())
|
|
return StmtError();
|
|
|
|
Sema::FullExprArg FullInc(getSema().MakeFullDiscardedValueExpr(Inc.get()));
|
|
if (S->getInc() && !FullInc.get())
|
|
return StmtError();
|
|
|
|
// Transform the body
|
|
StmtResult Body = getDerived().TransformStmt(S->getBody());
|
|
if (Body.isInvalid())
|
|
return StmtError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Init.get() == S->getInit() &&
|
|
FullCond.get() == S->getCond() &&
|
|
Inc.get() == S->getInc() &&
|
|
Body.get() == S->getBody())
|
|
return SemaRef.Owned(S);
|
|
|
|
return getDerived().RebuildForStmt(S->getForLoc(), S->getLParenLoc(),
|
|
Init.get(), FullCond, ConditionVar,
|
|
FullInc, S->getRParenLoc(), Body.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformGotoStmt(GotoStmt *S) {
|
|
Decl *LD = getDerived().TransformDecl(S->getLabel()->getLocation(),
|
|
S->getLabel());
|
|
if (!LD)
|
|
return StmtError();
|
|
|
|
// Goto statements must always be rebuilt, to resolve the label.
|
|
return getDerived().RebuildGotoStmt(S->getGotoLoc(), S->getLabelLoc(),
|
|
cast<LabelDecl>(LD));
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformIndirectGotoStmt(IndirectGotoStmt *S) {
|
|
ExprResult Target = getDerived().TransformExpr(S->getTarget());
|
|
if (Target.isInvalid())
|
|
return StmtError();
|
|
Target = SemaRef.MaybeCreateExprWithCleanups(Target.take());
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Target.get() == S->getTarget())
|
|
return SemaRef.Owned(S);
|
|
|
|
return getDerived().RebuildIndirectGotoStmt(S->getGotoLoc(), S->getStarLoc(),
|
|
Target.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformContinueStmt(ContinueStmt *S) {
|
|
return SemaRef.Owned(S);
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformBreakStmt(BreakStmt *S) {
|
|
return SemaRef.Owned(S);
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformReturnStmt(ReturnStmt *S) {
|
|
ExprResult Result = getDerived().TransformExpr(S->getRetValue());
|
|
if (Result.isInvalid())
|
|
return StmtError();
|
|
|
|
// FIXME: We always rebuild the return statement because there is no way
|
|
// to tell whether the return type of the function has changed.
|
|
return getDerived().RebuildReturnStmt(S->getReturnLoc(), Result.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformDeclStmt(DeclStmt *S) {
|
|
bool DeclChanged = false;
|
|
SmallVector<Decl *, 4> Decls;
|
|
for (DeclStmt::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
|
|
D != DEnd; ++D) {
|
|
Decl *Transformed = getDerived().TransformDefinition((*D)->getLocation(),
|
|
*D);
|
|
if (!Transformed)
|
|
return StmtError();
|
|
|
|
if (Transformed != *D)
|
|
DeclChanged = true;
|
|
|
|
Decls.push_back(Transformed);
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() && !DeclChanged)
|
|
return SemaRef.Owned(S);
|
|
|
|
return getDerived().RebuildDeclStmt(Decls, S->getStartLoc(), S->getEndLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformGCCAsmStmt(GCCAsmStmt *S) {
|
|
|
|
SmallVector<Expr*, 8> Constraints;
|
|
SmallVector<Expr*, 8> Exprs;
|
|
SmallVector<IdentifierInfo *, 4> Names;
|
|
|
|
ExprResult AsmString;
|
|
SmallVector<Expr*, 8> Clobbers;
|
|
|
|
bool ExprsChanged = false;
|
|
|
|
// Go through the outputs.
|
|
for (unsigned I = 0, E = S->getNumOutputs(); I != E; ++I) {
|
|
Names.push_back(S->getOutputIdentifier(I));
|
|
|
|
// No need to transform the constraint literal.
|
|
Constraints.push_back(S->getOutputConstraintLiteral(I));
|
|
|
|
// Transform the output expr.
|
|
Expr *OutputExpr = S->getOutputExpr(I);
|
|
ExprResult Result = getDerived().TransformExpr(OutputExpr);
|
|
if (Result.isInvalid())
|
|
return StmtError();
|
|
|
|
ExprsChanged |= Result.get() != OutputExpr;
|
|
|
|
Exprs.push_back(Result.get());
|
|
}
|
|
|
|
// Go through the inputs.
|
|
for (unsigned I = 0, E = S->getNumInputs(); I != E; ++I) {
|
|
Names.push_back(S->getInputIdentifier(I));
|
|
|
|
// No need to transform the constraint literal.
|
|
Constraints.push_back(S->getInputConstraintLiteral(I));
|
|
|
|
// Transform the input expr.
|
|
Expr *InputExpr = S->getInputExpr(I);
|
|
ExprResult Result = getDerived().TransformExpr(InputExpr);
|
|
if (Result.isInvalid())
|
|
return StmtError();
|
|
|
|
ExprsChanged |= Result.get() != InputExpr;
|
|
|
|
Exprs.push_back(Result.get());
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() && !ExprsChanged)
|
|
return SemaRef.Owned(S);
|
|
|
|
// Go through the clobbers.
|
|
for (unsigned I = 0, E = S->getNumClobbers(); I != E; ++I)
|
|
Clobbers.push_back(S->getClobberStringLiteral(I));
|
|
|
|
// No need to transform the asm string literal.
|
|
AsmString = SemaRef.Owned(S->getAsmString());
|
|
return getDerived().RebuildGCCAsmStmt(S->getAsmLoc(), S->isSimple(),
|
|
S->isVolatile(), S->getNumOutputs(),
|
|
S->getNumInputs(), Names.data(),
|
|
Constraints, Exprs, AsmString.get(),
|
|
Clobbers, S->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformMSAsmStmt(MSAsmStmt *S) {
|
|
ArrayRef<Token> AsmToks =
|
|
llvm::makeArrayRef(S->getAsmToks(), S->getNumAsmToks());
|
|
|
|
bool HadError = false, HadChange = false;
|
|
|
|
ArrayRef<Expr*> SrcExprs = S->getAllExprs();
|
|
SmallVector<Expr*, 8> TransformedExprs;
|
|
TransformedExprs.reserve(SrcExprs.size());
|
|
for (unsigned i = 0, e = SrcExprs.size(); i != e; ++i) {
|
|
ExprResult Result = getDerived().TransformExpr(SrcExprs[i]);
|
|
if (!Result.isUsable()) {
|
|
HadError = true;
|
|
} else {
|
|
HadChange |= (Result.get() != SrcExprs[i]);
|
|
TransformedExprs.push_back(Result.take());
|
|
}
|
|
}
|
|
|
|
if (HadError) return StmtError();
|
|
if (!HadChange && !getDerived().AlwaysRebuild())
|
|
return Owned(S);
|
|
|
|
return getDerived().RebuildMSAsmStmt(S->getAsmLoc(), S->getLBraceLoc(),
|
|
AsmToks, S->getAsmString(),
|
|
S->getNumOutputs(), S->getNumInputs(),
|
|
S->getAllConstraints(), S->getClobbers(),
|
|
TransformedExprs, S->getEndLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformObjCAtTryStmt(ObjCAtTryStmt *S) {
|
|
// Transform the body of the @try.
|
|
StmtResult TryBody = getDerived().TransformStmt(S->getTryBody());
|
|
if (TryBody.isInvalid())
|
|
return StmtError();
|
|
|
|
// Transform the @catch statements (if present).
|
|
bool AnyCatchChanged = false;
|
|
SmallVector<Stmt*, 8> CatchStmts;
|
|
for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I) {
|
|
StmtResult Catch = getDerived().TransformStmt(S->getCatchStmt(I));
|
|
if (Catch.isInvalid())
|
|
return StmtError();
|
|
if (Catch.get() != S->getCatchStmt(I))
|
|
AnyCatchChanged = true;
|
|
CatchStmts.push_back(Catch.release());
|
|
}
|
|
|
|
// Transform the @finally statement (if present).
|
|
StmtResult Finally;
|
|
if (S->getFinallyStmt()) {
|
|
Finally = getDerived().TransformStmt(S->getFinallyStmt());
|
|
if (Finally.isInvalid())
|
|
return StmtError();
|
|
}
|
|
|
|
// If nothing changed, just retain this statement.
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
TryBody.get() == S->getTryBody() &&
|
|
!AnyCatchChanged &&
|
|
Finally.get() == S->getFinallyStmt())
|
|
return SemaRef.Owned(S);
|
|
|
|
// Build a new statement.
|
|
return getDerived().RebuildObjCAtTryStmt(S->getAtTryLoc(), TryBody.get(),
|
|
CatchStmts, Finally.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformObjCAtCatchStmt(ObjCAtCatchStmt *S) {
|
|
// Transform the @catch parameter, if there is one.
|
|
VarDecl *Var = 0;
|
|
if (VarDecl *FromVar = S->getCatchParamDecl()) {
|
|
TypeSourceInfo *TSInfo = 0;
|
|
if (FromVar->getTypeSourceInfo()) {
|
|
TSInfo = getDerived().TransformType(FromVar->getTypeSourceInfo());
|
|
if (!TSInfo)
|
|
return StmtError();
|
|
}
|
|
|
|
QualType T;
|
|
if (TSInfo)
|
|
T = TSInfo->getType();
|
|
else {
|
|
T = getDerived().TransformType(FromVar->getType());
|
|
if (T.isNull())
|
|
return StmtError();
|
|
}
|
|
|
|
Var = getDerived().RebuildObjCExceptionDecl(FromVar, TSInfo, T);
|
|
if (!Var)
|
|
return StmtError();
|
|
}
|
|
|
|
StmtResult Body = getDerived().TransformStmt(S->getCatchBody());
|
|
if (Body.isInvalid())
|
|
return StmtError();
|
|
|
|
return getDerived().RebuildObjCAtCatchStmt(S->getAtCatchLoc(),
|
|
S->getRParenLoc(),
|
|
Var, Body.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformObjCAtFinallyStmt(ObjCAtFinallyStmt *S) {
|
|
// Transform the body.
|
|
StmtResult Body = getDerived().TransformStmt(S->getFinallyBody());
|
|
if (Body.isInvalid())
|
|
return StmtError();
|
|
|
|
// If nothing changed, just retain this statement.
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Body.get() == S->getFinallyBody())
|
|
return SemaRef.Owned(S);
|
|
|
|
// Build a new statement.
|
|
return getDerived().RebuildObjCAtFinallyStmt(S->getAtFinallyLoc(),
|
|
Body.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformObjCAtThrowStmt(ObjCAtThrowStmt *S) {
|
|
ExprResult Operand;
|
|
if (S->getThrowExpr()) {
|
|
Operand = getDerived().TransformExpr(S->getThrowExpr());
|
|
if (Operand.isInvalid())
|
|
return StmtError();
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Operand.get() == S->getThrowExpr())
|
|
return getSema().Owned(S);
|
|
|
|
return getDerived().RebuildObjCAtThrowStmt(S->getThrowLoc(), Operand.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformObjCAtSynchronizedStmt(
|
|
ObjCAtSynchronizedStmt *S) {
|
|
// Transform the object we are locking.
|
|
ExprResult Object = getDerived().TransformExpr(S->getSynchExpr());
|
|
if (Object.isInvalid())
|
|
return StmtError();
|
|
Object =
|
|
getDerived().RebuildObjCAtSynchronizedOperand(S->getAtSynchronizedLoc(),
|
|
Object.get());
|
|
if (Object.isInvalid())
|
|
return StmtError();
|
|
|
|
// Transform the body.
|
|
StmtResult Body = getDerived().TransformStmt(S->getSynchBody());
|
|
if (Body.isInvalid())
|
|
return StmtError();
|
|
|
|
// If nothing change, just retain the current statement.
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Object.get() == S->getSynchExpr() &&
|
|
Body.get() == S->getSynchBody())
|
|
return SemaRef.Owned(S);
|
|
|
|
// Build a new statement.
|
|
return getDerived().RebuildObjCAtSynchronizedStmt(S->getAtSynchronizedLoc(),
|
|
Object.get(), Body.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformObjCAutoreleasePoolStmt(
|
|
ObjCAutoreleasePoolStmt *S) {
|
|
// Transform the body.
|
|
StmtResult Body = getDerived().TransformStmt(S->getSubStmt());
|
|
if (Body.isInvalid())
|
|
return StmtError();
|
|
|
|
// If nothing changed, just retain this statement.
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Body.get() == S->getSubStmt())
|
|
return SemaRef.Owned(S);
|
|
|
|
// Build a new statement.
|
|
return getDerived().RebuildObjCAutoreleasePoolStmt(
|
|
S->getAtLoc(), Body.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformObjCForCollectionStmt(
|
|
ObjCForCollectionStmt *S) {
|
|
// Transform the element statement.
|
|
StmtResult Element = getDerived().TransformStmt(S->getElement());
|
|
if (Element.isInvalid())
|
|
return StmtError();
|
|
|
|
// Transform the collection expression.
|
|
ExprResult Collection = getDerived().TransformExpr(S->getCollection());
|
|
if (Collection.isInvalid())
|
|
return StmtError();
|
|
|
|
// Transform the body.
|
|
StmtResult Body = getDerived().TransformStmt(S->getBody());
|
|
if (Body.isInvalid())
|
|
return StmtError();
|
|
|
|
// If nothing changed, just retain this statement.
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Element.get() == S->getElement() &&
|
|
Collection.get() == S->getCollection() &&
|
|
Body.get() == S->getBody())
|
|
return SemaRef.Owned(S);
|
|
|
|
// Build a new statement.
|
|
return getDerived().RebuildObjCForCollectionStmt(S->getForLoc(),
|
|
Element.get(),
|
|
Collection.get(),
|
|
S->getRParenLoc(),
|
|
Body.get());
|
|
}
|
|
|
|
template <typename Derived>
|
|
StmtResult TreeTransform<Derived>::TransformCXXCatchStmt(CXXCatchStmt *S) {
|
|
// Transform the exception declaration, if any.
|
|
VarDecl *Var = 0;
|
|
if (VarDecl *ExceptionDecl = S->getExceptionDecl()) {
|
|
TypeSourceInfo *T =
|
|
getDerived().TransformType(ExceptionDecl->getTypeSourceInfo());
|
|
if (!T)
|
|
return StmtError();
|
|
|
|
Var = getDerived().RebuildExceptionDecl(
|
|
ExceptionDecl, T, ExceptionDecl->getInnerLocStart(),
|
|
ExceptionDecl->getLocation(), ExceptionDecl->getIdentifier());
|
|
if (!Var || Var->isInvalidDecl())
|
|
return StmtError();
|
|
}
|
|
|
|
// Transform the actual exception handler.
|
|
StmtResult Handler = getDerived().TransformStmt(S->getHandlerBlock());
|
|
if (Handler.isInvalid())
|
|
return StmtError();
|
|
|
|
if (!getDerived().AlwaysRebuild() && !Var &&
|
|
Handler.get() == S->getHandlerBlock())
|
|
return SemaRef.Owned(S);
|
|
|
|
return getDerived().RebuildCXXCatchStmt(S->getCatchLoc(), Var, Handler.get());
|
|
}
|
|
|
|
template <typename Derived>
|
|
StmtResult TreeTransform<Derived>::TransformCXXTryStmt(CXXTryStmt *S) {
|
|
// Transform the try block itself.
|
|
StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock());
|
|
if (TryBlock.isInvalid())
|
|
return StmtError();
|
|
|
|
// Transform the handlers.
|
|
bool HandlerChanged = false;
|
|
SmallVector<Stmt *, 8> Handlers;
|
|
for (unsigned I = 0, N = S->getNumHandlers(); I != N; ++I) {
|
|
StmtResult Handler = getDerived().TransformCXXCatchStmt(S->getHandler(I));
|
|
if (Handler.isInvalid())
|
|
return StmtError();
|
|
|
|
HandlerChanged = HandlerChanged || Handler.get() != S->getHandler(I);
|
|
Handlers.push_back(Handler.takeAs<Stmt>());
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() &&
|
|
!HandlerChanged)
|
|
return SemaRef.Owned(S);
|
|
|
|
return getDerived().RebuildCXXTryStmt(S->getTryLoc(), TryBlock.get(),
|
|
Handlers);
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformCXXForRangeStmt(CXXForRangeStmt *S) {
|
|
StmtResult Range = getDerived().TransformStmt(S->getRangeStmt());
|
|
if (Range.isInvalid())
|
|
return StmtError();
|
|
|
|
StmtResult BeginEnd = getDerived().TransformStmt(S->getBeginEndStmt());
|
|
if (BeginEnd.isInvalid())
|
|
return StmtError();
|
|
|
|
ExprResult Cond = getDerived().TransformExpr(S->getCond());
|
|
if (Cond.isInvalid())
|
|
return StmtError();
|
|
if (Cond.get())
|
|
Cond = SemaRef.CheckBooleanCondition(Cond.take(), S->getColonLoc());
|
|
if (Cond.isInvalid())
|
|
return StmtError();
|
|
if (Cond.get())
|
|
Cond = SemaRef.MaybeCreateExprWithCleanups(Cond.take());
|
|
|
|
ExprResult Inc = getDerived().TransformExpr(S->getInc());
|
|
if (Inc.isInvalid())
|
|
return StmtError();
|
|
if (Inc.get())
|
|
Inc = SemaRef.MaybeCreateExprWithCleanups(Inc.take());
|
|
|
|
StmtResult LoopVar = getDerived().TransformStmt(S->getLoopVarStmt());
|
|
if (LoopVar.isInvalid())
|
|
return StmtError();
|
|
|
|
StmtResult NewStmt = S;
|
|
if (getDerived().AlwaysRebuild() ||
|
|
Range.get() != S->getRangeStmt() ||
|
|
BeginEnd.get() != S->getBeginEndStmt() ||
|
|
Cond.get() != S->getCond() ||
|
|
Inc.get() != S->getInc() ||
|
|
LoopVar.get() != S->getLoopVarStmt()) {
|
|
NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(),
|
|
S->getColonLoc(), Range.get(),
|
|
BeginEnd.get(), Cond.get(),
|
|
Inc.get(), LoopVar.get(),
|
|
S->getRParenLoc());
|
|
if (NewStmt.isInvalid())
|
|
return StmtError();
|
|
}
|
|
|
|
StmtResult Body = getDerived().TransformStmt(S->getBody());
|
|
if (Body.isInvalid())
|
|
return StmtError();
|
|
|
|
// Body has changed but we didn't rebuild the for-range statement. Rebuild
|
|
// it now so we have a new statement to attach the body to.
|
|
if (Body.get() != S->getBody() && NewStmt.get() == S) {
|
|
NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(),
|
|
S->getColonLoc(), Range.get(),
|
|
BeginEnd.get(), Cond.get(),
|
|
Inc.get(), LoopVar.get(),
|
|
S->getRParenLoc());
|
|
if (NewStmt.isInvalid())
|
|
return StmtError();
|
|
}
|
|
|
|
if (NewStmt.get() == S)
|
|
return SemaRef.Owned(S);
|
|
|
|
return FinishCXXForRangeStmt(NewStmt.get(), Body.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformMSDependentExistsStmt(
|
|
MSDependentExistsStmt *S) {
|
|
// Transform the nested-name-specifier, if any.
