minix/external/bsd/atf/dist/atf-c++/tests.cpp
Lionel Sambuc 11be35a165 Importing NetBSD "Kyua" test framework
To do so, a few dependencies have been imported:

 * external/bsd/lutok
 * external/mit/lua
 * external/public-domain/sqlite
 * external/public-domain/xz

The Kyua framework is the new generation of ATF (Automated Test
Framework), it is composed of:

 * external/bsd/atf
 * external/bsd/kyua-atf-compat
 * external/bsd/kyua-cli
 * external/bsd/kyua-tester
 * tests

Kyua/ATF being written in C++, it depends on libstdc++ which is
provided by GCC. As this is not part of the sources, Kyua is only
compiled when the native GCC utils are installed.

To install Kyua do the following:

 * In a cross-build enviromnent, add the following to the build.sh
   commandline: -V MKBINUTILS=yes -V MKGCCCMDS=yes

WARNING:
  At this point the import is still experimental, and not supported
  on native builds (a.k.a make build).

Change-Id: I26aee23c5bbd2d64adcb7c1beb98fe0d479d7ada
2013-07-23 20:43:41 +02:00

711 lines
17 KiB
C++

//
// Automated Testing Framework (atf)
//
// Copyright (c) 2007 The NetBSD Foundation, Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND
// CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
// INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
// IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
// IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
extern "C" {
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <signal.h>
#include <unistd.h>
}
#include <algorithm>
#include <cctype>
#include <cerrno>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <iostream>
#include <map>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <vector>
extern "C" {
#include "atf-c/error.h"
#include "atf-c/tc.h"
#include "atf-c/utils.h"
}
#include "noncopyable.hpp"
#include "tests.hpp"
#include "detail/application.hpp"
#include "detail/auto_array.hpp"
#include "detail/env.hpp"
#include "detail/exceptions.hpp"
#include "detail/fs.hpp"
#include "detail/parser.hpp"
#include "detail/sanity.hpp"
#include "detail/text.hpp"
namespace impl = atf::tests;
namespace detail = atf::tests::detail;
#define IMPL_NAME "atf::tests"
// ------------------------------------------------------------------------
// The "atf_tp_writer" class.
// ------------------------------------------------------------------------
detail::atf_tp_writer::atf_tp_writer(std::ostream& os) :
m_os(os),
m_is_first(true)
{
atf::parser::headers_map hm;
atf::parser::attrs_map ct_attrs;
ct_attrs["version"] = "1";
hm["Content-Type"] = atf::parser::header_entry("Content-Type",
"application/X-atf-tp", ct_attrs);
atf::parser::write_headers(hm, m_os);
}
void
detail::atf_tp_writer::start_tc(const std::string& ident)
{
if (!m_is_first)
m_os << "\n";
m_os << "ident: " << ident << "\n";
m_os.flush();
}
void
detail::atf_tp_writer::end_tc(void)
{
if (m_is_first)
m_is_first = false;
}
void
detail::atf_tp_writer::tc_meta_data(const std::string& name,
const std::string& value)
{
PRE(name != "ident");
m_os << name << ": " << value << "\n";
m_os.flush();
}
// ------------------------------------------------------------------------
// Free helper functions.
// ------------------------------------------------------------------------
bool
detail::match(const std::string& regexp, const std::string& str)
{
return atf::text::match(str, regexp);
}
// ------------------------------------------------------------------------
// The "tc" class.
// ------------------------------------------------------------------------
static std::map< atf_tc_t*, impl::tc* > wraps;
static std::map< const atf_tc_t*, const impl::tc* > cwraps;
struct impl::tc_impl : atf::noncopyable {
std::string m_ident;
