b423d7b477
o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL o PM signal handling logic should now work properly, even with debuggers being present o Asynchronous PM/VFS protocol, full IPC support for senda(), and AMF_NOREPLY senda() flag DETAILS Process stop and delay call handling of PM: o Added sys_runctl() kernel call with sys_stop() and sys_resume() aliases, for PM to stop and resume a process o Added exception for sending/syscall-traced processes to sys_runctl(), and matching SIGKREADY pseudo-signal to PM o Fixed PM signal logic to deal with requests from a process after stopping it (so-called "delay calls"), using the SIGKREADY facility o Fixed various PM panics due to race conditions with delay calls versus VFS calls o Removed special PRIO_STOP priority value o Added SYS_LOCK RTS kernel flag, to stop an individual process from running while modifying its process structure Signal and debugger handling in PM: o Fixed debugger signals being dropped if a second signal arrives when the debugger has not retrieved the first one o Fixed debugger signals being sent to the debugger more than once o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR protocol message o Detached debugger signals from general signal logic and from being blocked on VFS calls, meaning that even VFS can now be traced o Fixed debugger being unable to receive more than one pending signal in one process stop o Fixed signal delivery being delayed needlessly when multiple signals are pending o Fixed wait test for tracer, which was returning for children that were not waited for o Removed second parallel pending call from PM to VFS for any process o Fixed process becoming runnable between exec() and debugger trap o Added support for notifying the debugger before the parent when a debugged child exits o Fixed debugger death causing child to remain stopped forever o Fixed consistently incorrect use of _NSIG Extensions to ptrace(): o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a debugger to and from a process o Added T_SYSCALL ptrace request, to trace system calls o Added T_SETOPT ptrace request, to set trace options o Added TO_TRACEFORK trace option, to attach automatically to children of a traced process o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon a successful exec() of the tracee o Extended T_GETUSER ptrace support to allow retrieving a process's priv structure o Removed T_STOP ptrace request again, as it does not help implementing debuggers properly o Added MINIX3-specific ptrace test (test42) o Added proper manual page for ptrace(2) Asynchronous PM/VFS interface: o Fixed asynchronous messages not being checked when receive() is called with an endpoint other than ANY o Added AMF_NOREPLY senda() flag, preventing such messages from satisfying the receive part of a sendrec() o Added asynsend3() that takes optional flags; asynsend() is now a #define passing in 0 as third parameter o Made PM/VFS protocol asynchronous; reintroduced tell_fs() o Made PM_BASE request/reply number range unique o Hacked in a horrible temporary workaround into RS to deal with newly revealed RS-PM-VFS race condition triangle until VFS is asynchronous System signal handling: o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal o Removed is-superuser check from PM's do_procstat() (aka getsigset()) o Added sigset macros to allow system processes to deal with the full signal set, rather than just the POSIX subset Miscellaneous PM fixes: o Split do_getset into do_get and do_set, merging common code and making structure clearer o Fixed setpriority() being able to put to sleep processes using an invalid parameter, or revive zombie processes o Made find_proc() global; removed obsolete proc_from_pid() o Cleanup here and there Also included: o Fixed false-positive boot order kernel warning o Removed last traces of old NOTIFY_FROM code THINGS OF POSSIBLE INTEREST o It should now be possible to run PM at any priority, even lower than user processes o No assumptions are made about communication speed between PM and VFS, although communication must be FIFO o A debugger will now receive incoming debuggee signals at kill time only; the process may not yet be fully stopped o A first step has been made towards making the SYSTEM task preemptible
195 lines
5.2 KiB
C
195 lines
5.2 KiB
C
/* This file handles the EXEC system call. It performs the work as follows:
|
|
* - see if the permissions allow the file to be executed
|
|
* - read the header and extract the sizes
|
|
* - fetch the initial args and environment from the user space
|
|
* - allocate the memory for the new process
|
|
* - copy the initial stack from PM to the process
|
|
* - read in the text and data segments and copy to the process
|
|
* - take care of setuid and setgid bits
|
|
* - fix up 'mproc' table
|
|
* - tell kernel about EXEC
|
|
* - save offset to initial argc (for ps)