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
if (S->getQualifierLoc()) {
|
|
QualifierLoc
|
|
= getDerived().TransformNestedNameSpecifierLoc(S->getQualifierLoc());
|
|
if (!QualifierLoc)
|
|
return StmtError();
|
|
}
|
|
|
|
// Transform the declaration name.
|
|
DeclarationNameInfo NameInfo = S->getNameInfo();
|
|
if (NameInfo.getName()) {
|
|
NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
|
|
if (!NameInfo.getName())
|
|
return StmtError();
|
|
}
|
|
|
|
// Check whether anything changed.
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
QualifierLoc == S->getQualifierLoc() &&
|
|
NameInfo.getName() == S->getNameInfo().getName())
|
|
return S;
|
|
|
|
// Determine whether this name exists, if we can.
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(QualifierLoc);
|
|
bool Dependent = false;
|
|
switch (getSema().CheckMicrosoftIfExistsSymbol(/*S=*/0, SS, NameInfo)) {
|
|
case Sema::IER_Exists:
|
|
if (S->isIfExists())
|
|
break;
|
|
|
|
return new (getSema().Context) NullStmt(S->getKeywordLoc());
|
|
|
|
case Sema::IER_DoesNotExist:
|
|
if (S->isIfNotExists())
|
|
break;
|
|
|
|
return new (getSema().Context) NullStmt(S->getKeywordLoc());
|
|
|
|
case Sema::IER_Dependent:
|
|
Dependent = true;
|
|
break;
|
|
|
|
case Sema::IER_Error:
|
|
return StmtError();
|
|
}
|
|
|
|
// We need to continue with the instantiation, so do so now.
|
|
StmtResult SubStmt = getDerived().TransformCompoundStmt(S->getSubStmt());
|
|
if (SubStmt.isInvalid())
|
|
return StmtError();
|
|
|
|
// If we have resolved the name, just transform to the substatement.
|
|
if (!Dependent)
|
|
return SubStmt;
|
|
|
|
// The name is still dependent, so build a dependent expression again.
|
|
return getDerived().RebuildMSDependentExistsStmt(S->getKeywordLoc(),
|
|
S->isIfExists(),
|
|
QualifierLoc,
|
|
NameInfo,
|
|
SubStmt.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformMSPropertyRefExpr(MSPropertyRefExpr *E) {
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
if (E->getQualifierLoc()) {
|
|
QualifierLoc
|
|
= getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
|
|
if (!QualifierLoc)
|
|
return ExprError();
|
|
}
|
|
|
|
MSPropertyDecl *PD = cast_or_null<MSPropertyDecl>(
|
|
getDerived().TransformDecl(E->getMemberLoc(), E->getPropertyDecl()));
|
|
if (!PD)
|
|
return ExprError();
|
|
|
|
ExprResult Base = getDerived().TransformExpr(E->getBaseExpr());
|
|
if (Base.isInvalid())
|
|
return ExprError();
|
|
|
|
return new (SemaRef.getASTContext())
|
|
MSPropertyRefExpr(Base.get(), PD, E->isArrow(),
|
|
SemaRef.getASTContext().PseudoObjectTy, VK_LValue,
|
|
QualifierLoc, E->getMemberLoc());
|
|
}
|
|
|
|
template <typename Derived>
|
|
StmtResult TreeTransform<Derived>::TransformSEHTryStmt(SEHTryStmt *S) {
|
|
StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock());
|
|
if (TryBlock.isInvalid())
|
|
return StmtError();
|
|
|
|
StmtResult Handler = getDerived().TransformSEHHandler(S->getHandler());
|
|
if (Handler.isInvalid())
|
|
return StmtError();
|
|
|
|
if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() &&
|
|
Handler.get() == S->getHandler())
|
|
return SemaRef.Owned(S);
|
|
|
|
return getDerived().RebuildSEHTryStmt(S->getIsCXXTry(), S->getTryLoc(),
|
|
TryBlock.take(), Handler.take());
|
|
}
|
|
|
|
template <typename Derived>
|
|
StmtResult TreeTransform<Derived>::TransformSEHFinallyStmt(SEHFinallyStmt *S) {
|
|
StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock());
|
|
if (Block.isInvalid())
|
|
return StmtError();
|
|
|
|
return getDerived().RebuildSEHFinallyStmt(S->getFinallyLoc(), Block.take());
|
|
}
|
|
|
|
template <typename Derived>
|
|
StmtResult TreeTransform<Derived>::TransformSEHExceptStmt(SEHExceptStmt *S) {
|
|
ExprResult FilterExpr = getDerived().TransformExpr(S->getFilterExpr());
|
|
if (FilterExpr.isInvalid())
|
|
return StmtError();
|
|
|
|
StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock());
|
|
if (Block.isInvalid())
|
|
return StmtError();
|
|
|
|
return getDerived().RebuildSEHExceptStmt(S->getExceptLoc(), FilterExpr.take(),
|
|
Block.take());
|
|
}
|
|
|
|
template <typename Derived>
|
|
StmtResult TreeTransform<Derived>::TransformSEHHandler(Stmt *Handler) {
|
|
if (isa<SEHFinallyStmt>(Handler))
|
|
return getDerived().TransformSEHFinallyStmt(cast<SEHFinallyStmt>(Handler));
|
|
else
|
|
return getDerived().TransformSEHExceptStmt(cast<SEHExceptStmt>(Handler));
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformOMPParallelDirective(OMPParallelDirective *D) {
|
|
DeclarationNameInfo DirName;
|
|
getSema().StartOpenMPDSABlock(OMPD_parallel, DirName, 0);
|
|
|
|
// Transform the clauses
|
|
llvm::SmallVector<OMPClause *, 16> TClauses;
|
|
ArrayRef<OMPClause *> Clauses = D->clauses();
|
|
TClauses.reserve(Clauses.size());
|
|
for (ArrayRef<OMPClause *>::iterator I = Clauses.begin(), E = Clauses.end();
|
|
I != E; ++I) {
|
|
if (*I) {
|
|
OMPClause *Clause = getDerived().TransformOMPClause(*I);
|
|
if (!Clause) {
|
|
getSema().EndOpenMPDSABlock(0);
|
|
return StmtError();
|
|
}
|
|
TClauses.push_back(Clause);
|
|
}
|
|
else {
|
|
TClauses.push_back(0);
|
|
}
|
|
}
|
|
if (!D->getAssociatedStmt()) {
|
|
getSema().EndOpenMPDSABlock(0);
|
|
return StmtError();
|
|
}
|
|
StmtResult AssociatedStmt =
|
|
getDerived().TransformStmt(D->getAssociatedStmt());
|
|
if (AssociatedStmt.isInvalid()) {
|
|
getSema().EndOpenMPDSABlock(0);
|
|
return StmtError();
|
|
}
|
|
|
|
StmtResult Res = getDerived().RebuildOMPParallelDirective(TClauses,
|
|
AssociatedStmt.take(),
|
|
D->getLocStart(),
|
|
D->getLocEnd());
|
|
getSema().EndOpenMPDSABlock(Res.get());
|
|
return Res;
|
|
}
|
|
|
|
template<typename Derived>
|
|
OMPClause *
|
|
TreeTransform<Derived>::TransformOMPDefaultClause(OMPDefaultClause *C) {
|
|
return getDerived().RebuildOMPDefaultClause(C->getDefaultKind(),
|
|
C->getDefaultKindKwLoc(),
|
|
C->getLocStart(),
|
|
C->getLParenLoc(),
|
|
C->getLocEnd());
|
|
}
|
|
|
|
template<typename Derived>
|
|
OMPClause *
|
|
TreeTransform<Derived>::TransformOMPPrivateClause(OMPPrivateClause *C) {
|
|
llvm::SmallVector<Expr *, 16> Vars;
|
|
Vars.reserve(C->varlist_size());
|
|
for (OMPPrivateClause::varlist_iterator I = C->varlist_begin(),
|
|
E = C->varlist_end();
|
|
I != E; ++I) {
|
|
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(*I));
|
|
if (EVar.isInvalid())
|
|
return 0;
|
|
Vars.push_back(EVar.take());
|
|
}
|
|
return getDerived().RebuildOMPPrivateClause(Vars,
|
|
C->getLocStart(),
|
|
C->getLParenLoc(),
|
|
C->getLocEnd());
|
|
}
|
|
|
|
template<typename Derived>
|
|
OMPClause *
|
|
TreeTransform<Derived>::TransformOMPFirstprivateClause(
|
|
OMPFirstprivateClause *C) {
|
|
llvm::SmallVector<Expr *, 16> Vars;
|
|
Vars.reserve(C->varlist_size());
|
|
for (OMPFirstprivateClause::varlist_iterator I = C->varlist_begin(),
|
|
E = C->varlist_end();
|
|
I != E; ++I) {
|
|
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(*I));
|
|
if (EVar.isInvalid())
|
|
return 0;
|
|
Vars.push_back(EVar.take());
|
|
}
|
|
return getDerived().RebuildOMPFirstprivateClause(Vars,
|
|
C->getLocStart(),
|
|
C->getLParenLoc(),
|
|
C->getLocEnd());
|
|
}
|
|
|
|
template<typename Derived>
|
|
OMPClause *
|
|
TreeTransform<Derived>::TransformOMPSharedClause(OMPSharedClause *C) {
|
|
llvm::SmallVector<Expr *, 16> Vars;
|
|
Vars.reserve(C->varlist_size());
|
|
for (OMPSharedClause::varlist_iterator I = C->varlist_begin(),
|
|
E = C->varlist_end();
|
|
I != E; ++I) {
|
|
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(*I));
|
|
if (EVar.isInvalid())
|
|
return 0;
|
|
Vars.push_back(EVar.take());
|
|
}
|
|
return getDerived().RebuildOMPSharedClause(Vars,
|
|
C->getLocStart(),
|
|
C->getLParenLoc(),
|
|
C->getLocEnd());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Expression transformation
|
|
//===----------------------------------------------------------------------===//
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformPredefinedExpr(PredefinedExpr *E) {
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformDeclRefExpr(DeclRefExpr *E) {
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
if (E->getQualifierLoc()) {
|
|
QualifierLoc
|
|
= getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
|
|
if (!QualifierLoc)
|
|
return ExprError();
|
|
}
|
|
|
|
ValueDecl *ND
|
|
= cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getLocation(),
|
|
E->getDecl()));
|
|
if (!ND)
|
|
return ExprError();
|
|
|
|
DeclarationNameInfo NameInfo = E->getNameInfo();
|
|
if (NameInfo.getName()) {
|
|
NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
|
|
if (!NameInfo.getName())
|
|
return ExprError();
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
QualifierLoc == E->getQualifierLoc() &&
|
|
ND == E->getDecl() &&
|
|
NameInfo.getName() == E->getDecl()->getDeclName() &&
|
|
!E->hasExplicitTemplateArgs()) {
|
|
|
|
// Mark it referenced in the new context regardless.
|
|
// FIXME: this is a bit instantiation-specific.
|
|
SemaRef.MarkDeclRefReferenced(E);
|
|
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
TemplateArgumentListInfo TransArgs, *TemplateArgs = 0;
|
|
if (E->hasExplicitTemplateArgs()) {
|
|
TemplateArgs = &TransArgs;
|
|
TransArgs.setLAngleLoc(E->getLAngleLoc());
|
|
TransArgs.setRAngleLoc(E->getRAngleLoc());
|
|
if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
|
|
E->getNumTemplateArgs(),
|
|
TransArgs))
|
|
return ExprError();
|
|
}
|
|
|
|
return getDerived().RebuildDeclRefExpr(QualifierLoc, ND, NameInfo,
|
|
TemplateArgs);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformIntegerLiteral(IntegerLiteral *E) {
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformFloatingLiteral(FloatingLiteral *E) {
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformImaginaryLiteral(ImaginaryLiteral *E) {
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformStringLiteral(StringLiteral *E) {
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCharacterLiteral(CharacterLiteral *E) {
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformUserDefinedLiteral(UserDefinedLiteral *E) {
|
|
if (FunctionDecl *FD = E->getDirectCallee())
|
|
SemaRef.MarkFunctionReferenced(E->getLocStart(), FD);
|
|
return SemaRef.MaybeBindToTemporary(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformGenericSelectionExpr(GenericSelectionExpr *E) {
|
|
ExprResult ControllingExpr =
|
|
getDerived().TransformExpr(E->getControllingExpr());
|
|
if (ControllingExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
SmallVector<Expr *, 4> AssocExprs;
|
|
SmallVector<TypeSourceInfo *, 4> AssocTypes;
|
|
for (unsigned i = 0; i != E->getNumAssocs(); ++i) {
|
|
TypeSourceInfo *TS = E->getAssocTypeSourceInfo(i);
|
|
if (TS) {
|
|
TypeSourceInfo *AssocType = getDerived().TransformType(TS);
|
|
if (!AssocType)
|
|
return ExprError();
|
|
AssocTypes.push_back(AssocType);
|
|
} else {
|
|
AssocTypes.push_back(0);
|
|
}
|
|
|
|
ExprResult AssocExpr = getDerived().TransformExpr(E->getAssocExpr(i));
|
|
if (AssocExpr.isInvalid())
|
|
return ExprError();
|
|
AssocExprs.push_back(AssocExpr.release());
|
|
}
|
|
|
|
return getDerived().RebuildGenericSelectionExpr(E->getGenericLoc(),
|
|
E->getDefaultLoc(),
|
|
E->getRParenLoc(),
|
|
ControllingExpr.release(),
|
|
AssocTypes,
|
|
AssocExprs);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformParenExpr(ParenExpr *E) {
|
|
ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
|
|
if (SubExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildParenExpr(SubExpr.get(), E->getLParen(),
|
|
E->getRParen());
|
|
}
|
|
|
|
/// \brief The operand of a unary address-of operator has special rules: it's
|
|
/// allowed to refer to a non-static member of a class even if there's no 'this'
|
|
/// object available.
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformAddressOfOperand(Expr *E) {
|
|
if (DependentScopeDeclRefExpr *DRE = dyn_cast<DependentScopeDeclRefExpr>(E))
|
|
return getDerived().TransformDependentScopeDeclRefExpr(DRE, true);
|
|
else
|
|
return getDerived().TransformExpr(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformUnaryOperator(UnaryOperator *E) {
|
|
ExprResult SubExpr;
|
|
if (E->getOpcode() == UO_AddrOf)
|
|
SubExpr = TransformAddressOfOperand(E->getSubExpr());
|
|
else
|
|
SubExpr = TransformExpr(E->getSubExpr());
|
|
if (SubExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildUnaryOperator(E->getOperatorLoc(),
|
|
E->getOpcode(),
|
|
SubExpr.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformOffsetOfExpr(OffsetOfExpr *E) {
|
|
// Transform the type.
|
|
TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo());
|
|
if (!Type)
|
|
return ExprError();
|
|
|
|
// Transform all of the components into components similar to what the
|
|
// parser uses.
|
|
// FIXME: It would be slightly more efficient in the non-dependent case to
|
|
// just map FieldDecls, rather than requiring the rebuilder to look for
|
|
// the fields again. However, __builtin_offsetof is rare enough in
|
|
// template code that we don't care.
|
|
bool ExprChanged = false;
|
|
typedef Sema::OffsetOfComponent Component;
|
|
typedef OffsetOfExpr::OffsetOfNode Node;
|
|
SmallVector<Component, 4> Components;
|
|
for (unsigned I = 0, N = E->getNumComponents(); I != N; ++I) {
|
|
const Node &ON = E->getComponent(I);
|
|
Component Comp;
|
|
Comp.isBrackets = true;
|
|
Comp.LocStart = ON.getSourceRange().getBegin();
|
|
Comp.LocEnd = ON.getSourceRange().getEnd();
|
|
switch (ON.getKind()) {
|
|
case Node::Array: {
|
|
Expr *FromIndex = E->getIndexExpr(ON.getArrayExprIndex());
|
|
ExprResult Index = getDerived().TransformExpr(FromIndex);
|
|
if (Index.isInvalid())
|
|
return ExprError();
|
|
|
|
ExprChanged = ExprChanged || Index.get() != FromIndex;
|
|
Comp.isBrackets = true;
|
|
Comp.U.E = Index.get();
|
|
break;
|
|
}
|
|
|
|
case Node::Field:
|
|
case Node::Identifier:
|
|
Comp.isBrackets = false;
|
|
Comp.U.IdentInfo = ON.getFieldName();
|
|
if (!Comp.U.IdentInfo)
|
|
continue;
|
|
|
|
break;
|
|
|
|
case Node::Base:
|
|
// Will be recomputed during the rebuild.
|
|
continue;
|
|
}
|
|
|
|
Components.push_back(Comp);
|
|
}
|
|
|
|
// If nothing changed, retain the existing expression.