atf_tc_t m_tc;
bool m_has_cleanup;
tc_impl(const std::string& ident, const bool has_cleanup) :
m_ident(ident),
m_has_cleanup(has_cleanup)
{
}
static void
wrap_head(atf_tc_t *tc)
{
std::map< atf_tc_t*, impl::tc* >::iterator iter = wraps.find(tc);
INV(iter != wraps.end());
(*iter).second->head();
}
static void
wrap_body(const atf_tc_t *tc)
{
std::map< const atf_tc_t*, const impl::tc* >::const_iterator iter =
cwraps.find(tc);
INV(iter != cwraps.end());
try {
(*iter).second->body();
} catch (const std::exception& e) {
(*iter).second->fail("Caught unhandled exception: " + std::string(
e.what()));
} catch (...) {
(*iter).second->fail("Caught unknown exception");
}
}
static void
wrap_cleanup(const atf_tc_t *tc)
{
std::map< const atf_tc_t*, const impl::tc* >::const_iterator iter =
cwraps.find(tc);
INV(iter != cwraps.end());
(*iter).second->cleanup();
}
};
impl::tc::tc(const std::string& ident, const bool has_cleanup) :
pimpl(new tc_impl(ident, has_cleanup))
{
}
impl::tc::~tc(void)
{
cwraps.erase(&pimpl->m_tc);
wraps.erase(&pimpl->m_tc);
atf_tc_fini(&pimpl->m_tc);
}
void
impl::tc::init(const vars_map& config)
{
atf_error_t err;
auto_array< const char * > array(new const char*[(config.size() * 2) + 1]);
const char **ptr = array.get();
for (vars_map::const_iterator iter = config.begin();
iter != config.end(); iter++) {
*ptr = (*iter).first.c_str();
*(ptr + 1) = (*iter).second.c_str();
ptr += 2;
}
*ptr = NULL;
wraps[&pimpl->m_tc] = this;
cwraps[&pimpl->m_tc] = this;
err = atf_tc_init(&pimpl->m_tc, pimpl->m_ident.c_str(), pimpl->wrap_head,
pimpl->wrap_body, pimpl->m_has_cleanup ? pimpl->wrap_cleanup : NULL,
array.get());
if (atf_is_error(err))
throw_atf_error(err);
}
bool
impl::tc::has_config_var(const std::string& var)
const
{
return atf_tc_has_config_var(&pimpl->m_tc, var.c_str());
}
bool
impl::tc::has_md_var(const std::string& var)
const
{
return atf_tc_has_md_var(&pimpl->m_tc, var.c_str());
}
const std::string
impl::tc::get_config_var(const std::string& var)
const
{
return atf_tc_get_config_var(&pimpl->m_tc, var.c_str());
}
const std::string
impl::tc::get_config_var(const std::string& var, const std::string& defval)
const
{
return atf_tc_get_config_var_wd(&pimpl->m_tc, var.c_str(), defval.c_str());
}
const std::string
impl::tc::get_md_var(const std::string& var)
const
{
return atf_tc_get_md_var(&pimpl->m_tc, var.c_str());
}
const impl::vars_map
impl::tc::get_md_vars(void)
const
{
vars_map vars;
char **array = atf_tc_get_md_vars(&pimpl->m_tc);
try {
char **ptr;
for (ptr = array; *ptr != NULL; ptr += 2)
vars[*ptr] = *(ptr + 1);
} catch (...) {
atf_utils_free_charpp(array);
throw;
}
return vars;
}
void
impl::tc::set_md_var(const std::string& var, const std::string& val)
{
atf_error_t err = atf_tc_set_md_var(&pimpl->m_tc, var.c_str(), val.c_str());
if (atf_is_error(err))
throw_atf_error(err);
}
void
impl::tc::run(const std::string& resfile)
const
{
atf_error_t err = atf_tc_run(&pimpl->m_tc, resfile.c_str());
if (atf_is_error(err))
throw_atf_error(err);
}
void
impl::tc::run_cleanup(void)
const
{
atf_error_t err = atf_tc_cleanup(&pimpl->m_tc);
if (atf_is_error(err))
throw_atf_error(err);
}
void
impl::tc::head(void)
{
}
void
impl::tc::cleanup(void)
const
{
}
void
impl::tc::require_prog(const std::string& prog)
const
{
atf_tc_require_prog(prog.c_str());
}
void
impl::tc::pass(void)
{
atf_tc_pass();
}
void
impl::tc::fail(const std::string& reason)
{
atf_tc_fail("%s", reason.c_str());
}
void
impl::tc::fail_nonfatal(const std::string& reason)
{
atf_tc_fail_nonfatal("%s", reason.c_str());
}
void
impl::tc::skip(const std::string& reason)
{
atf_tc_skip("%s", reason.c_str());
}
void
impl::tc::check_errno(const char* file, const int line, const int exp_errno,