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Type == E->getTypeSourceInfo() &&
|
|
!ExprChanged)
|
|
return SemaRef.Owned(E);
|
|
|
|
// Build a new offsetof expression.
|
|
return getDerived().RebuildOffsetOfExpr(E->getOperatorLoc(), Type,
|
|
Components.data(), Components.size(),
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformOpaqueValueExpr(OpaqueValueExpr *E) {
|
|
assert(getDerived().AlreadyTransformed(E->getType()) &&
|
|
"opaque value expression requires transformation");
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformPseudoObjectExpr(PseudoObjectExpr *E) {
|
|
// Rebuild the syntactic form. The original syntactic form has
|
|
// opaque-value expressions in it, so strip those away and rebuild
|
|
// the result. This is a really awful way of doing this, but the
|
|
// better solution (rebuilding the semantic expressions and
|
|
// rebinding OVEs as necessary) doesn't work; we'd need
|
|
// TreeTransform to not strip away implicit conversions.
|
|
Expr *newSyntacticForm = SemaRef.recreateSyntacticForm(E);
|
|
ExprResult result = getDerived().TransformExpr(newSyntacticForm);
|
|
if (result.isInvalid()) return ExprError();
|
|
|
|
// If that gives us a pseudo-object result back, the pseudo-object
|
|
// expression must have been an lvalue-to-rvalue conversion which we
|
|
// should reapply.
|
|
if (result.get()->hasPlaceholderType(BuiltinType::PseudoObject))
|
|
result = SemaRef.checkPseudoObjectRValue(result.take());
|
|
|
|
return result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformUnaryExprOrTypeTraitExpr(
|
|
UnaryExprOrTypeTraitExpr *E) {
|
|
if (E->isArgumentType()) {
|
|
TypeSourceInfo *OldT = E->getArgumentTypeInfo();
|
|
|
|
TypeSourceInfo *NewT = getDerived().TransformType(OldT);
|
|
if (!NewT)
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() && OldT == NewT)
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildUnaryExprOrTypeTrait(NewT, E->getOperatorLoc(),
|
|
E->getKind(),
|
|
E->getSourceRange());
|
|
}
|
|
|
|
// C++0x [expr.sizeof]p1:
|
|
// The operand is either an expression, which is an unevaluated operand
|
|
// [...]
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
|
|
Sema::ReuseLambdaContextDecl);
|
|
|
|
ExprResult SubExpr = getDerived().TransformExpr(E->getArgumentExpr());
|
|
if (SubExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getArgumentExpr())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildUnaryExprOrTypeTrait(SubExpr.get(),
|
|
E->getOperatorLoc(),
|
|
E->getKind(),
|
|
E->getSourceRange());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformArraySubscriptExpr(ArraySubscriptExpr *E) {
|
|
ExprResult LHS = getDerived().TransformExpr(E->getLHS());
|
|
if (LHS.isInvalid())
|
|
return ExprError();
|
|
|
|
ExprResult RHS = getDerived().TransformExpr(E->getRHS());
|
|
if (RHS.isInvalid())
|
|
return ExprError();
|
|
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
LHS.get() == E->getLHS() &&
|
|
RHS.get() == E->getRHS())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildArraySubscriptExpr(LHS.get(),
|
|
/*FIXME:*/E->getLHS()->getLocStart(),
|
|
RHS.get(),
|
|
E->getRBracketLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCallExpr(CallExpr *E) {
|
|
// Transform the callee.
|
|
ExprResult Callee = getDerived().TransformExpr(E->getCallee());
|
|
if (Callee.isInvalid())
|
|
return ExprError();
|
|
|
|
// Transform arguments.
|
|
bool ArgChanged = false;
|
|
SmallVector<Expr*, 8> Args;
|
|
if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
|
|
&ArgChanged))
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Callee.get() == E->getCallee() &&
|
|
!ArgChanged)
|
|
return SemaRef.MaybeBindToTemporary(E);
|
|
|
|
// FIXME: Wrong source location information for the '('.
|
|
SourceLocation FakeLParenLoc
|
|
= ((Expr *)Callee.get())->getSourceRange().getBegin();
|
|
return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
|
|
Args,
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformMemberExpr(MemberExpr *E) {
|
|
ExprResult Base = getDerived().TransformExpr(E->getBase());
|
|
if (Base.isInvalid())
|
|
return ExprError();
|
|
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
if (E->hasQualifier()) {
|
|
QualifierLoc
|
|
= getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
|
|
|
|
if (!QualifierLoc)
|
|
return ExprError();
|
|
}
|
|
SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
|
|
|
|
ValueDecl *Member
|
|
= cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getMemberLoc(),
|
|
E->getMemberDecl()));
|
|
if (!Member)
|
|
return ExprError();
|
|
|
|
NamedDecl *FoundDecl = E->getFoundDecl();
|
|
if (FoundDecl == E->getMemberDecl()) {
|
|
FoundDecl = Member;
|
|
} else {
|
|
FoundDecl = cast_or_null<NamedDecl>(
|
|
getDerived().TransformDecl(E->getMemberLoc(), FoundDecl));
|
|
if (!FoundDecl)
|
|
return ExprError();
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Base.get() == E->getBase() &&
|
|
QualifierLoc == E->getQualifierLoc() &&
|
|
Member == E->getMemberDecl() &&
|
|
FoundDecl == E->getFoundDecl() &&
|
|
!E->hasExplicitTemplateArgs()) {
|
|
|
|
// Mark it referenced in the new context regardless.
|
|
// FIXME: this is a bit instantiation-specific.
|
|
SemaRef.MarkMemberReferenced(E);
|
|
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
TemplateArgumentListInfo TransArgs;
|
|
if (E->hasExplicitTemplateArgs()) {
|
|
TransArgs.setLAngleLoc(E->getLAngleLoc());
|
|
TransArgs.setRAngleLoc(E->getRAngleLoc());
|
|
if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
|
|
E->getNumTemplateArgs(),
|
|
TransArgs))
|
|
return ExprError();
|
|
}
|
|
|
|
// FIXME: Bogus source location for the operator
|
|
SourceLocation FakeOperatorLoc
|
|
= SemaRef.PP.getLocForEndOfToken(E->getBase()->getSourceRange().getEnd());
|
|
|
|
// FIXME: to do this check properly, we will need to preserve the
|
|
// first-qualifier-in-scope here, just in case we had a dependent
|
|
// base (and therefore couldn't do the check) and a
|
|
// nested-name-qualifier (and therefore could do the lookup).
|
|
NamedDecl *FirstQualifierInScope = 0;
|
|
|
|
return getDerived().RebuildMemberExpr(Base.get(), FakeOperatorLoc,
|
|
E->isArrow(),
|
|
QualifierLoc,
|
|
TemplateKWLoc,
|
|
E->getMemberNameInfo(),
|
|
Member,
|
|
FoundDecl,
|
|
(E->hasExplicitTemplateArgs()
|
|
? &TransArgs : 0),
|
|
FirstQualifierInScope);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformBinaryOperator(BinaryOperator *E) {
|
|
ExprResult LHS = getDerived().TransformExpr(E->getLHS());
|
|
if (LHS.isInvalid())
|
|
return ExprError();
|
|
|
|
ExprResult RHS = getDerived().TransformExpr(E->getRHS());
|
|
if (RHS.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
LHS.get() == E->getLHS() &&
|
|
RHS.get() == E->getRHS())
|
|
return SemaRef.Owned(E);
|
|
|
|
Sema::FPContractStateRAII FPContractState(getSema());
|
|
getSema().FPFeatures.fp_contract = E->isFPContractable();
|
|
|
|
return getDerived().RebuildBinaryOperator(E->getOperatorLoc(), E->getOpcode(),
|
|
LHS.get(), RHS.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCompoundAssignOperator(
|
|
CompoundAssignOperator *E) {
|
|
return getDerived().TransformBinaryOperator(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult TreeTransform<Derived>::
|
|
TransformBinaryConditionalOperator(BinaryConditionalOperator *e) {
|
|
// Just rebuild the common and RHS expressions and see whether we
|
|
// get any changes.
|
|
|
|
ExprResult commonExpr = getDerived().TransformExpr(e->getCommon());
|
|
if (commonExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
ExprResult rhs = getDerived().TransformExpr(e->getFalseExpr());
|
|
if (rhs.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
commonExpr.get() == e->getCommon() &&
|
|
rhs.get() == e->getFalseExpr())
|
|
return SemaRef.Owned(e);
|
|
|
|
return getDerived().RebuildConditionalOperator(commonExpr.take(),
|
|
e->getQuestionLoc(),
|
|
0,
|
|
e->getColonLoc(),
|
|
rhs.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformConditionalOperator(ConditionalOperator *E) {
|
|
ExprResult Cond = getDerived().TransformExpr(E->getCond());
|
|
if (Cond.isInvalid())
|
|
return ExprError();
|
|
|
|
ExprResult LHS = getDerived().TransformExpr(E->getLHS());
|
|
if (LHS.isInvalid())
|
|
return ExprError();
|
|
|
|
ExprResult RHS = getDerived().TransformExpr(E->getRHS());
|
|
if (RHS.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Cond.get() == E->getCond() &&
|
|
LHS.get() == E->getLHS() &&
|
|
RHS.get() == E->getRHS())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildConditionalOperator(Cond.get(),
|
|
E->getQuestionLoc(),
|
|
LHS.get(),
|
|
E->getColonLoc(),
|
|
RHS.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformImplicitCastExpr(ImplicitCastExpr *E) {
|
|
// Implicit casts are eliminated during transformation, since they
|
|
// will be recomputed by semantic analysis after transformation.
|
|
return getDerived().TransformExpr(E->getSubExprAsWritten());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCStyleCastExpr(CStyleCastExpr *E) {
|
|
TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
|
|
if (!Type)
|
|
return ExprError();
|
|
|
|
ExprResult SubExpr
|
|
= getDerived().TransformExpr(E->getSubExprAsWritten());
|
|
if (SubExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Type == E->getTypeInfoAsWritten() &&
|
|
SubExpr.get() == E->getSubExpr())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildCStyleCastExpr(E->getLParenLoc(),
|
|
Type,
|
|
E->getRParenLoc(),
|
|
SubExpr.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCompoundLiteralExpr(CompoundLiteralExpr *E) {
|
|
TypeSourceInfo *OldT = E->getTypeSourceInfo();
|
|
TypeSourceInfo *NewT = getDerived().TransformType(OldT);
|
|
if (!NewT)
|
|
return ExprError();
|
|
|
|
ExprResult Init = getDerived().TransformExpr(E->getInitializer());
|
|
if (Init.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
OldT == NewT &&
|
|
Init.get() == E->getInitializer())
|
|
return SemaRef.MaybeBindToTemporary(E);
|
|
|
|
// Note: the expression type doesn't necessarily match the
|
|
// type-as-written, but that's okay, because it should always be
|
|
// derivable from the initializer.
|
|
|
|
return getDerived().RebuildCompoundLiteralExpr(E->getLParenLoc(), NewT,
|
|
/*FIXME:*/E->getInitializer()->getLocEnd(),
|
|
Init.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformExtVectorElementExpr(ExtVectorElementExpr *E) {
|
|
ExprResult Base = getDerived().TransformExpr(E->getBase());
|
|
if (Base.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Base.get() == E->getBase())
|
|
return SemaRef.Owned(E);
|
|
|
|
// FIXME: Bad source location
|
|
SourceLocation FakeOperatorLoc
|
|
= SemaRef.PP.getLocForEndOfToken(E->getBase()->getLocEnd());
|
|
return getDerived().RebuildExtVectorElementExpr(Base.get(), FakeOperatorLoc,
|
|
E->getAccessorLoc(),
|
|
E->getAccessor());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformInitListExpr(InitListExpr *E) {
|
|
bool InitChanged = false;
|
|
|
|
SmallVector<Expr*, 4> Inits;
|
|
if (getDerived().TransformExprs(E->getInits(), E->getNumInits(), false,
|
|
Inits, &InitChanged))
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() && !InitChanged)
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildInitList(E->getLBraceLoc(), Inits,
|
|
E->getRBraceLoc(), E->getType());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformDesignatedInitExpr(DesignatedInitExpr *E) {
|
|
Designation Desig;
|
|
|
|
// transform the initializer value
|
|
ExprResult Init = getDerived().TransformExpr(E->getInit());
|
|
if (Init.isInvalid())
|
|
return ExprError();
|
|
|
|
// transform the designators.
|
|
SmallVector<Expr*, 4> ArrayExprs;
|
|
bool ExprChanged = false;
|
|
for (DesignatedInitExpr::designators_iterator D = E->designators_begin(),
|
|
DEnd = E->designators_end();
|
|
D != DEnd; ++D) {
|
|
if (D->isFieldDesignator()) {
|
|
Desig.AddDesignator(Designator::getField(D->getFieldName(),
|
|
D->getDotLoc(),
|
|
D->getFieldLoc()));
|
|
continue;
|
|
}
|
|
|
|
if (D->isArrayDesignator()) {
|
|
ExprResult Index = getDerived().TransformExpr(E->getArrayIndex(*D));
|
|
if (Index.isInvalid())
|
|
return ExprError();
|
|
|
|
Desig.AddDesignator(Designator::getArray(Index.get(),
|
|
D->getLBracketLoc()));
|
|
|
|
ExprChanged = ExprChanged || Init.get() != E->getArrayIndex(*D);
|
|
ArrayExprs.push_back(Index.release());
|
|
continue;
|
|
}
|
|
|
|
assert(D->isArrayRangeDesignator() && "New kind of designator?");
|
|
ExprResult Start
|
|
= getDerived().TransformExpr(E->getArrayRangeStart(*D));
|
|
if (Start.isInvalid())
|
|
return ExprError();
|
|
|
|
ExprResult End = getDerived().TransformExpr(E->getArrayRangeEnd(*D));
|
|
if (End.isInvalid())
|
|
return ExprError();
|
|
|
|
Desig.AddDesignator(Designator::getArrayRange(Start.get(),
|
|
End.get(),
|
|
D->getLBracketLoc(),
|
|
D->getEllipsisLoc()));
|
|
|
|
ExprChanged = ExprChanged || Start.get() != E->getArrayRangeStart(*D) ||
|
|
End.get() != E->getArrayRangeEnd(*D);
|
|
|
|
ArrayExprs.push_back(Start.release());
|
|
ArrayExprs.push_back(End.release());
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Init.get() == E->getInit() &&
|
|
!ExprChanged)
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildDesignatedInitExpr(Desig, ArrayExprs,
|
|
E->getEqualOrColonLoc(),
|
|
E->usesGNUSyntax(), Init.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformImplicitValueInitExpr(
|
|
ImplicitValueInitExpr *E) {
|
|
TemporaryBase Rebase(*this, E->getLocStart(), DeclarationName());
|
|
|
|
// FIXME: Will we ever have proper type location here? Will we actually
|
|
// need to transform the type?
|
|
QualType T = getDerived().TransformType(E->getType());
|
|
if (T.isNull())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
T == E->getType())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildImplicitValueInitExpr(T);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformVAArgExpr(VAArgExpr *E) {
|
|
TypeSourceInfo *TInfo = getDerived().TransformType(E->getWrittenTypeInfo());
|
|
if (!TInfo)
|
|
return ExprError();
|
|
|
|
ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
|
|
if (SubExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
TInfo == E->getWrittenTypeInfo() &&
|
|
SubExpr.get() == E->getSubExpr())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildVAArgExpr(E->getBuiltinLoc(), SubExpr.get(),
|
|
TInfo, E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformParenListExpr(ParenListExpr *E) {
|
|
bool ArgumentChanged = false;
|
|
SmallVector<Expr*, 4> Inits;
|
|
if (TransformExprs(E->getExprs(), E->getNumExprs(), true, Inits,
|
|
&ArgumentChanged))
|
|
return ExprError();
|
|
|
|
return getDerived().RebuildParenListExpr(E->getLParenLoc(),
|
|
Inits,
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
/// \brief Transform an address-of-label expression.
|
|
///
|
|
/// By default, the transformation of an address-of-label expression always
|
|
/// rebuilds the expression, so that the label identifier can be resolved to
|
|
/// the corresponding label statement by semantic analysis.
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformAddrLabelExpr(AddrLabelExpr *E) {
|
|
Decl *LD = getDerived().TransformDecl(E->getLabel()->getLocation(),
|
|
E->getLabel());
|
|
if (!LD)
|
|
return ExprError();
|
|
|
|
return getDerived().RebuildAddrLabelExpr(E->getAmpAmpLoc(), E->getLabelLoc(),
|
|
cast<LabelDecl>(LD));
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformStmtExpr(StmtExpr *E) {
|
|
SemaRef.ActOnStartStmtExpr();
|
|
StmtResult SubStmt
|
|
= getDerived().TransformCompoundStmt(E->getSubStmt(), true);
|
|
if (SubStmt.isInvalid()) {
|
|
SemaRef.ActOnStmtExprError();
|
|
return ExprError();
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
SubStmt.get() == E->getSubStmt()) {
|
|
// Calling this an 'error' is unintuitive, but it does the right thing.
|
|
SemaRef.ActOnStmtExprError();
|
|
return SemaRef.MaybeBindToTemporary(E);
|
|
}
|
|
|
|
return getDerived().RebuildStmtExpr(E->getLParenLoc(),
|
|
SubStmt.get(),
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformChooseExpr(ChooseExpr *E) {
|
|
ExprResult Cond = getDerived().TransformExpr(E->getCond());
|
|
if (Cond.isInvalid())
|
|
return ExprError();
|
|
|
|
ExprResult LHS = getDerived().TransformExpr(E->getLHS());
|
|
if (LHS.isInvalid())
|
|
return ExprError();
|
|
|
|
ExprResult RHS = getDerived().TransformExpr(E->getRHS());
|
|
if (RHS.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Cond.get() == E->getCond() &&
|
|
LHS.get() == E->getLHS() &&
|
|
RHS.get() == E->getRHS())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildChooseExpr(E->getBuiltinLoc(),
|
|
Cond.get(), LHS.get(), RHS.get(),
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformGNUNullExpr(GNUNullExpr *E) {
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
|
|
switch (E->getOperator()) {
|
|
case OO_New:
|
|
case OO_Delete:
|
|
case OO_Array_New:
|
|
case OO_Array_Delete:
|
|
llvm_unreachable("new and delete operators cannot use CXXOperatorCallExpr");
|
|
|
|
case OO_Call: {
|
|
// This is a call to an object's operator().
|
|
assert(E->getNumArgs() >= 1 && "Object call is missing arguments");
|
|
|
|
// Transform the object itself.
|
|
ExprResult Object = getDerived().TransformExpr(E->getArg(0));
|
|
if (Object.isInvalid())
|
|
return ExprError();
|
|
|
|
// FIXME: Poor location information
|
|
SourceLocation FakeLParenLoc
|
|
= SemaRef.PP.getLocForEndOfToken(
|
|
static_cast<Expr *>(Object.get())->getLocEnd());
|
|
|
|
// Transform the call arguments.
|
|
SmallVector<Expr*, 8> Args;
|
|
if (getDerived().TransformExprs(E->getArgs() + 1, E->getNumArgs() - 1, true,
|
|
Args))
|
|
return ExprError();
|
|
|
|
return getDerived().RebuildCallExpr(Object.get(), FakeLParenLoc,
|
|
Args,
|
|
E->getLocEnd());
|
|
}
|
|
|
|
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
|
|
case OO_##Name:
|
|
#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
|
|
#include "clang/Basic/OperatorKinds.def"
|
|
case OO_Subscript:
|
|
// Handled below.
|
|
break;
|
|
|
|
case OO_Conditional:
|
|
llvm_unreachable("conditional operator is not actually overloadable");
|
|
|
|
case OO_None:
|
|
case NUM_OVERLOADED_OPERATORS:
|
|
llvm_unreachable("not an overloaded operator?");
|
|
}
|
|
|
|
ExprResult Callee = getDerived().TransformExpr(E->getCallee());
|
|
if (Callee.isInvalid())
|
|
return ExprError();
|
|
|
|
ExprResult First;
|
|
if (E->getOperator() == OO_Amp)
|
|
First = getDerived().TransformAddressOfOperand(E->getArg(0));
|
|
else
|
|
First = getDerived().TransformExpr(E->getArg(0));
|
|
if (First.isInvalid())
|
|
return ExprError();
|
|
|
|
ExprResult Second;
|
|
if (E->getNumArgs() == 2) {
|
|
Second = getDerived().TransformExpr(E->getArg(1));
|
|
if (Second.isInvalid())
|
|
return ExprError();
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Callee.get() == E->getCallee() &&
|
|
First.get() == E->getArg(0) &&
|
|
(E->getNumArgs() != 2 || Second.get() == E->getArg(1)))
|
|
return SemaRef.MaybeBindToTemporary(E);
|
|
|
|
Sema::FPContractStateRAII FPContractState(getSema());
|
|
getSema().FPFeatures.fp_contract = E->isFPContractable();
|
|
|
|
return getDerived().RebuildCXXOperatorCallExpr(E->getOperator(),
|
|
E->getOperatorLoc(),
|
|
Callee.get(),
|
|
First.get(),
|
|
Second.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXMemberCallExpr(CXXMemberCallExpr *E) {
|
|
return getDerived().TransformCallExpr(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCUDAKernelCallExpr(CUDAKernelCallExpr *E) {
|
|
// Transform the callee.
|
|
ExprResult Callee = getDerived().TransformExpr(E->getCallee());
|
|
if (Callee.isInvalid())
|
|
return ExprError();
|
|
|
|
// Transform exec config.
|
|
ExprResult EC = getDerived().TransformCallExpr(E->getConfig());
|
|
if (EC.isInvalid())
|
|
return ExprError();
|
|
|
|
// Transform arguments.
|
|
bool ArgChanged = false;
|
|
SmallVector<Expr*, 8> Args;
|
|
if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
|
|
&ArgChanged))
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Callee.get() == E->getCallee() &&
|
|
!ArgChanged)
|
|
return SemaRef.MaybeBindToTemporary(E);
|
|
|
|
// FIXME: Wrong source location information for the '('.
|
|
SourceLocation FakeLParenLoc
|
|
= ((Expr *)Callee.get())->getSourceRange().getBegin();
|
|
return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
|
|
Args,
|
|
E->getRParenLoc(), EC.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXNamedCastExpr(CXXNamedCastExpr *E) {
|
|
TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
|
|
if (!Type)
|
|
return ExprError();
|
|
|
|
ExprResult SubExpr
|
|
= getDerived().TransformExpr(E->getSubExprAsWritten());
|
|
if (SubExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Type == E->getTypeInfoAsWritten() &&
|
|
SubExpr.get() == E->getSubExpr())
|
|
return SemaRef.Owned(E);
|
|
return getDerived().RebuildCXXNamedCastExpr(E->getOperatorLoc(),
|
|
E->getStmtClass(),
|
|
E->getAngleBrackets().getBegin(),
|
|
Type,
|
|
E->getAngleBrackets().getEnd(),
|
|
// FIXME. this should be '(' location
|
|
E->getAngleBrackets().getEnd(),
|
|
SubExpr.get(),
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXStaticCastExpr(CXXStaticCastExpr *E) {
|
|
return getDerived().TransformCXXNamedCastExpr(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXDynamicCastExpr(CXXDynamicCastExpr *E) {
|
|
return getDerived().TransformCXXNamedCastExpr(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXReinterpretCastExpr(
|
|
CXXReinterpretCastExpr *E) {
|
|
return getDerived().TransformCXXNamedCastExpr(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXConstCastExpr(CXXConstCastExpr *E) {
|
|
return getDerived().TransformCXXNamedCastExpr(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXFunctionalCastExpr(
|
|
CXXFunctionalCastExpr *E) {
|
|
TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
|
|
if (!Type)
|
|
return ExprError();
|
|
|
|
ExprResult SubExpr
|
|
= getDerived().TransformExpr(E->getSubExprAsWritten());
|
|
if (SubExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Type == E->getTypeInfoAsWritten() &&
|
|
SubExpr.get() == E->getSubExpr())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildCXXFunctionalCastExpr(Type,
|
|
E->getLParenLoc(),
|
|
SubExpr.get(),
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXTypeidExpr(CXXTypeidExpr *E) {
|
|
if (E->isTypeOperand()) {
|
|
TypeSourceInfo *TInfo
|
|
= getDerived().TransformType(E->getTypeOperandSourceInfo());
|
|
if (!TInfo)
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
TInfo == E->getTypeOperandSourceInfo())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildCXXTypeidExpr(E->getType(),
|
|
E->getLocStart(),
|
|
TInfo,
|
|
E->getLocEnd());
|
|
}
|
|
|
|
// We don't know whether the subexpression is potentially evaluated until
|
|
// after we perform semantic analysis. We speculatively assume it is
|
|
// unevaluated; it will get fixed later if the subexpression is in fact
|
|
// potentially evaluated.
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated,
|
|
Sema::ReuseLambdaContextDecl);
|
|
|
|
ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
|
|
if (SubExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
SubExpr.get() == E->getExprOperand())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildCXXTypeidExpr(E->getType(),
|
|
E->getLocStart(),
|
|
SubExpr.get(),
|
|
E->getLocEnd());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXUuidofExpr(CXXUuidofExpr *E) {
|
|
if (E->isTypeOperand()) {
|
|
TypeSourceInfo *TInfo
|
|
= getDerived().TransformType(E->getTypeOperandSourceInfo());
|
|
if (!TInfo)
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
TInfo == E->getTypeOperandSourceInfo())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildCXXUuidofExpr(E->getType(),
|
|
E->getLocStart(),
|
|
TInfo,
|
|
E->getLocEnd());
|
|
}
|
|
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
|
|
|
|
ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
|
|
if (SubExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
SubExpr.get() == E->getExprOperand())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildCXXUuidofExpr(E->getType(),
|
|
E->getLocStart(),
|
|
SubExpr.get(),
|
|
E->getLocEnd());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) {
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXNullPtrLiteralExpr(
|
|
CXXNullPtrLiteralExpr *E) {
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXThisExpr(CXXThisExpr *E) {
|
|
QualType T = getSema().getCurrentThisType();
|
|
|
|
if (!getDerived().AlwaysRebuild() && T == E->getType()) {
|
|
// Make sure that we capture 'this'.
|
|
getSema().CheckCXXThisCapture(E->getLocStart());
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
return getDerived().RebuildCXXThisExpr(E->getLocStart(), T, E->isImplicit());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXThrowExpr(CXXThrowExpr *E) {
|
|
ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
|
|
if (SubExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
SubExpr.get() == E->getSubExpr())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildCXXThrowExpr(E->getThrowLoc(), SubExpr.get(),
|
|
E->isThrownVariableInScope());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
|
|
ParmVarDecl *Param
|
|
= cast_or_null<ParmVarDecl>(getDerived().TransformDecl(E->getLocStart(),
|
|
E->getParam()));
|
|
if (!Param)
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Param == E->getParam())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildCXXDefaultArgExpr(E->getUsedLocation(), Param);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
|
|
FieldDecl *Field
|
|
= cast_or_null<FieldDecl>(getDerived().TransformDecl(E->getLocStart(),
|
|
E->getField()));
|
|
if (!Field)
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() && Field == E->getField())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildCXXDefaultInitExpr(E->getExprLoc(), Field);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXScalarValueInitExpr(
|
|
CXXScalarValueInitExpr *E) {
|
|
TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
|
|
if (!T)
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
T == E->getTypeSourceInfo())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildCXXScalarValueInitExpr(T,
|
|
/*FIXME:*/T->getTypeLoc().getEndLoc(),
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXNewExpr(CXXNewExpr *E) {
|
|
// Transform the type that we're allocating
|
|
TypeSourceInfo *AllocTypeInfo
|
|
= getDerived().TransformType(E->getAllocatedTypeSourceInfo());
|
|
if (!AllocTypeInfo)
|
|
return ExprError();
|
|
|
|
// Transform the size of the array we're allocating (if any).
|
|
ExprResult ArraySize = getDerived().TransformExpr(E->getArraySize());
|
|
if (ArraySize.isInvalid())
|
|
return ExprError();
|
|
|
|
// Transform the placement arguments (if any).
|
|
bool ArgumentChanged = false;
|
|
SmallVector<Expr*, 8> PlacementArgs;
|
|
if (getDerived().TransformExprs(E->getPlacementArgs(),
|
|
E->getNumPlacementArgs(), true,
|
|
PlacementArgs, &ArgumentChanged))
|
|
return ExprError();
|
|
|
|
// Transform the initializer (if any).
|
|
Expr *OldInit = E->getInitializer();
|
|
ExprResult NewInit;
|
|
if (OldInit)
|
|
NewInit = getDerived().TransformExpr(OldInit);
|
|
if (NewInit.isInvalid())
|
|
return ExprError();
|
|
|
|
// Transform new operator and delete operator.
|
|
FunctionDecl *OperatorNew = 0;
|
|
if (E->getOperatorNew()) {
|
|
OperatorNew = cast_or_null<FunctionDecl>(
|
|
getDerived().TransformDecl(E->getLocStart(),
|
|
E->getOperatorNew()));
|
|
if (!OperatorNew)
|
|
return ExprError();
|
|
}
|
|
|
|
FunctionDecl *OperatorDelete = 0;
|
|
if (E->getOperatorDelete()) {
|
|
OperatorDelete = cast_or_null<FunctionDecl>(
|
|
getDerived().TransformDecl(E->getLocStart(),
|
|
E->getOperatorDelete()));
|
|
if (!OperatorDelete)
|
|
return ExprError();
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
AllocTypeInfo == E->getAllocatedTypeSourceInfo() &&
|
|
ArraySize.get() == E->getArraySize() &&
|
|
NewInit.get() == OldInit &&
|
|
OperatorNew == E->getOperatorNew() &&
|
|
OperatorDelete == E->getOperatorDelete() &&
|
|
!ArgumentChanged) {
|
|
// Mark any declarations we need as referenced.
|
|
// FIXME: instantiation-specific.
|
|
if (OperatorNew)
|
|
SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorNew);
|
|
if (OperatorDelete)
|
|
SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorDelete);
|
|
|
|
if (E->isArray() && !E->getAllocatedType()->isDependentType()) {
|
|
QualType ElementType
|
|
= SemaRef.Context.getBaseElementType(E->getAllocatedType());
|
|
if (const RecordType *RecordT = ElementType->getAs<RecordType>()) {
|
|
CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordT->getDecl());
|
|
if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Record)) {
|
|
SemaRef.MarkFunctionReferenced(E->getLocStart(), Destructor);
|
|
}
|
|
}
|
|
}
|
|
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
QualType AllocType = AllocTypeInfo->getType();
|
|
if (!ArraySize.get()) {
|
|
// If no array size was specified, but the new expression was
|
|
// instantiated with an array type (e.g., "new T" where T is
|
|
// instantiated with "int[4]"), extract the outer bound from the
|
|
// array type as our array size. We do this with constant and
|
|
// dependently-sized array types.
|
|
const ArrayType *ArrayT = SemaRef.Context.getAsArrayType(AllocType);
|
|
if (!ArrayT) {
|
|
// Do nothing
|
|
} else if (const ConstantArrayType *ConsArrayT
|
|
= dyn_cast<ConstantArrayType>(ArrayT)) {
|
|
ArraySize
|
|
= SemaRef.Owned(IntegerLiteral::Create(SemaRef.Context,
|
|
ConsArrayT->getSize(),
|
|
SemaRef.Context.getSizeType(),
|
|
/*FIXME:*/E->getLocStart()));
|
|
AllocType = ConsArrayT->getElementType();
|
|
} else if (const DependentSizedArrayType *DepArrayT
|
|
= dyn_cast<DependentSizedArrayType>(ArrayT)) {
|
|
if (DepArrayT->getSizeExpr()) {
|
|
ArraySize = SemaRef.Owned(DepArrayT->getSizeExpr());
|
|
AllocType = DepArrayT->getElementType();
|
|
}
|
|
}
|
|
}
|
|
|
|
return getDerived().RebuildCXXNewExpr(E->getLocStart(),
|
|
E->isGlobalNew(),
|
|
/*FIXME:*/E->getLocStart(),
|
|
PlacementArgs,
|
|
/*FIXME:*/E->getLocStart(),
|
|
E->getTypeIdParens(),
|
|
AllocType,
|
|
AllocTypeInfo,
|
|
ArraySize.get(),
|
|
E->getDirectInitRange(),
|
|
NewInit.take());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXDeleteExpr(CXXDeleteExpr *E) {
|
|
ExprResult Operand = getDerived().TransformExpr(E->getArgument());
|
|
if (Operand.isInvalid())
|
|
return ExprError();
|
|
|
|
// Transform the delete operator, if known.
|
|
FunctionDecl *OperatorDelete = 0;
|
|
if (E->getOperatorDelete()) {
|
|
OperatorDelete = cast_or_null<FunctionDecl>(
|
|
getDerived().TransformDecl(E->getLocStart(),
|
|
E->getOperatorDelete()));
|
|
if (!OperatorDelete)
|
|
return ExprError();
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Operand.get() == E->getArgument() &&
|
|
OperatorDelete == E->getOperatorDelete()) {
|
|
// Mark any declarations we need as referenced.
|
|
// FIXME: instantiation-specific.
|
|
if (OperatorDelete)
|
|
SemaRef.MarkFunctionReferenced(E->getLocStart(), OperatorDelete);
|
|
|
|
if (!E->getArgument()->isTypeDependent()) {
|
|
QualType Destroyed = SemaRef.Context.getBaseElementType(
|
|
E->getDestroyedType());
|
|
if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
|
|
CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
|
|
SemaRef.MarkFunctionReferenced(E->getLocStart(),
|
|
SemaRef.LookupDestructor(Record));
|
|
}
|
|
}
|
|
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
return getDerived().RebuildCXXDeleteExpr(E->getLocStart(),
|
|
E->isGlobalDelete(),
|
|
E->isArrayForm(),
|
|
Operand.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXPseudoDestructorExpr(
|
|
CXXPseudoDestructorExpr *E) {
|
|
ExprResult Base = getDerived().TransformExpr(E->getBase());
|
|
if (Base.isInvalid())
|
|
return ExprError();
|
|
|
|
ParsedType ObjectTypePtr;
|
|
bool MayBePseudoDestructor = false;
|
|
Base = SemaRef.ActOnStartCXXMemberReference(0, Base.get(),
|
|
E->getOperatorLoc(),
|
|
E->isArrow()? tok::arrow : tok::period,
|
|
ObjectTypePtr,
|
|
MayBePseudoDestructor);
|
|
if (Base.isInvalid())
|
|
return ExprError();
|
|
|
|
QualType ObjectType = ObjectTypePtr.get();
|
|
NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc();
|
|
if (QualifierLoc) {
|
|
QualifierLoc
|
|
= getDerived().TransformNestedNameSpecifierLoc(QualifierLoc, ObjectType);
|
|
if (!QualifierLoc)
|
|
return ExprError();
|
|
}
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(QualifierLoc);
|
|
|
|
PseudoDestructorTypeStorage Destroyed;
|
|
if (E->getDestroyedTypeInfo()) {
|
|
TypeSourceInfo *DestroyedTypeInfo
|
|
= getDerived().TransformTypeInObjectScope(E->getDestroyedTypeInfo(),
|
|
ObjectType, 0, SS);
|
|
if (!DestroyedTypeInfo)
|
|
return ExprError();
|
|
Destroyed = DestroyedTypeInfo;
|
|
} else if (!ObjectType.isNull() && ObjectType->isDependentType()) {
|
|
// We aren't likely to be able to resolve the identifier down to a type
|
|
// now anyway, so just retain the identifier.
|
|
Destroyed = PseudoDestructorTypeStorage(E->getDestroyedTypeIdentifier(),
|
|
E->getDestroyedTypeLoc());
|
|
} else {
|
|
// Look for a destructor known with the given name.