const char* expr_str, const bool result)
{
atf_tc_check_errno(file, line, exp_errno, expr_str, result);
}
void
impl::tc::require_errno(const char* file, const int line, const int exp_errno,
const char* expr_str, const bool result)
{
atf_tc_require_errno(file, line, exp_errno, expr_str, result);
}
void
impl::tc::expect_pass(void)
{
atf_tc_expect_pass();
}
void
impl::tc::expect_fail(const std::string& reason)
{
atf_tc_expect_fail("%s", reason.c_str());
}
void
impl::tc::expect_exit(const int exitcode, const std::string& reason)
{
atf_tc_expect_exit(exitcode, "%s", reason.c_str());
}
void
impl::tc::expect_signal(const int signo, const std::string& reason)
{
atf_tc_expect_signal(signo, "%s", reason.c_str());
}
void
impl::tc::expect_death(const std::string& reason)
{
atf_tc_expect_death("%s", reason.c_str());
}
void
impl::tc::expect_timeout(const std::string& reason)
{
atf_tc_expect_timeout("%s", reason.c_str());
}
// ------------------------------------------------------------------------
// The "tp" class.
// ------------------------------------------------------------------------
class tp : public atf::application::app {
public:
typedef std::vector< impl::tc * > tc_vector;
private:
static const char* m_description;
bool m_lflag;
atf::fs::path m_resfile;
std::string m_srcdir_arg;
atf::fs::path m_srcdir;
atf::tests::vars_map m_vars;
std::string specific_args(void) const;
options_set specific_options(void) const;
void process_option(int, const char*);
void (*m_add_tcs)(tc_vector&);
tc_vector m_tcs;
void parse_vflag(const std::string&);
void handle_srcdir(void);
tc_vector init_tcs(void);
enum tc_part {
BODY,
CLEANUP,
};
void list_tcs(void);
impl::tc* find_tc(tc_vector, const std::string&);
static std::pair< std::string, tc_part > process_tcarg(const std::string&);
int run_tc(const std::string&);
public:
tp(void (*)(tc_vector&));
~tp(void);
int main(void);
};
const char* tp::m_description =
"This is an independent atf test program.";
tp::tp(void (*add_tcs)(tc_vector&)) :
app(m_description, "atf-test-program(1)", "atf(7)", false),
m_lflag(false),
m_resfile("/dev/stdout"),
m_srcdir("."),
m_add_tcs(add_tcs)
{
}
tp::~tp(void)
{
for (tc_vector::iterator iter = m_tcs.begin();
iter != m_tcs.end(); iter++) {
impl::tc* tc = *iter;
delete tc;
}
}
std::string
tp::specific_args(void)
const
{
return "test_case";
}
tp::options_set
tp::specific_options(void)
const
{
using atf::application::option;
options_set opts;
opts.insert(option('l', "", "List test cases and their purpose"));
opts.insert(option('r', "resfile", "The file to which the test program "
"will write the results of the "
"executed test case"));
opts.insert(option('s', "srcdir", "Directory where the test's data "
"files are located"));
opts.insert(option('v', "var=value", "Sets the configuration variable "
"`var' to `value'"));
return opts;
}
void
tp::process_option(int ch, const char* arg)
{
switch (ch) {
case 'l':
m_lflag = true;
break;
case 'r':
m_resfile = atf::fs::path(arg);
break;
case 's':
m_srcdir_arg = arg;
break;
case 'v':
parse_vflag(arg);
break;
default:
UNREACHABLE;
}
}
void
tp::parse_vflag(const std::string& str)
{
if (str.empty())
throw std::runtime_error("-v requires a non-empty argument");
std::vector< std::string > ws = atf::text::split(str, "=");
if (ws.size() == 1 && str[str.length() - 1] == '=') {
m_vars[ws[0]] = "";
} else {
if (ws.size() != 2)
throw std::runtime_error("-v requires an argument of the form "
"var=value");
m_vars[ws[0]] = ws[1];
}
}
void
tp::handle_srcdir(void)
{
if (m_srcdir_arg.empty()) {
m_srcdir = atf::fs::path(m_argv0).branch_path();
if (m_srcdir.leaf_name() == ".libs")
m_srcdir = m_srcdir.branch_path();
} else
m_srcdir = atf::fs::path(m_srcdir_arg);