|
|
ParsedType T = SemaRef.getDestructorName(E->getTildeLoc(),
|
|
*E->getDestroyedTypeIdentifier(),
|
|
E->getDestroyedTypeLoc(),
|
|
/*Scope=*/0,
|
|
SS, ObjectTypePtr,
|
|
false);
|
|
if (!T)
|
|
return ExprError();
|
|
|
|
Destroyed
|
|
= SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.GetTypeFromParser(T),
|
|
E->getDestroyedTypeLoc());
|
|
}
|
|
|
|
TypeSourceInfo *ScopeTypeInfo = 0;
|
|
if (E->getScopeTypeInfo()) {
|
|
CXXScopeSpec EmptySS;
|
|
ScopeTypeInfo = getDerived().TransformTypeInObjectScope(
|
|
E->getScopeTypeInfo(), ObjectType, 0, EmptySS);
|
|
if (!ScopeTypeInfo)
|
|
return ExprError();
|
|
}
|
|
|
|
return getDerived().RebuildCXXPseudoDestructorExpr(Base.get(),
|
|
E->getOperatorLoc(),
|
|
E->isArrow(),
|
|
SS,
|
|
ScopeTypeInfo,
|
|
E->getColonColonLoc(),
|
|
E->getTildeLoc(),
|
|
Destroyed);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformUnresolvedLookupExpr(
|
|
UnresolvedLookupExpr *Old) {
|
|
LookupResult R(SemaRef, Old->getName(), Old->getNameLoc(),
|
|
Sema::LookupOrdinaryName);
|
|
|
|
// Transform all the decls.
|
|
for (UnresolvedLookupExpr::decls_iterator I = Old->decls_begin(),
|
|
E = Old->decls_end(); I != E; ++I) {
|
|
NamedDecl *InstD = static_cast<NamedDecl*>(
|
|
getDerived().TransformDecl(Old->getNameLoc(),
|
|
*I));
|
|
if (!InstD) {
|
|
// Silently ignore these if a UsingShadowDecl instantiated to nothing.
|
|
// This can happen because of dependent hiding.
|
|
if (isa<UsingShadowDecl>(*I))
|
|
continue;
|
|
else {
|
|
R.clear();
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
// Expand using declarations.
|
|
if (isa<UsingDecl>(InstD)) {
|
|
UsingDecl *UD = cast<UsingDecl>(InstD);
|
|
for (UsingDecl::shadow_iterator I = UD->shadow_begin(),
|
|
E = UD->shadow_end(); I != E; ++I)
|
|
R.addDecl(*I);
|
|
continue;
|
|
}
|
|
|
|
R.addDecl(InstD);
|
|
}
|
|
|
|
// Resolve a kind, but don't do any further analysis. If it's
|
|
// ambiguous, the callee needs to deal with it.
|
|
R.resolveKind();
|
|
|
|
// Rebuild the nested-name qualifier, if present.
|
|
CXXScopeSpec SS;
|
|
if (Old->getQualifierLoc()) {
|
|
NestedNameSpecifierLoc QualifierLoc
|
|
= getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
|
|
if (!QualifierLoc)
|
|
return ExprError();
|
|
|
|
SS.Adopt(QualifierLoc);
|
|
}
|
|
|
|
if (Old->getNamingClass()) {
|
|
CXXRecordDecl *NamingClass
|
|
= cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
|
|
Old->getNameLoc(),
|
|
Old->getNamingClass()));
|
|
if (!NamingClass) {
|
|
R.clear();
|
|
return ExprError();
|
|
}
|
|
|
|
R.setNamingClass(NamingClass);
|
|
}
|
|
|
|
SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc();
|
|
|
|
// If we have neither explicit template arguments, nor the template keyword,
|
|
// it's a normal declaration name.
|
|
if (!Old->hasExplicitTemplateArgs() && !TemplateKWLoc.isValid())
|
|
return getDerived().RebuildDeclarationNameExpr(SS, R, Old->requiresADL());
|
|
|
|
// If we have template arguments, rebuild them, then rebuild the
|
|
// templateid expression.
|
|
TemplateArgumentListInfo TransArgs(Old->getLAngleLoc(), Old->getRAngleLoc());
|
|
if (Old->hasExplicitTemplateArgs() &&
|
|
getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
|
|
Old->getNumTemplateArgs(),
|
|
TransArgs)) {
|
|
R.clear();
|
|
return ExprError();
|
|
}
|
|
|
|
return getDerived().RebuildTemplateIdExpr(SS, TemplateKWLoc, R,
|
|
Old->requiresADL(), &TransArgs);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformUnaryTypeTraitExpr(UnaryTypeTraitExpr *E) {
|
|
TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo());
|
|
if (!T)
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
T == E->getQueriedTypeSourceInfo())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildUnaryTypeTrait(E->getTrait(),
|
|
E->getLocStart(),
|
|
T,
|
|
E->getLocEnd());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformBinaryTypeTraitExpr(BinaryTypeTraitExpr *E) {
|
|
TypeSourceInfo *LhsT = getDerived().TransformType(E->getLhsTypeSourceInfo());
|
|
if (!LhsT)
|
|
return ExprError();
|
|
|
|
TypeSourceInfo *RhsT = getDerived().TransformType(E->getRhsTypeSourceInfo());
|
|
if (!RhsT)
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
LhsT == E->getLhsTypeSourceInfo() && RhsT == E->getRhsTypeSourceInfo())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildBinaryTypeTrait(E->getTrait(),
|
|
E->getLocStart(),
|
|
LhsT, RhsT,
|
|
E->getLocEnd());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformTypeTraitExpr(TypeTraitExpr *E) {
|
|
bool ArgChanged = false;
|
|
SmallVector<TypeSourceInfo *, 4> Args;
|
|
for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) {
|
|
TypeSourceInfo *From = E->getArg(I);
|
|
TypeLoc FromTL = From->getTypeLoc();
|
|
if (!FromTL.getAs<PackExpansionTypeLoc>()) {
|
|
TypeLocBuilder TLB;
|
|
TLB.reserve(FromTL.getFullDataSize());
|
|
QualType To = getDerived().TransformType(TLB, FromTL);
|
|
if (To.isNull())
|
|
return ExprError();
|
|
|
|
if (To == From->getType())
|
|
Args.push_back(From);
|
|
else {
|
|
Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
|
|
ArgChanged = true;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
ArgChanged = true;
|
|
|
|
// We have a pack expansion. Instantiate it.
|
|
PackExpansionTypeLoc ExpansionTL = FromTL.castAs<PackExpansionTypeLoc>();
|
|
TypeLoc PatternTL = ExpansionTL.getPatternLoc();
|
|
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
|
|
SemaRef.collectUnexpandedParameterPacks(PatternTL, Unexpanded);
|
|
|
|
// Determine whether the set of unexpanded parameter packs can and should
|
|
// be expanded.
|
|
bool Expand = true;
|
|
bool RetainExpansion = false;
|
|
Optional<unsigned> OrigNumExpansions =
|
|
ExpansionTL.getTypePtr()->getNumExpansions();
|
|
Optional<unsigned> NumExpansions = OrigNumExpansions;
|
|
if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
|
|
PatternTL.getSourceRange(),
|
|
Unexpanded,
|
|
Expand, RetainExpansion,
|
|
NumExpansions))
|
|
return ExprError();
|
|
|
|
if (!Expand) {
|
|
// The transform has determined that we should perform a simple
|
|
// transformation on the pack expansion, producing another pack
|
|
// expansion.
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
|
|
|
|
TypeLocBuilder TLB;
|
|
TLB.reserve(From->getTypeLoc().getFullDataSize());
|
|
|
|
QualType To = getDerived().TransformType(TLB, PatternTL);
|
|
if (To.isNull())
|
|
return ExprError();
|
|
|
|
To = getDerived().RebuildPackExpansionType(To,
|
|
PatternTL.getSourceRange(),
|
|
ExpansionTL.getEllipsisLoc(),
|
|
NumExpansions);
|
|
if (To.isNull())
|
|
return ExprError();
|
|
|
|
PackExpansionTypeLoc ToExpansionTL
|
|
= TLB.push<PackExpansionTypeLoc>(To);
|
|
ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
|
|
Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
|
|
continue;
|
|
}
|
|
|
|
// Expand the pack expansion by substituting for each argument in the
|
|
// pack(s).
|
|
for (unsigned I = 0; I != *NumExpansions; ++I) {
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
|
|
TypeLocBuilder TLB;
|
|
TLB.reserve(PatternTL.getFullDataSize());
|
|
QualType To = getDerived().TransformType(TLB, PatternTL);
|
|
if (To.isNull())
|
|
return ExprError();
|
|
|
|
if (To->containsUnexpandedParameterPack()) {
|
|
To = getDerived().RebuildPackExpansionType(To,
|
|
PatternTL.getSourceRange(),
|
|
ExpansionTL.getEllipsisLoc(),
|
|
NumExpansions);
|
|
if (To.isNull())
|
|
return ExprError();
|
|
|
|
PackExpansionTypeLoc ToExpansionTL
|
|
= TLB.push<PackExpansionTypeLoc>(To);
|
|
ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
|
|
}
|
|
|
|
Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
|
|
}
|
|
|
|
if (!RetainExpansion)
|
|
continue;
|
|
|
|
// If we're supposed to retain a pack expansion, do so by temporarily
|
|
// forgetting the partially-substituted parameter pack.
|
|
ForgetPartiallySubstitutedPackRAII Forget(getDerived());
|
|
|
|
TypeLocBuilder TLB;
|
|
TLB.reserve(From->getTypeLoc().getFullDataSize());
|
|
|
|
QualType To = getDerived().TransformType(TLB, PatternTL);
|
|
if (To.isNull())
|
|
return ExprError();
|
|
|
|
To = getDerived().RebuildPackExpansionType(To,
|
|
PatternTL.getSourceRange(),
|
|
ExpansionTL.getEllipsisLoc(),
|
|
NumExpansions);
|
|
if (To.isNull())
|
|
return ExprError();
|
|
|
|
PackExpansionTypeLoc ToExpansionTL
|
|
= TLB.push<PackExpansionTypeLoc>(To);
|
|
ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
|
|
Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() && !ArgChanged)
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildTypeTrait(E->getTrait(),
|
|
E->getLocStart(),
|
|
Args,
|
|
E->getLocEnd());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformArrayTypeTraitExpr(ArrayTypeTraitExpr *E) {
|
|
TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo());
|
|
if (!T)
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
T == E->getQueriedTypeSourceInfo())
|
|
return SemaRef.Owned(E);
|
|
|
|
ExprResult SubExpr;
|
|
{
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
|
|
SubExpr = getDerived().TransformExpr(E->getDimensionExpression());
|
|
if (SubExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getDimensionExpression())
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
return getDerived().RebuildArrayTypeTrait(E->getTrait(),
|
|
E->getLocStart(),
|
|
T,
|
|
SubExpr.get(),
|
|
E->getLocEnd());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformExpressionTraitExpr(ExpressionTraitExpr *E) {
|
|
ExprResult SubExpr;
|
|
{
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
|
|
SubExpr = getDerived().TransformExpr(E->getQueriedExpression());
|
|
if (SubExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getQueriedExpression())
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
return getDerived().RebuildExpressionTrait(
|
|
E->getTrait(), E->getLocStart(), SubExpr.get(), E->getLocEnd());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
|
|
DependentScopeDeclRefExpr *E) {
|
|
return TransformDependentScopeDeclRefExpr(E, /*IsAddressOfOperand*/false);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
|
|
DependentScopeDeclRefExpr *E,
|
|
bool IsAddressOfOperand) {
|
|
assert(E->getQualifierLoc());
|
|
NestedNameSpecifierLoc QualifierLoc
|
|
= getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
|
|
if (!QualifierLoc)
|
|
return ExprError();
|
|
SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
|
|
|
|
// TODO: If this is a conversion-function-id, verify that the
|
|
// destination type name (if present) resolves the same way after
|
|
// instantiation as it did in the local scope.
|
|
|
|
DeclarationNameInfo NameInfo
|
|
= getDerived().TransformDeclarationNameInfo(E->getNameInfo());
|
|
if (!NameInfo.getName())
|
|
return ExprError();
|
|
|
|
if (!E->hasExplicitTemplateArgs()) {
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
QualifierLoc == E->getQualifierLoc() &&
|
|
// Note: it is sufficient to compare the Name component of NameInfo:
|
|
// if name has not changed, DNLoc has not changed either.
|
|
NameInfo.getName() == E->getDeclName())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildDependentScopeDeclRefExpr(QualifierLoc,
|
|
TemplateKWLoc,
|
|
NameInfo,
|
|
/*TemplateArgs*/ 0,
|
|
IsAddressOfOperand);
|
|
}
|
|
|
|
TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
|
|
if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
|
|
E->getNumTemplateArgs(),
|
|
TransArgs))
|
|
return ExprError();
|
|
|
|
return getDerived().RebuildDependentScopeDeclRefExpr(QualifierLoc,
|
|
TemplateKWLoc,
|
|
NameInfo,
|
|
&TransArgs,
|
|
IsAddressOfOperand);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXConstructExpr(CXXConstructExpr *E) {
|
|
// CXXConstructExprs other than for list-initialization and
|
|
// CXXTemporaryObjectExpr are always implicit, so when we have
|
|
// a 1-argument construction we just transform that argument.
|
|
if ((E->getNumArgs() == 1 ||
|
|
(E->getNumArgs() > 1 && getDerived().DropCallArgument(E->getArg(1)))) &&
|
|
(!getDerived().DropCallArgument(E->getArg(0))) &&
|
|
!E->isListInitialization())
|
|
return getDerived().TransformExpr(E->getArg(0));
|
|
|
|
TemporaryBase Rebase(*this, /*FIXME*/E->getLocStart(), DeclarationName());
|
|
|
|
QualType T = getDerived().TransformType(E->getType());
|
|
if (T.isNull())
|
|
return ExprError();
|
|
|
|
CXXConstructorDecl *Constructor
|
|
= cast_or_null<CXXConstructorDecl>(
|
|
getDerived().TransformDecl(E->getLocStart(),
|
|
E->getConstructor()));
|
|
if (!Constructor)
|
|
return ExprError();
|
|
|
|
bool ArgumentChanged = false;
|
|
SmallVector<Expr*, 8> Args;
|
|
if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
|
|
&ArgumentChanged))
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
T == E->getType() &&
|
|
Constructor == E->getConstructor() &&
|
|
!ArgumentChanged) {
|
|
// Mark the constructor as referenced.
|
|
// FIXME: Instantiation-specific
|
|
SemaRef.MarkFunctionReferenced(E->getLocStart(), Constructor);
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
return getDerived().RebuildCXXConstructExpr(T, /*FIXME:*/E->getLocStart(),
|
|
Constructor, E->isElidable(),
|
|
Args,
|
|
E->hadMultipleCandidates(),
|
|
E->isListInitialization(),
|
|
E->requiresZeroInitialization(),
|
|
E->getConstructionKind(),
|
|
E->getParenOrBraceRange());
|
|
}
|
|
|
|
/// \brief Transform a C++ temporary-binding expression.
|
|
///
|
|
/// Since CXXBindTemporaryExpr nodes are implicitly generated, we just
|
|
/// transform the subexpression and return that.
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
|
|
return getDerived().TransformExpr(E->getSubExpr());
|
|
}
|
|
|
|
/// \brief Transform a C++ expression that contains cleanups that should
|
|
/// be run after the expression is evaluated.
|
|
///
|
|
/// Since ExprWithCleanups nodes are implicitly generated, we
|
|
/// just transform the subexpression and return that.
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformExprWithCleanups(ExprWithCleanups *E) {
|
|
return getDerived().TransformExpr(E->getSubExpr());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXTemporaryObjectExpr(
|
|
CXXTemporaryObjectExpr *E) {
|
|
TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
|
|
if (!T)
|
|
return ExprError();
|
|
|
|
CXXConstructorDecl *Constructor
|
|
= cast_or_null<CXXConstructorDecl>(
|
|
getDerived().TransformDecl(E->getLocStart(),
|
|
E->getConstructor()));
|
|
if (!Constructor)
|
|
return ExprError();
|
|
|
|
bool ArgumentChanged = false;
|
|
SmallVector<Expr*, 8> Args;
|
|
Args.reserve(E->getNumArgs());
|
|
if (TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
|
|
&ArgumentChanged))
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
T == E->getTypeSourceInfo() &&
|
|
Constructor == E->getConstructor() &&
|
|
!ArgumentChanged) {
|
|
// FIXME: Instantiation-specific
|
|
SemaRef.MarkFunctionReferenced(E->getLocStart(), Constructor);
|
|
return SemaRef.MaybeBindToTemporary(E);
|
|
}
|
|
|
|
// FIXME: Pass in E->isListInitialization().
|
|
return getDerived().RebuildCXXTemporaryObjectExpr(T,
|
|
/*FIXME:*/T->getTypeLoc().getEndLoc(),
|
|
Args,
|
|
E->getLocEnd());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformLambdaExpr(LambdaExpr *E) {
|
|
|
|
LambdaScopeInfo *LSI = getSema().PushLambdaScope();
|
|
// Transform the template parameters, and add them to the current
|
|
// instantiation scope. The null case is handled correctly.
|
|
LSI->GLTemplateParameterList = getDerived().TransformTemplateParameterList(
|
|
E->getTemplateParameterList());
|
|
|
|
// Check to see if the TypeSourceInfo of the call operator needs to
|
|
// be transformed, and if so do the transformation in the
|
|
// CurrentInstantiationScope.
|
|
|
|
TypeSourceInfo *OldCallOpTSI = E->getCallOperator()->getTypeSourceInfo();
|
|
FunctionProtoTypeLoc OldCallOpFPTL =
|
|
OldCallOpTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
|
|
TypeSourceInfo *NewCallOpTSI = 0;
|
|
|
|
const bool CallOpWasAlreadyTransformed =
|
|
getDerived().AlreadyTransformed(OldCallOpTSI->getType());
|
|
|
|
// Use the Old Call Operator's TypeSourceInfo if it is already transformed.
|
|
if (CallOpWasAlreadyTransformed)
|
|
NewCallOpTSI = OldCallOpTSI;
|
|
else {
|
|
// Transform the TypeSourceInfo of the Original Lambda's Call Operator.
|
|
// The transformation MUST be done in the CurrentInstantiationScope since
|
|
// it introduces a mapping of the original to the newly created
|
|
// transformed parameters.
|
|
|
|
TypeLocBuilder NewCallOpTLBuilder;
|
|
QualType NewCallOpType = TransformFunctionProtoType(NewCallOpTLBuilder,
|
|
OldCallOpFPTL,
|
|
0, 0);
|
|
NewCallOpTSI = NewCallOpTLBuilder.getTypeSourceInfo(getSema().Context,
|
|
NewCallOpType);
|
|
}
|
|
// Extract the ParmVarDecls from the NewCallOpTSI and add them to
|
|
// the vector below - this will be used to synthesize the
|
|
// NewCallOperator. Additionally, add the parameters of the untransformed
|
|
// lambda call operator to the CurrentInstantiationScope.
|
|
SmallVector<ParmVarDecl *, 4> Params;
|
|
{
|
|
FunctionProtoTypeLoc NewCallOpFPTL =
|
|
NewCallOpTSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
|
|
ParmVarDecl **NewParamDeclArray = NewCallOpFPTL.getParmArray();
|
|
const unsigned NewNumArgs = NewCallOpFPTL.getNumArgs();
|
|
|
|
for (unsigned I = 0; I < NewNumArgs; ++I) {
|
|
// If this call operator's type does not require transformation,
|
|
// the parameters do not get added to the current instantiation scope,
|
|
// - so ADD them! This allows the following to compile when the enclosing
|
|
// template is specialized and the entire lambda expression has to be
|
|
// transformed.
|
|
// template<class T> void foo(T t) {
|
|
// auto L = [](auto a) {
|
|
// auto M = [](char b) { <-- note: non-generic lambda
|
|
// auto N = [](auto c) {
|
|
// int x = sizeof(a);
|
|
// x = sizeof(b); <-- specifically this line
|
|
// x = sizeof(c);
|
|
// };
|
|
// };
|
|
// };
|
|
// }
|
|
// foo('a')
|
|
if (CallOpWasAlreadyTransformed)
|
|
getDerived().transformedLocalDecl(NewParamDeclArray[I],
|
|
NewParamDeclArray[I]);
|
|
// Add to Params array, so these parameters can be used to create
|
|
// the newly transformed call operator.
|
|
Params.push_back(NewParamDeclArray[I]);
|
|
}
|
|
}
|
|
|
|
if (!NewCallOpTSI)
|
|
return ExprError();
|
|
|
|
// Create the local class that will describe the lambda.
|
|
CXXRecordDecl *Class
|
|
= getSema().createLambdaClosureType(E->getIntroducerRange(),
|
|
NewCallOpTSI,
|
|
/*KnownDependent=*/false,
|
|
E->getCaptureDefault());
|
|
|
|
getDerived().transformedLocalDecl(E->getLambdaClass(), Class);
|
|
|
|
// Build the call operator.
|
|
CXXMethodDecl *NewCallOperator
|
|
= getSema().startLambdaDefinition(Class, E->getIntroducerRange(),
|
|
NewCallOpTSI,
|
|
E->getCallOperator()->getLocEnd(),
|
|
Params);
|
|
LSI->CallOperator = NewCallOperator;
|
|
|
|
getDerived().transformAttrs(E->getCallOperator(), NewCallOperator);
|
|
|
|
return getDerived().TransformLambdaScope(E, NewCallOperator);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformLambdaScope(LambdaExpr *E,
|
|
CXXMethodDecl *CallOperator) {
|
|
bool Invalid = false;
|
|
|
|
// Transform any init-capture expressions before entering the scope of the
|
|
// lambda.
|
|
SmallVector<ExprResult, 8> InitCaptureExprs;
|
|
InitCaptureExprs.resize(E->explicit_capture_end() -
|
|
E->explicit_capture_begin());
|
|
for (LambdaExpr::capture_iterator C = E->capture_begin(),
|
|
CEnd = E->capture_end();
|
|
C != CEnd; ++C) {
|
|
if (!C->isInitCapture())
|
|
continue;
|
|
InitCaptureExprs[C - E->capture_begin()] =
|
|
getDerived().TransformInitializer(
|
|
C->getCapturedVar()->getInit(),
|
|
C->getCapturedVar()->getInitStyle() == VarDecl::CallInit);
|
|
}
|
|
|
|
// Introduce the context of the call operator.
|
|
Sema::ContextRAII SavedContext(getSema(), CallOperator);
|
|
|
|
LambdaScopeInfo *const LSI = getSema().getCurLambda();
|
|
// Enter the scope of the lambda.
|
|
getSema().buildLambdaScope(LSI, CallOperator, E->getIntroducerRange(),
|
|
E->getCaptureDefault(),
|
|
E->getCaptureDefaultLoc(),
|
|
E->hasExplicitParameters(),
|
|
E->hasExplicitResultType(),
|
|
E->isMutable());
|
|
|
|
// Transform captures.
|
|
bool FinishedExplicitCaptures = false;
|
|
for (LambdaExpr::capture_iterator C = E->capture_begin(),
|
|
CEnd = E->capture_end();
|
|
C != CEnd; ++C) {
|
|
// When we hit the first implicit capture, tell Sema that we've finished
|
|
// the list of explicit captures.
|
|
if (!FinishedExplicitCaptures && C->isImplicit()) {
|
|
getSema().finishLambdaExplicitCaptures(LSI);
|
|
FinishedExplicitCaptures = true;
|
|
}
|
|
|
|
// Capturing 'this' is trivial.
|
|
if (C->capturesThis()) {
|
|
getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit());
|
|
continue;
|
|
}
|
|
|
|
// Rebuild init-captures, including the implied field declaration.
|
|
if (C->isInitCapture()) {
|
|
ExprResult Init = InitCaptureExprs[C - E->capture_begin()];
|
|
if (Init.isInvalid()) {
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
VarDecl *OldVD = C->getCapturedVar();
|
|
VarDecl *NewVD = getSema().checkInitCapture(
|
|
C->getLocation(), OldVD->getType()->isReferenceType(),
|
|
OldVD->getIdentifier(), Init.take());
|
|
if (!NewVD)
|
|
Invalid = true;
|
|
else
|
|
getDerived().transformedLocalDecl(OldVD, NewVD);
|
|
getSema().buildInitCaptureField(LSI, NewVD);
|
|
continue;
|
|
}
|
|
|
|
assert(C->capturesVariable() && "unexpected kind of lambda capture");
|
|
|
|
// Determine the capture kind for Sema.
|
|
Sema::TryCaptureKind Kind
|
|
= C->isImplicit()? Sema::TryCapture_Implicit
|
|
: C->getCaptureKind() == LCK_ByCopy
|
|
? Sema::TryCapture_ExplicitByVal
|
|
: Sema::TryCapture_ExplicitByRef;
|
|
SourceLocation EllipsisLoc;
|
|
if (C->isPackExpansion()) {
|
|
UnexpandedParameterPack Unexpanded(C->getCapturedVar(), C->getLocation());
|
|
bool ShouldExpand = false;
|
|
bool RetainExpansion = false;
|
|
Optional<unsigned> NumExpansions;
|
|
if (getDerived().TryExpandParameterPacks(C->getEllipsisLoc(),
|
|
C->getLocation(),
|
|
Unexpanded,
|
|
ShouldExpand, RetainExpansion,
|
|
NumExpansions)) {
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
|
|
if (ShouldExpand) {
|
|
// The transform has determined that we should perform an expansion;
|
|
// transform and capture each of the arguments.
|
|
// expansion of the pattern. Do so.
|
|
VarDecl *Pack = C->getCapturedVar();
|
|
for (unsigned I = 0; I != *NumExpansions; ++I) {
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
|
|
VarDecl *CapturedVar
|
|
= cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(),
|
|
Pack));
|
|
if (!CapturedVar) {
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
|
|
// Capture the transformed variable.
|
|
getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
EllipsisLoc = C->getEllipsisLoc();
|
|
}
|
|
|
|
// Transform the captured variable.
|
|
VarDecl *CapturedVar
|
|
= cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(),
|
|
C->getCapturedVar()));
|
|
if (!CapturedVar) {
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
|
|
// Capture the transformed variable.
|
|
getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind);
|
|
}
|
|
if (!FinishedExplicitCaptures)
|
|
getSema().finishLambdaExplicitCaptures(LSI);
|
|
|
|
|
|
// Enter a new evaluation context to insulate the lambda from any
|
|
// cleanups from the enclosing full-expression.
|
|
getSema().PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
|
|
|
|
if (Invalid) {
|
|
getSema().ActOnLambdaError(E->getLocStart(), /*CurScope=*/0,
|
|
/*IsInstantiation=*/true);
|
|
return ExprError();
|
|
}
|
|
|
|
// Instantiate the body of the lambda expression.
|
|
StmtResult Body = getDerived().TransformStmt(E->getBody());
|
|
if (Body.isInvalid()) {
|
|
getSema().ActOnLambdaError(E->getLocStart(), /*CurScope=*/0,
|
|
/*IsInstantiation=*/true);
|
|
return ExprError();
|
|
}
|
|
|
|
return getSema().ActOnLambdaExpr(E->getLocStart(), Body.take(),
|
|
/*CurScope=*/0, /*IsInstantiation=*/true);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXUnresolvedConstructExpr(
|
|
CXXUnresolvedConstructExpr *E) {
|
|
TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
|
|
if (!T)
|
|
return ExprError();
|
|
|
|
bool ArgumentChanged = false;
|
|
SmallVector<Expr*, 8> Args;
|
|
Args.reserve(E->arg_size());
|
|
if (getDerived().TransformExprs(E->arg_begin(), E->arg_size(), true, Args,
|
|
&ArgumentChanged))
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
T == E->getTypeSourceInfo() &&
|
|
!ArgumentChanged)
|
|
return SemaRef.Owned(E);
|
|
|
|
// FIXME: we're faking the locations of the commas
|
|
return getDerived().RebuildCXXUnresolvedConstructExpr(T,
|
|
E->getLParenLoc(),
|
|
Args,
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXDependentScopeMemberExpr(
|
|
CXXDependentScopeMemberExpr *E) {
|
|
// Transform the base of the expression.
|
|
ExprResult Base((Expr*) 0);
|
|
Expr *OldBase;
|
|
QualType BaseType;
|
|
QualType ObjectType;
|
|
if (!E->isImplicitAccess()) {
|
|
OldBase = E->getBase();
|
|
Base = getDerived().TransformExpr(OldBase);
|
|
if (Base.isInvalid())
|
|
return ExprError();
|
|
|
|
// Start the member reference and compute the object's type.
|
|
ParsedType ObjectTy;
|
|
bool MayBePseudoDestructor = false;
|
|
Base = SemaRef.ActOnStartCXXMemberReference(0, Base.get(),
|
|
E->getOperatorLoc(),
|
|
E->isArrow()? tok::arrow : tok::period,
|
|
ObjectTy,
|
|
MayBePseudoDestructor);
|
|
if (Base.isInvalid())
|
|
return ExprError();
|
|
|
|
ObjectType = ObjectTy.get();
|
|
BaseType = ((Expr*) Base.get())->getType();
|
|
} else {
|
|
OldBase = 0;
|
|
BaseType = getDerived().TransformType(E->getBaseType());
|
|
ObjectType = BaseType->getAs<PointerType>()->getPointeeType();
|
|
}
|
|
|
|
// Transform the first part of the nested-name-specifier that qualifies
|
|
// the member name.
|
|
NamedDecl *FirstQualifierInScope
|
|
= getDerived().TransformFirstQualifierInScope(
|
|
E->getFirstQualifierFoundInScope(),
|
|
E->getQualifierLoc().getBeginLoc());
|
|
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
if (E->getQualifier()) {
|
|
QualifierLoc
|
|
= getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc(),
|
|
ObjectType,
|
|
FirstQualifierInScope);
|
|
if (!QualifierLoc)
|
|
return ExprError();
|
|
}
|
|
|
|
SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
|
|
|
|
// TODO: If this is a conversion-function-id, verify that the
|
|
// destination type name (if present) resolves the same way after
|
|
// instantiation as it did in the local scope.
|
|
|
|
DeclarationNameInfo NameInfo
|
|
= getDerived().TransformDeclarationNameInfo(E->getMemberNameInfo());
|
|
if (!NameInfo.getName())
|
|
return ExprError();
|
|
|
|
if (!E->hasExplicitTemplateArgs()) {
|
|
// This is a reference to a member without an explicitly-specified
|
|
// template argument list. Optimize for this common case.
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Base.get() == OldBase &&
|
|
BaseType == E->getBaseType() &&
|
|
QualifierLoc == E->getQualifierLoc() &&
|
|
NameInfo.getName() == E->getMember() &&
|
|
FirstQualifierInScope == E->getFirstQualifierFoundInScope())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
|
|
BaseType,
|
|
E->isArrow(),
|
|
E->getOperatorLoc(),
|
|
QualifierLoc,
|
|
TemplateKWLoc,
|
|
FirstQualifierInScope,
|
|
NameInfo,
|
|
/*TemplateArgs*/ 0);
|
|
}
|
|
|
|
TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
|
|
if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
|
|
E->getNumTemplateArgs(),
|
|
TransArgs))
|
|
return ExprError();
|
|
|
|
return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
|
|
BaseType,
|
|
E->isArrow(),
|
|
E->getOperatorLoc(),
|
|
QualifierLoc,
|
|
TemplateKWLoc,
|
|
FirstQualifierInScope,
|
|
NameInfo,
|
|
&TransArgs);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformUnresolvedMemberExpr(UnresolvedMemberExpr *Old) {
|
|
// Transform the base of the expression.
|
|
ExprResult Base((Expr*) 0);
|
|
QualType BaseType;
|
|
if (!Old->isImplicitAccess()) {
|
|
Base = getDerived().TransformExpr(Old->getBase());
|
|
if (Base.isInvalid())
|
|
return ExprError();
|
|
Base = getSema().PerformMemberExprBaseConversion(Base.take(),
|
|
Old->isArrow());
|
|
if (Base.isInvalid())
|
|
return ExprError();
|
|
BaseType = Base.get()->getType();
|
|
} else {
|
|
BaseType = getDerived().TransformType(Old->getBaseType());
|
|
}
|
|
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
if (Old->getQualifierLoc()) {
|
|
QualifierLoc
|
|
= getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
|
|
if (!QualifierLoc)
|
|
return ExprError();
|
|
}
|
|
|
|
SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc();
|
|
|
|
LookupResult R(SemaRef, Old->getMemberNameInfo(),
|
|
Sema::LookupOrdinaryName);
|
|
|
|
// Transform all the decls.
|
|
for (UnresolvedMemberExpr::decls_iterator I = Old->decls_begin(),
|
|
E = Old->decls_end(); I != E; ++I) {
|
|
NamedDecl *InstD = static_cast<NamedDecl*>(
|
|
getDerived().TransformDecl(Old->getMemberLoc(),
|
|
*I));
|
|
if (!InstD) {
|
|
// Silently ignore these if a UsingShadowDecl instantiated to nothing.
|
|
// This can happen because of dependent hiding.
|
|
if (isa<UsingShadowDecl>(*I))
|
|
continue;
|
|
else {
|
|
R.clear();
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
// Expand using declarations.
|
|
if (isa<UsingDecl>(InstD)) {
|
|
UsingDecl *UD = cast<UsingDecl>(InstD);
|
|
for (UsingDecl::shadow_iterator I = UD->shadow_begin(),
|
|
E = UD->shadow_end(); I != E; ++I)
|
|
R.addDecl(*I);
|
|
continue;
|
|
}
|
|
|
|
R.addDecl(InstD);
|
|
}
|
|
|
|
R.resolveKind();
|
|
|
|
// Determine the naming class.
|
|
if (Old->getNamingClass()) {
|
|
CXXRecordDecl *NamingClass
|
|
= cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
|
|
Old->getMemberLoc(),
|
|
Old->getNamingClass()));
|
|
if (!NamingClass)
|
|
return ExprError();
|
|
|
|
R.setNamingClass(NamingClass);
|
|
}
|
|
|
|
TemplateArgumentListInfo TransArgs;
|
|
if (Old->hasExplicitTemplateArgs()) {
|
|
TransArgs.setLAngleLoc(Old->getLAngleLoc());
|
|
TransArgs.setRAngleLoc(Old->getRAngleLoc());
|
|
if (getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
|
|
Old->getNumTemplateArgs(),
|
|
TransArgs))
|
|
return ExprError();
|
|
}
|
|
|
|
// FIXME: to do this check properly, we will need to preserve the
|
|
// first-qualifier-in-scope here, just in case we had a dependent
|
|
// base (and therefore couldn't do the check) and a
|
|
// nested-name-qualifier (and therefore could do the lookup).
|
|
NamedDecl *FirstQualifierInScope = 0;
|
|
|
|
return getDerived().RebuildUnresolvedMemberExpr(Base.get(),
|
|
BaseType,
|
|
Old->getOperatorLoc(),
|
|
Old->isArrow(),
|
|
QualifierLoc,
|
|
TemplateKWLoc,
|
|
FirstQualifierInScope,
|
|
R,
|
|
(Old->hasExplicitTemplateArgs()
|
|
? &TransArgs : 0));
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXNoexceptExpr(CXXNoexceptExpr *E) {
|
|
EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
|
|
ExprResult SubExpr = getDerived().TransformExpr(E->getOperand());
|
|
if (SubExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getOperand())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildCXXNoexceptExpr(E->getSourceRange(),SubExpr.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformPackExpansionExpr(PackExpansionExpr *E) {
|
|
ExprResult Pattern = getDerived().TransformExpr(E->getPattern());
|
|
if (Pattern.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() && Pattern.get() == E->getPattern())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildPackExpansion(Pattern.get(), E->getEllipsisLoc(),
|
|
E->getNumExpansions());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformSizeOfPackExpr(SizeOfPackExpr *E) {
|
|
// If E is not value-dependent, then nothing will change when we transform it.
|
|
// Note: This is an instantiation-centric view.
|
|
if (!E->isValueDependent())
|
|
return SemaRef.Owned(E);
|
|
|
|
// Note: None of the implementations of TryExpandParameterPacks can ever
|
|
// produce a diagnostic when given only a single unexpanded parameter pack,
|
|
// so
|
|
UnexpandedParameterPack Unexpanded(E->getPack(), E->getPackLoc());
|
|
bool ShouldExpand = false;
|
|
bool RetainExpansion = false;
|
|
Optional<unsigned> NumExpansions;
|
|
if (getDerived().TryExpandParameterPacks(E->getOperatorLoc(), E->getPackLoc(),
|
|
Unexpanded,
|
|
ShouldExpand, RetainExpansion,
|
|
NumExpansions))
|
|
return ExprError();
|
|
|
|
if (RetainExpansion)
|
|
return SemaRef.Owned(E);
|
|
|
|
NamedDecl *Pack = E->getPack();
|
|
if (!ShouldExpand) {
|
|
Pack = cast_or_null<NamedDecl>(getDerived().TransformDecl(E->getPackLoc(),
|
|
Pack));
|
|
if (!Pack)
|
|
return ExprError();
|
|
}
|
|
|
|
|
|
// We now know the length of the parameter pack, so build a new expression
|
|
// that stores that length.
|
|
return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), Pack,
|
|
E->getPackLoc(), E->getRParenLoc(),
|
|
NumExpansions);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformSubstNonTypeTemplateParmPackExpr(
|
|
SubstNonTypeTemplateParmPackExpr *E) {
|
|
// Default behavior is to do nothing with this transformation.