if (!atf::fs::exists(m_srcdir / m_prog_name))
throw std::runtime_error("Cannot find the test program in the "
"source directory `" + m_srcdir.str() + "'");
if (!m_srcdir.is_absolute())
m_srcdir = m_srcdir.to_absolute();
m_vars["srcdir"] = m_srcdir.str();
}
tp::tc_vector
tp::init_tcs(void)
{
m_add_tcs(m_tcs);
for (tc_vector::iterator iter = m_tcs.begin();
iter != m_tcs.end(); iter++) {
impl::tc* tc = *iter;
tc->init(m_vars);
}
return m_tcs;
}
//
// An auxiliary unary predicate that compares the given test case's
// identifier to the identifier stored in it.
//
class tc_equal_to_ident {
const std::string& m_ident;
public:
tc_equal_to_ident(const std::string& i) :
m_ident(i)
{
}
bool operator()(const impl::tc* tc)
{
return tc->get_md_var("ident") == m_ident;
}
};
void
tp::list_tcs(void)
{
tc_vector tcs = init_tcs();
detail::atf_tp_writer writer(std::cout);
for (tc_vector::const_iterator iter = tcs.begin();
iter != tcs.end(); iter++) {
const impl::vars_map vars = (*iter)->get_md_vars();
{
impl::vars_map::const_iterator iter2 = vars.find("ident");
INV(iter2 != vars.end());
writer.start_tc((*iter2).second);
}
for (impl::vars_map::const_iterator iter2 = vars.begin();
iter2 != vars.end(); iter2++) {
const std::string& key = (*iter2).first;
if (key != "ident")
writer.tc_meta_data(key, (*iter2).second);
}
writer.end_tc();
}
}
impl::tc*
tp::find_tc(tc_vector tcs, const std::string& name)
{
std::vector< std::string > ids;
for (tc_vector::iterator iter = tcs.begin();
iter != tcs.end(); iter++) {
impl::tc* tc = *iter;
if (tc->get_md_var("ident") == name)
return tc;
}
throw atf::application::usage_error("Unknown test case `%s'",
name.c_str());
}
std::pair< std::string, tp::tc_part >
tp::process_tcarg(const std::string& tcarg)
{
const std::string::size_type pos = tcarg.find(':');
if (pos == std::string::npos) {
return std::make_pair(tcarg, BODY);
} else {
const std::string tcname = tcarg.substr(0, pos);
const std::string partname = tcarg.substr(pos + 1);
if (partname == "body")
return std::make_pair(tcname, BODY);
else if (partname == "cleanup")
return std::make_pair(tcname, CLEANUP);
else {
using atf::application::usage_error;
throw usage_error("Invalid test case part `%s'", partname.c_str());
}
}
}
int
tp::run_tc(const std::string& tcarg)
{
const std::pair< std::string, tc_part > fields = process_tcarg(tcarg);
impl::tc* tc = find_tc(init_tcs(), fields.first);
if (!atf::env::has("__RUNNING_INSIDE_ATF_RUN") || atf::env::get(
"__RUNNING_INSIDE_ATF_RUN") != "internal-yes-value")
{
std::cerr << m_prog_name << ": WARNING: Running test cases without "
"atf-run(1) is unsupported\n";
std::cerr << m_prog_name << ": WARNING: No isolation nor timeout "
"control is being applied; you may get unexpected failures; see "
"atf-test-case(4)\n";
}
try {
switch (fields.second) {
case BODY:
tc->run(m_resfile.str());
break;
case CLEANUP:
tc->run_cleanup();
break;
default:
UNREACHABLE;
}
return EXIT_SUCCESS;
} catch (const std::runtime_error& e) {
std::cerr << "ERROR: " << e.what() << "\n";
return EXIT_FAILURE;
}
}
int
tp::main(void)
{
using atf::application::usage_error;
int errcode;
handle_srcdir();
if (m_lflag) {
if (m_argc > 0)
throw usage_error("Cannot provide test case names with -l");
list_tcs();
errcode = EXIT_SUCCESS;
} else {
if (m_argc == 0)
throw usage_error("Must provide a test case name");
else if (m_argc > 1)
throw usage_error("Cannot provide more than one test case name");
INV(m_argc == 1);
errcode = run_tc(m_argv[0]);
}
return errcode;
}
namespace atf {
namespace tests {
int run_tp(int, char* const*, void (*)(tp::tc_vector&));
}
}
int
impl::run_tp(int argc, char* const* argv, void (*add_tcs)(tp::tc_vector&))
{
return tp(add_tcs).run(argc, argv);
}