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformSubstNonTypeTemplateParmExpr(
|
|
SubstNonTypeTemplateParmExpr *E) {
|
|
// Default behavior is to do nothing with this transformation.
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformFunctionParmPackExpr(FunctionParmPackExpr *E) {
|
|
// Default behavior is to do nothing with this transformation.
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformMaterializeTemporaryExpr(
|
|
MaterializeTemporaryExpr *E) {
|
|
return getDerived().TransformExpr(E->GetTemporaryExpr());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformCXXStdInitializerListExpr(
|
|
CXXStdInitializerListExpr *E) {
|
|
return getDerived().TransformExpr(E->getSubExpr());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformObjCStringLiteral(ObjCStringLiteral *E) {
|
|
return SemaRef.MaybeBindToTemporary(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformObjCBoolLiteralExpr(ObjCBoolLiteralExpr *E) {
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformObjCBoxedExpr(ObjCBoxedExpr *E) {
|
|
ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
|
|
if (SubExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
SubExpr.get() == E->getSubExpr())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildObjCBoxedExpr(E->getSourceRange(), SubExpr.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformObjCArrayLiteral(ObjCArrayLiteral *E) {
|
|
// Transform each of the elements.
|
|
SmallVector<Expr *, 8> Elements;
|
|
bool ArgChanged = false;
|
|
if (getDerived().TransformExprs(E->getElements(), E->getNumElements(),
|
|
/*IsCall=*/false, Elements, &ArgChanged))
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() && !ArgChanged)
|
|
return SemaRef.MaybeBindToTemporary(E);
|
|
|
|
return getDerived().RebuildObjCArrayLiteral(E->getSourceRange(),
|
|
Elements.data(),
|
|
Elements.size());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformObjCDictionaryLiteral(
|
|
ObjCDictionaryLiteral *E) {
|
|
// Transform each of the elements.
|
|
SmallVector<ObjCDictionaryElement, 8> Elements;
|
|
bool ArgChanged = false;
|
|
for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) {
|
|
ObjCDictionaryElement OrigElement = E->getKeyValueElement(I);
|
|
|
|
if (OrigElement.isPackExpansion()) {
|
|
// This key/value element is a pack expansion.
|
|
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
|
|
getSema().collectUnexpandedParameterPacks(OrigElement.Key, Unexpanded);
|
|
getSema().collectUnexpandedParameterPacks(OrigElement.Value, Unexpanded);
|
|
assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
|
|
|
|
// Determine whether the set of unexpanded parameter packs can
|
|
// and should be expanded.
|
|
bool Expand = true;
|
|
bool RetainExpansion = false;
|
|
Optional<unsigned> OrigNumExpansions = OrigElement.NumExpansions;
|
|
Optional<unsigned> NumExpansions = OrigNumExpansions;
|
|
SourceRange PatternRange(OrigElement.Key->getLocStart(),
|
|
OrigElement.Value->getLocEnd());
|
|
if (getDerived().TryExpandParameterPacks(OrigElement.EllipsisLoc,
|
|
PatternRange,
|
|
Unexpanded,
|
|
Expand, RetainExpansion,
|
|
NumExpansions))
|
|
return ExprError();
|
|
|
|
if (!Expand) {
|
|
// The transform has determined that we should perform a simple
|
|
// transformation on the pack expansion, producing another pack
|
|
// expansion.
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
|
|
ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
|
|
if (Key.isInvalid())
|
|
return ExprError();
|
|
|
|
if (Key.get() != OrigElement.Key)
|
|
ArgChanged = true;
|
|
|
|
ExprResult Value = getDerived().TransformExpr(OrigElement.Value);
|
|
if (Value.isInvalid())
|
|
return ExprError();
|
|
|
|
if (Value.get() != OrigElement.Value)
|
|
ArgChanged = true;
|
|
|
|
ObjCDictionaryElement Expansion = {
|
|
Key.get(), Value.get(), OrigElement.EllipsisLoc, NumExpansions
|
|
};
|
|
Elements.push_back(Expansion);
|
|
continue;
|
|
}
|
|
|
|
// Record right away that the argument was changed. This needs
|
|
// to happen even if the array expands to nothing.
|
|
ArgChanged = true;
|
|
|
|
// The transform has determined that we should perform an elementwise
|
|
// expansion of the pattern. Do so.
|
|
for (unsigned I = 0; I != *NumExpansions; ++I) {
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
|
|
ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
|
|
if (Key.isInvalid())
|
|
return ExprError();
|
|
|
|
ExprResult Value = getDerived().TransformExpr(OrigElement.Value);
|
|
if (Value.isInvalid())
|
|
return ExprError();
|
|
|
|
ObjCDictionaryElement Element = {
|
|
Key.get(), Value.get(), SourceLocation(), NumExpansions
|
|
};
|
|
|
|
// If any unexpanded parameter packs remain, we still have a
|
|
// pack expansion.
|
|
if (Key.get()->containsUnexpandedParameterPack() ||
|
|
Value.get()->containsUnexpandedParameterPack())
|
|
Element.EllipsisLoc = OrigElement.EllipsisLoc;
|
|
|
|
Elements.push_back(Element);
|
|
}
|
|
|
|
// We've finished with this pack expansion.
|
|
continue;
|
|
}
|
|
|
|
// Transform and check key.
|
|
ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
|
|
if (Key.isInvalid())
|
|
return ExprError();
|
|
|
|
if (Key.get() != OrigElement.Key)
|
|
ArgChanged = true;
|
|
|
|
// Transform and check value.
|
|
ExprResult Value
|
|
= getDerived().TransformExpr(OrigElement.Value);
|
|
if (Value.isInvalid())
|
|
return ExprError();
|
|
|
|
if (Value.get() != OrigElement.Value)
|
|
ArgChanged = true;
|
|
|
|
ObjCDictionaryElement Element = {
|
|
Key.get(), Value.get(), SourceLocation(), None
|
|
};
|
|
Elements.push_back(Element);
|
|
}
|
|
|
|
if (!getDerived().AlwaysRebuild() && !ArgChanged)
|
|
return SemaRef.MaybeBindToTemporary(E);
|
|
|
|
return getDerived().RebuildObjCDictionaryLiteral(E->getSourceRange(),
|
|
Elements.data(),
|
|
Elements.size());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformObjCEncodeExpr(ObjCEncodeExpr *E) {
|
|
TypeSourceInfo *EncodedTypeInfo
|
|
= getDerived().TransformType(E->getEncodedTypeSourceInfo());
|
|
if (!EncodedTypeInfo)
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
EncodedTypeInfo == E->getEncodedTypeSourceInfo())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildObjCEncodeExpr(E->getAtLoc(),
|
|
EncodedTypeInfo,
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult TreeTransform<Derived>::
|
|
TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr *E) {
|
|
// This is a kind of implicit conversion, and it needs to get dropped
|
|
// and recomputed for the same general reasons that ImplicitCastExprs
|
|
// do, as well a more specific one: this expression is only valid when
|
|
// it appears *immediately* as an argument expression.
|
|
return getDerived().TransformExpr(E->getSubExpr());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult TreeTransform<Derived>::
|
|
TransformObjCBridgedCastExpr(ObjCBridgedCastExpr *E) {
|
|
TypeSourceInfo *TSInfo
|
|
= getDerived().TransformType(E->getTypeInfoAsWritten());
|
|
if (!TSInfo)
|
|
return ExprError();
|
|
|
|
ExprResult Result = getDerived().TransformExpr(E->getSubExpr());
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
TSInfo == E->getTypeInfoAsWritten() &&
|
|
Result.get() == E->getSubExpr())
|
|
return SemaRef.Owned(E);
|
|
|
|
return SemaRef.BuildObjCBridgedCast(E->getLParenLoc(), E->getBridgeKind(),
|
|
E->getBridgeKeywordLoc(), TSInfo,
|
|
Result.get());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformObjCMessageExpr(ObjCMessageExpr *E) {
|
|
// Transform arguments.
|
|
bool ArgChanged = false;
|
|
SmallVector<Expr*, 8> Args;
|
|
Args.reserve(E->getNumArgs());
|
|
if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), false, Args,
|
|
&ArgChanged))
|
|
return ExprError();
|
|
|
|
if (E->getReceiverKind() == ObjCMessageExpr::Class) {
|
|
// Class message: transform the receiver type.
|
|
TypeSourceInfo *ReceiverTypeInfo
|
|
= getDerived().TransformType(E->getClassReceiverTypeInfo());
|
|
if (!ReceiverTypeInfo)
|
|
return ExprError();
|
|
|
|
// If nothing changed, just retain the existing message send.
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
ReceiverTypeInfo == E->getClassReceiverTypeInfo() && !ArgChanged)
|
|
return SemaRef.MaybeBindToTemporary(E);
|
|
|
|
// Build a new class message send.
|
|
SmallVector<SourceLocation, 16> SelLocs;
|
|
E->getSelectorLocs(SelLocs);
|
|
return getDerived().RebuildObjCMessageExpr(ReceiverTypeInfo,
|
|
E->getSelector(),
|
|
SelLocs,
|
|
E->getMethodDecl(),
|
|
E->getLeftLoc(),
|
|
Args,
|
|
E->getRightLoc());
|
|
}
|
|
|
|
// Instance message: transform the receiver
|
|
assert(E->getReceiverKind() == ObjCMessageExpr::Instance &&
|
|
"Only class and instance messages may be instantiated");
|
|
ExprResult Receiver
|
|
= getDerived().TransformExpr(E->getInstanceReceiver());
|
|
if (Receiver.isInvalid())
|
|
return ExprError();
|
|
|
|
// If nothing changed, just retain the existing message send.
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Receiver.get() == E->getInstanceReceiver() && !ArgChanged)
|
|
return SemaRef.MaybeBindToTemporary(E);
|
|
|
|
// Build a new instance message send.
|
|
SmallVector<SourceLocation, 16> SelLocs;
|
|
E->getSelectorLocs(SelLocs);
|
|
return getDerived().RebuildObjCMessageExpr(Receiver.get(),
|
|
E->getSelector(),
|
|
SelLocs,
|
|
E->getMethodDecl(),
|
|
E->getLeftLoc(),
|
|
Args,
|
|
E->getRightLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformObjCSelectorExpr(ObjCSelectorExpr *E) {
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformObjCProtocolExpr(ObjCProtocolExpr *E) {
|
|
return SemaRef.Owned(E);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformObjCIvarRefExpr(ObjCIvarRefExpr *E) {
|
|
// Transform the base expression.
|
|
ExprResult Base = getDerived().TransformExpr(E->getBase());
|
|
if (Base.isInvalid())
|
|
return ExprError();
|
|
|
|
// We don't need to transform the ivar; it will never change.
|
|
|
|
// If nothing changed, just retain the existing expression.
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Base.get() == E->getBase())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildObjCIvarRefExpr(Base.get(), E->getDecl(),
|
|
E->getLocation(),
|
|
E->isArrow(), E->isFreeIvar());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
|
|
// 'super' and types never change. Property never changes. Just
|
|
// retain the existing expression.
|
|
if (!E->isObjectReceiver())
|
|
return SemaRef.Owned(E);
|
|
|
|
// Transform the base expression.
|
|
ExprResult Base = getDerived().TransformExpr(E->getBase());
|
|
if (Base.isInvalid())
|
|
return ExprError();
|
|
|
|
// We don't need to transform the property; it will never change.
|
|
|
|
// If nothing changed, just retain the existing expression.
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Base.get() == E->getBase())
|
|
return SemaRef.Owned(E);
|
|
|
|
if (E->isExplicitProperty())
|
|
return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
|
|
E->getExplicitProperty(),
|
|
E->getLocation());
|
|
|
|
return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
|
|
SemaRef.Context.PseudoObjectTy,
|
|
E->getImplicitPropertyGetter(),
|
|
E->getImplicitPropertySetter(),
|
|
E->getLocation());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformObjCSubscriptRefExpr(ObjCSubscriptRefExpr *E) {
|
|
// Transform the base expression.
|
|
ExprResult Base = getDerived().TransformExpr(E->getBaseExpr());
|
|
if (Base.isInvalid())
|
|
return ExprError();
|
|
|
|
// Transform the key expression.
|
|
ExprResult Key = getDerived().TransformExpr(E->getKeyExpr());
|
|
if (Key.isInvalid())
|
|
return ExprError();
|
|
|
|
// If nothing changed, just retain the existing expression.
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Key.get() == E->getKeyExpr() && Base.get() == E->getBaseExpr())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildObjCSubscriptRefExpr(E->getRBracket(),
|
|
Base.get(), Key.get(),
|
|
E->getAtIndexMethodDecl(),
|
|
E->setAtIndexMethodDecl());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformObjCIsaExpr(ObjCIsaExpr *E) {
|
|
// Transform the base expression.
|
|
ExprResult Base = getDerived().TransformExpr(E->getBase());
|
|
if (Base.isInvalid())
|
|
return ExprError();
|
|
|
|
// If nothing changed, just retain the existing expression.
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Base.get() == E->getBase())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildObjCIsaExpr(Base.get(), E->getIsaMemberLoc(),
|
|
E->getOpLoc(),
|
|
E->isArrow());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformShuffleVectorExpr(ShuffleVectorExpr *E) {
|
|
bool ArgumentChanged = false;
|
|
SmallVector<Expr*, 8> SubExprs;
|
|
SubExprs.reserve(E->getNumSubExprs());
|
|
if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
|
|
SubExprs, &ArgumentChanged))
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
!ArgumentChanged)
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildShuffleVectorExpr(E->getBuiltinLoc(),
|
|
SubExprs,
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformConvertVectorExpr(ConvertVectorExpr *E) {
|
|
ExprResult SrcExpr = getDerived().TransformExpr(E->getSrcExpr());
|
|
if (SrcExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo());
|
|
if (!Type)
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
Type == E->getTypeSourceInfo() &&
|
|
SrcExpr.get() == E->getSrcExpr())
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildConvertVectorExpr(E->getBuiltinLoc(),
|
|
SrcExpr.get(), Type,
|
|
E->getRParenLoc());
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformBlockExpr(BlockExpr *E) {
|
|
BlockDecl *oldBlock = E->getBlockDecl();
|
|
|
|
SemaRef.ActOnBlockStart(E->getCaretLocation(), /*Scope=*/0);
|
|
BlockScopeInfo *blockScope = SemaRef.getCurBlock();
|
|
|
|
blockScope->TheDecl->setIsVariadic(oldBlock->isVariadic());
|
|
blockScope->TheDecl->setBlockMissingReturnType(
|
|
oldBlock->blockMissingReturnType());
|
|
|
|
SmallVector<ParmVarDecl*, 4> params;
|
|
SmallVector<QualType, 4> paramTypes;
|
|
|
|
// Parameter substitution.
|
|
if (getDerived().TransformFunctionTypeParams(E->getCaretLocation(),
|
|
oldBlock->param_begin(),
|
|
oldBlock->param_size(),
|
|
0, paramTypes, ¶ms)) {
|
|
getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/0);
|
|
return ExprError();
|
|
}
|
|
|
|
const FunctionProtoType *exprFunctionType = E->getFunctionType();
|
|
QualType exprResultType =
|
|
getDerived().TransformType(exprFunctionType->getResultType());
|
|
|
|
QualType functionType =
|
|
getDerived().RebuildFunctionProtoType(exprResultType, paramTypes,
|
|
exprFunctionType->getExtProtoInfo());
|
|
blockScope->FunctionType = functionType;
|
|
|
|
// Set the parameters on the block decl.
|
|
if (!params.empty())
|
|
blockScope->TheDecl->setParams(params);
|
|
|
|
if (!oldBlock->blockMissingReturnType()) {
|
|
blockScope->HasImplicitReturnType = false;
|
|
blockScope->ReturnType = exprResultType;
|
|
}
|
|
|
|
// Transform the body
|
|
StmtResult body = getDerived().TransformStmt(E->getBody());
|
|
if (body.isInvalid()) {
|
|
getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/0);
|
|
return ExprError();
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// In builds with assertions, make sure that we captured everything we
|
|
// captured before.
|
|
if (!SemaRef.getDiagnostics().hasErrorOccurred()) {
|
|
for (BlockDecl::capture_iterator i = oldBlock->capture_begin(),
|
|
e = oldBlock->capture_end(); i != e; ++i) {
|
|
VarDecl *oldCapture = i->getVariable();
|
|
|
|
// Ignore parameter packs.
|
|
if (isa<ParmVarDecl>(oldCapture) &&
|
|
cast<ParmVarDecl>(oldCapture)->isParameterPack())
|
|
continue;
|
|
|
|
VarDecl *newCapture =
|
|
cast<VarDecl>(getDerived().TransformDecl(E->getCaretLocation(),
|
|
oldCapture));
|
|
assert(blockScope->CaptureMap.count(newCapture));
|
|
}
|
|
assert(oldBlock->capturesCXXThis() == blockScope->isCXXThisCaptured());
|
|
}
|
|
#endif
|
|
|
|
return SemaRef.ActOnBlockStmtExpr(E->getCaretLocation(), body.get(),
|
|
/*Scope=*/0);
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformAsTypeExpr(AsTypeExpr *E) {
|
|
llvm_unreachable("Cannot transform asType expressions yet");
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::TransformAtomicExpr(AtomicExpr *E) {
|
|
QualType RetTy = getDerived().TransformType(E->getType());
|
|
bool ArgumentChanged = false;
|
|
SmallVector<Expr*, 8> SubExprs;
|
|
SubExprs.reserve(E->getNumSubExprs());
|
|
if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
|
|
SubExprs, &ArgumentChanged))
|
|
return ExprError();
|
|
|
|
if (!getDerived().AlwaysRebuild() &&
|
|
!ArgumentChanged)
|
|
return SemaRef.Owned(E);
|
|
|
|
return getDerived().RebuildAtomicExpr(E->getBuiltinLoc(), SubExprs,
|
|
RetTy, E->getOp(), E->getRParenLoc());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type reconstruction
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildPointerType(QualType PointeeType,
|
|
SourceLocation Star) {
|
|
return SemaRef.BuildPointerType(PointeeType, Star,
|
|
getDerived().getBaseEntity());
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildBlockPointerType(QualType PointeeType,
|
|
SourceLocation Star) {
|
|
return SemaRef.BuildBlockPointerType(PointeeType, Star,
|
|
getDerived().getBaseEntity());
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::RebuildReferenceType(QualType ReferentType,
|
|
bool WrittenAsLValue,
|
|
SourceLocation Sigil) {
|
|
return SemaRef.BuildReferenceType(ReferentType, WrittenAsLValue,
|
|
Sigil, getDerived().getBaseEntity());
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::RebuildMemberPointerType(QualType PointeeType,
|
|
QualType ClassType,
|
|
SourceLocation Sigil) {
|
|
return SemaRef.BuildMemberPointerType(PointeeType, ClassType,
|
|
Sigil, getDerived().getBaseEntity());
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::RebuildArrayType(QualType ElementType,
|
|
ArrayType::ArraySizeModifier SizeMod,
|
|
const llvm::APInt *Size,
|
|
Expr *SizeExpr,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange BracketsRange) {
|
|
if (SizeExpr || !Size)
|
|
return SemaRef.BuildArrayType(ElementType, SizeMod, SizeExpr,
|
|
IndexTypeQuals, BracketsRange,
|
|
getDerived().getBaseEntity());
|
|
|
|
QualType Types[] = {
|
|
SemaRef.Context.UnsignedCharTy, SemaRef.Context.UnsignedShortTy,
|
|
SemaRef.Context.UnsignedIntTy, SemaRef.Context.UnsignedLongTy,
|
|
SemaRef.Context.UnsignedLongLongTy, SemaRef.Context.UnsignedInt128Ty
|
|
};
|
|
const unsigned NumTypes = llvm::array_lengthof(Types);
|
|
QualType SizeType;
|
|
for (unsigned I = 0; I != NumTypes; ++I)
|
|
if (Size->getBitWidth() == SemaRef.Context.getIntWidth(Types[I])) {
|
|
SizeType = Types[I];
|
|
break;
|
|
}
|
|
|
|
// Note that we can return a VariableArrayType here in the case where
|
|
// the element type was a dependent VariableArrayType.
|
|
IntegerLiteral *ArraySize
|
|
= IntegerLiteral::Create(SemaRef.Context, *Size, SizeType,
|
|
/*FIXME*/BracketsRange.getBegin());
|
|
return SemaRef.BuildArrayType(ElementType, SizeMod, ArraySize,
|
|
IndexTypeQuals, BracketsRange,
|
|
getDerived().getBaseEntity());
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::RebuildConstantArrayType(QualType ElementType,
|
|
ArrayType::ArraySizeModifier SizeMod,
|
|
const llvm::APInt &Size,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange BracketsRange) {
|
|
return getDerived().RebuildArrayType(ElementType, SizeMod, &Size, 0,
|
|
IndexTypeQuals, BracketsRange);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::RebuildIncompleteArrayType(QualType ElementType,
|
|
ArrayType::ArraySizeModifier SizeMod,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange BracketsRange) {
|
|
return getDerived().RebuildArrayType(ElementType, SizeMod, 0, 0,
|
|
IndexTypeQuals, BracketsRange);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::RebuildVariableArrayType(QualType ElementType,
|
|
ArrayType::ArraySizeModifier SizeMod,
|
|
Expr *SizeExpr,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange BracketsRange) {
|
|
return getDerived().RebuildArrayType(ElementType, SizeMod, 0,
|
|
SizeExpr,
|
|
IndexTypeQuals, BracketsRange);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::RebuildDependentSizedArrayType(QualType ElementType,
|
|
ArrayType::ArraySizeModifier SizeMod,
|
|
Expr *SizeExpr,
|
|
unsigned IndexTypeQuals,
|
|
SourceRange BracketsRange) {
|
|
return getDerived().RebuildArrayType(ElementType, SizeMod, 0,
|
|
SizeExpr,
|
|
IndexTypeQuals, BracketsRange);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildVectorType(QualType ElementType,
|
|
unsigned NumElements,
|
|
VectorType::VectorKind VecKind) {
|
|
// FIXME: semantic checking!
|
|
return SemaRef.Context.getVectorType(ElementType, NumElements, VecKind);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildExtVectorType(QualType ElementType,
|
|
unsigned NumElements,
|
|
SourceLocation AttributeLoc) {
|
|
llvm::APInt numElements(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy),
|
|
NumElements, true);
|
|
IntegerLiteral *VectorSize
|
|
= IntegerLiteral::Create(SemaRef.Context, numElements, SemaRef.Context.IntTy,
|
|
AttributeLoc);
|
|
return SemaRef.BuildExtVectorType(ElementType, VectorSize, AttributeLoc);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType
|
|
TreeTransform<Derived>::RebuildDependentSizedExtVectorType(QualType ElementType,
|
|
Expr *SizeExpr,
|
|
SourceLocation AttributeLoc) {
|
|
return SemaRef.BuildExtVectorType(ElementType, SizeExpr, AttributeLoc);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildFunctionProtoType(
|
|
QualType T,
|
|
llvm::MutableArrayRef<QualType> ParamTypes,
|
|
const FunctionProtoType::ExtProtoInfo &EPI) {
|
|
return SemaRef.BuildFunctionType(T, ParamTypes,
|
|
getDerived().getBaseLocation(),
|
|
getDerived().getBaseEntity(),
|
|
EPI);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildFunctionNoProtoType(QualType T) {
|
|
return SemaRef.Context.getFunctionNoProtoType(T);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildUnresolvedUsingType(Decl *D) {
|
|
assert(D && "no decl found");
|
|
if (D->isInvalidDecl()) return QualType();
|
|
|
|
// FIXME: Doesn't account for ObjCInterfaceDecl!
|
|
TypeDecl *Ty;
|
|
if (isa<UsingDecl>(D)) {
|
|
UsingDecl *Using = cast<UsingDecl>(D);
|
|
assert(Using->hasTypename() &&
|
|
"UnresolvedUsingTypenameDecl transformed to non-typename using");
|
|
|
|
// A valid resolved using typename decl points to exactly one type decl.
|
|
assert(++Using->shadow_begin() == Using->shadow_end());
|
|
Ty = cast<TypeDecl>((*Using->shadow_begin())->getTargetDecl());
|
|
|
|
} else {
|
|
assert(isa<UnresolvedUsingTypenameDecl>(D) &&
|
|
"UnresolvedUsingTypenameDecl transformed to non-using decl");
|
|
Ty = cast<UnresolvedUsingTypenameDecl>(D);
|
|
}
|
|
|
|
return SemaRef.Context.getTypeDeclType(Ty);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildTypeOfExprType(Expr *E,
|
|
SourceLocation Loc) {
|
|
return SemaRef.BuildTypeofExprType(E, Loc);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildTypeOfType(QualType Underlying) {
|
|
return SemaRef.Context.getTypeOfType(Underlying);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildDecltypeType(Expr *E,
|
|
SourceLocation Loc) {
|
|
return SemaRef.BuildDecltypeType(E, Loc);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildUnaryTransformType(QualType BaseType,
|
|
UnaryTransformType::UTTKind UKind,
|
|
SourceLocation Loc) {
|
|
return SemaRef.BuildUnaryTransformType(BaseType, UKind, Loc);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildTemplateSpecializationType(
|
|
TemplateName Template,
|
|
SourceLocation TemplateNameLoc,
|
|
TemplateArgumentListInfo &TemplateArgs) {
|
|
return SemaRef.CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
|
|
}
|
|
|
|
template<typename Derived>
|
|
QualType TreeTransform<Derived>::RebuildAtomicType(QualType ValueType,
|
|
SourceLocation KWLoc) {
|
|
return SemaRef.BuildAtomicType(ValueType, KWLoc);
|
|
}
|
|
|
|
template<typename Derived>
|
|
TemplateName
|
|
TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
|
|
bool TemplateKW,
|
|
TemplateDecl *Template) {
|
|
return SemaRef.Context.getQualifiedTemplateName(SS.getScopeRep(), TemplateKW,
|
|
Template);
|
|
}
|
|
|
|
template<typename Derived>
|
|
TemplateName
|
|
TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
|
|
const IdentifierInfo &Name,
|
|
SourceLocation NameLoc,
|
|
QualType ObjectType,
|
|
NamedDecl *FirstQualifierInScope) {
|
|
UnqualifiedId TemplateName;
|
|
TemplateName.setIdentifier(&Name, NameLoc);
|
|
Sema::TemplateTy Template;
|
|
SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
|
|
getSema().ActOnDependentTemplateName(/*Scope=*/0,
|
|
SS, TemplateKWLoc, TemplateName,
|
|
ParsedType::make(ObjectType),
|
|
/*EnteringContext=*/false,
|
|
Template);
|
|
return Template.get();
|
|
}
|
|
|
|
template<typename Derived>
|
|
TemplateName
|
|
TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
|
|
OverloadedOperatorKind Operator,
|
|
SourceLocation NameLoc,
|
|
QualType ObjectType) {
|
|
UnqualifiedId Name;
|
|
// FIXME: Bogus location information.
|
|
SourceLocation SymbolLocations[3] = { NameLoc, NameLoc, NameLoc };
|
|
Name.setOperatorFunctionId(NameLoc, Operator, SymbolLocations);
|
|
SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
|
|
Sema::TemplateTy Template;
|
|
getSema().ActOnDependentTemplateName(/*Scope=*/0,
|
|
SS, TemplateKWLoc, Name,
|
|
ParsedType::make(ObjectType),
|
|
/*EnteringContext=*/false,
|
|
Template);
|
|
return Template.get();
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
|
|
SourceLocation OpLoc,
|
|
Expr *OrigCallee,
|
|
Expr *First,
|
|
Expr *Second) {
|
|
Expr *Callee = OrigCallee->IgnoreParenCasts();
|
|
bool isPostIncDec = Second && (Op == OO_PlusPlus || Op == OO_MinusMinus);
|
|
|
|
// Determine whether this should be a builtin operation.
|
|
if (Op == OO_Subscript) {
|
|
if (!First->getType()->isOverloadableType() &&
|
|
!Second->getType()->isOverloadableType())
|
|
return getSema().CreateBuiltinArraySubscriptExpr(First,
|
|
Callee->getLocStart(),
|
|
Second, OpLoc);
|
|
} else if (Op == OO_Arrow) {
|
|
// -> is never a builtin operation.
|
|
return SemaRef.BuildOverloadedArrowExpr(0, First, OpLoc);
|
|
} else if (Second == 0 || isPostIncDec) {
|
|
if (!First->getType()->isOverloadableType()) {
|
|
// The argument is not of overloadable type, so try to create a
|
|
// built-in unary operation.
|
|
UnaryOperatorKind Opc
|
|
= UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
|
|
|
|
return getSema().CreateBuiltinUnaryOp(OpLoc, Opc, First);
|
|
}
|
|
} else {
|
|
if (!First->getType()->isOverloadableType() &&
|
|
!Second->getType()->isOverloadableType()) {
|
|
// Neither of the arguments is an overloadable type, so try to
|
|
// create a built-in binary operation.
|
|
BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
|
|
ExprResult Result
|
|
= SemaRef.CreateBuiltinBinOp(OpLoc, Opc, First, Second);
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
// Compute the transformed set of functions (and function templates) to be
|
|
// used during overload resolution.
|
|
UnresolvedSet<16> Functions;
|
|
|
|
if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Callee)) {
|
|
assert(ULE->requiresADL());
|
|
|
|
// FIXME: Do we have to check
|
|
// IsAcceptableNonMemberOperatorCandidate for each of these?
|
|
Functions.append(ULE->decls_begin(), ULE->decls_end());
|
|
} else {
|
|
// If we've resolved this to a particular non-member function, just call
|
|
// that function. If we resolved it to a member function,
|
|
// CreateOverloaded* will find that function for us.
|
|
NamedDecl *ND = cast<DeclRefExpr>(Callee)->getDecl();
|
|
if (!isa<CXXMethodDecl>(ND))
|
|
Functions.addDecl(ND);
|
|
}
|
|
|
|
// Add any functions found via argument-dependent lookup.
|
|
Expr *Args[2] = { First, Second };
|
|
unsigned NumArgs = 1 + (Second != 0);
|
|
|
|
// Create the overloaded operator invocation for unary operators.
|
|
if (NumArgs == 1 || isPostIncDec) {
|
|
UnaryOperatorKind Opc
|
|
= UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
|
|
return SemaRef.CreateOverloadedUnaryOp(OpLoc, Opc, Functions, First);
|
|
}
|
|
|
|
if (Op == OO_Subscript) {
|
|
SourceLocation LBrace;
|
|
SourceLocation RBrace;
|
|
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Callee)) {
|
|
DeclarationNameLoc &NameLoc = DRE->getNameInfo().getInfo();
|
|
LBrace = SourceLocation::getFromRawEncoding(
|
|
NameLoc.CXXOperatorName.BeginOpNameLoc);
|
|
RBrace = SourceLocation::getFromRawEncoding(
|
|
NameLoc.CXXOperatorName.EndOpNameLoc);
|
|
} else {
|
|
LBrace = Callee->getLocStart();
|
|
RBrace = OpLoc;
|
|
}
|
|
|
|
return SemaRef.CreateOverloadedArraySubscriptExpr(LBrace, RBrace,
|
|
First, Second);
|
|
}
|
|
|
|
// Create the overloaded operator invocation for binary operators.
|
|
BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
|
|
ExprResult Result
|
|
= SemaRef.CreateOverloadedBinOp(OpLoc, Opc, Functions, Args[0], Args[1]);
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
|
|
return Result;
|
|
}
|
|
|
|
template<typename Derived>
|
|
ExprResult
|
|
TreeTransform<Derived>::RebuildCXXPseudoDestructorExpr(Expr *Base,
|
|
SourceLocation OperatorLoc,
|
|
bool isArrow,
|
|
CXXScopeSpec &SS,
|
|
TypeSourceInfo *ScopeType,
|
|
SourceLocation CCLoc,
|
|
SourceLocation TildeLoc,
|
|
PseudoDestructorTypeStorage Destroyed) {
|
|
QualType BaseType = Base->getType();
|
|
if (Base->isTypeDependent() || Destroyed.getIdentifier() ||
|
|
(!isArrow && !BaseType->getAs<RecordType>()) ||
|
|
(isArrow && BaseType->getAs<PointerType>() &&
|
|
!BaseType->getAs<PointerType>()->getPointeeType()
|
|
->template getAs<RecordType>())){
|
|
// This pseudo-destructor expression is still a pseudo-destructor.
|
|
return SemaRef.BuildPseudoDestructorExpr(Base, OperatorLoc,
|
|
isArrow? tok::arrow : tok::period,
|
|
SS, ScopeType, CCLoc, TildeLoc,
|
|
Destroyed,
|
|
/*FIXME?*/true);
|
|
}
|
|
|
|
TypeSourceInfo *DestroyedType = Destroyed.getTypeSourceInfo();
|
|
DeclarationName Name(SemaRef.Context.DeclarationNames.getCXXDestructorName(
|
|
SemaRef.Context.getCanonicalType(DestroyedType->getType())));
|
|
DeclarationNameInfo NameInfo(Name, Destroyed.getLocation());
|
|
NameInfo.setNamedTypeInfo(DestroyedType);
|
|
|
|
// The scope type is now known to be a valid nested name specifier
|
|
// component. Tack it on to the end of the nested name specifier.
|
|
if (ScopeType)
|
|
SS.Extend(SemaRef.Context, SourceLocation(),
|
|
ScopeType->getTypeLoc(), CCLoc);
|
|
|
|
SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
|
|
return getSema().BuildMemberReferenceExpr(Base, BaseType,
|
|
OperatorLoc, isArrow,
|
|
SS, TemplateKWLoc,
|
|
/*FIXME: FirstQualifier*/ 0,
|
|
NameInfo,
|
|
/*TemplateArgs*/ 0);
|
|
}
|
|
|
|
template<typename Derived>
|
|
StmtResult
|
|
TreeTransform<Derived>::TransformCapturedStmt(CapturedStmt *S) {
|
|
SourceLocation Loc = S->getLocStart();
|
|
unsigned NumParams = S->getCapturedDecl()->getNumParams();
|
|
getSema().ActOnCapturedRegionStart(Loc, /*CurScope*/0,
|
|
S->getCapturedRegionKind(), NumParams);
|
|
StmtResult Body = getDerived().TransformStmt(S->getCapturedStmt());
|
|
|
|
if (Body.isInvalid()) {
|
|
getSema().ActOnCapturedRegionError();
|
|
return StmtError();
|
|
}
|
|
|
|
return getSema().ActOnCapturedRegionEnd(Body.take());
|
|
}
|
|
|
|
} // end namespace clang
|
|
|
|
#endif // LLVM_CLANG_SEMA_TREETRANSFORM_H
|