|
|
*
|
|
* The entry points into this file are:
|
|
* do_exec: perform the EXEC system call
|
|
* exec_newmem: allocate new memory map for a process that tries to exec
|
|
* do_execrestart: finish the special exec call for RS
|
|
* exec_restart: finish a regular exec call
|
|
* find_share: find a process whose text segment can be shared
|
|
*/
|
|
|
|
#include "pm.h"
|
|
#include <sys/stat.h>
|
|
#include <minix/callnr.h>
|
|
#include <minix/endpoint.h>
|
|
#include <minix/com.h>
|
|
#include <minix/vm.h>
|
|
#include <a.out.h>
|
|
#include <signal.h>
|
|
#include <string.h>
|
|
#include <sys/ptrace.h>
|
|
#include "mproc.h"
|
|
#include "param.h"
|
|
|
|
#define ESCRIPT (-2000) /* Returned by read_header for a #! script. */
|
|
#define PTRSIZE sizeof(char *) /* Size of pointers in argv[] and envp[]. */
|
|
|
|
/*===========================================================================*
|
|
* do_exec *
|
|
*===========================================================================*/
|
|
PUBLIC int do_exec()
|
|
{
|
|
message m;
|
|
int r;
|
|
|
|
/* Forward call to FS */
|
|
m.m_type = PM_EXEC;
|
|
m.PM_PROC = mp->mp_endpoint;
|
|
m.PM_PATH = m_in.exec_name;
|
|
m.PM_PATH_LEN = m_in.exec_len;
|
|
m.PM_FRAME = m_in.stack_ptr;
|
|
m.PM_FRAME_LEN = m_in.stack_bytes;
|
|
|
|
tell_fs(mp, &m);
|
|
|
|
/* Do not reply */
|
|
return SUSPEND;
|
|
}
|
|
|
|
|
|
/*===========================================================================*
|
|
* exec_newmem *
|
|
*===========================================================================*/
|
|
PUBLIC int exec_newmem()
|
|
{
|
|
int proc_e, proc_n, allow_setuid;
|
|
char *ptr;
|
|
struct mproc *rmp;
|
|
struct exec_newmem args;
|
|
int r, flags;
|
|
char *stack_top;
|
|
|
|
if (who_e != FS_PROC_NR && who_e != RS_PROC_NR)
|
|
return EPERM;
|
|
|
|
proc_e= m_in.EXC_NM_PROC;
|
|
if (pm_isokendpt(proc_e, &proc_n) != OK)
|
|
{
|
|
panic(__FILE__, "exec_newmem: got bad endpoint",
|
|
proc_e);
|
|
}
|
|
rmp= &mproc[proc_n];
|
|
ptr= m_in.EXC_NM_PTR;
|
|
r= sys_datacopy(who_e, (vir_bytes)ptr,
|
|
SELF, (vir_bytes)&args, sizeof(args));
|
|
if (r != OK)
|
|
panic(__FILE__, "exec_newmem: sys_datacopy failed", r);
|
|
|
|
if((r=vm_exec_newmem(proc_e, &args, sizeof(args), &stack_top, &flags)) == OK) {
|
|
allow_setuid= 0; /* Do not allow setuid execution */
|
|
|
|
if (rmp->mp_tracer == NO_TRACER) {
|
|
/* Okay, setuid execution is allowed */
|
|
allow_setuid= 1;
|
|
rmp->mp_effuid = args.new_uid;
|
|
rmp->mp_effgid = args.new_gid;
|
|
}
|
|
|
|
/* System will save command line for debugging, ps(1) output, etc. */
|
|
strncpy(rmp->mp_name, args.progname, PROC_NAME_LEN-1);
|
|
rmp->mp_name[PROC_NAME_LEN-1] = '\0';
|
|
|
|
/* Save offset to initial argc (for ps) */
|
|
rmp->mp_procargs = (vir_bytes) stack_top - args.args_bytes;
|
|
|
|
/* Kill process if something goes wrong after this point. */
|
|
rmp->mp_flags |= PARTIAL_EXEC;
|
|
|
|
mp->mp_reply.reply_res2= (vir_bytes) stack_top;
|
|
mp->mp_reply.reply_res3= flags;
|
|
if (allow_setuid)
|
|
mp->mp_reply.reply_res3 |= EXC_NM_RF_ALLOW_SETUID;
|
|
} else {
|
|
printf("PM: newmem failed for %s\n", args.progname);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* do_execrestart *
|
|
*===========================================================================*/
|
|
PUBLIC int do_execrestart()
|
|
{
|
|
int proc_e, proc_n, result;
|
|
struct mproc *rmp;
|
|
|
|
if (who_e != RS_PROC_NR)
|
|
return EPERM;
|
|
|
|
proc_e= m_in.EXC_RS_PROC;
|
|
if (pm_isokendpt(proc_e, &proc_n) != OK)
|
|
{
|
|
panic(__FILE__, "do_execrestart: got bad endpoint",
|
|
proc_e);
|
|
}
|
|
rmp= &mproc[proc_n];
|
|
result= m_in.EXC_RS_RESULT;
|
|
|
|
exec_restart(rmp, result);
|
|
|
|
return OK;
|
|
}
|
|
|
|
|
|
/*===========================================================================*
|
|
* exec_restart *
|
|
*===========================================================================*/
|
|
PUBLIC void exec_restart(rmp, result)
|
|
struct mproc *rmp;
|
|
int result;
|
|
{
|
|
int r, sn;
|
|
vir_bytes pc;
|
|
char *new_sp;
|
|
|
|
if (result != OK)
|
|
{
|
|
if (rmp->mp_flags & PARTIAL_EXEC)
|
|
{
|
|
/* Use SIGILL signal that something went wrong */
|
|
rmp->mp_sigstatus = SIGILL;
|
|
exit_proc(rmp, 0, FALSE /*dump_core*/);
|
|
return;
|
|
}
|
|
setreply(rmp-mproc, result);
|
|
return;
|
|
}
|
|
|
|
rmp->mp_flags &= ~PARTIAL_EXEC;
|
|
|
|
/* Fix 'mproc' fields, tell kernel that exec is done, reset caught
|
|
* sigs.
|
|
*/
|
|
for (sn = 1; sn < _NSIG; sn++) {
|
|
if (sigismember(&rmp->mp_catch, sn)) {
|
|
sigdelset(&rmp->mp_catch, sn);
|
|
rmp->mp_sigact[sn].sa_handler = SIG_DFL;
|
|
sigemptyset(&rmp->mp_sigact[sn].sa_mask);
|
|
}
|
|
}
|
|
|
|
/* Cause a signal if this process is traced.
|
|
* Do this before making the process runnable again!
|
|
*/
|
|
if (rmp->mp_tracer != NO_TRACER) {
|
|
sn = (rmp->mp_trace_flags & TO_ALTEXEC) ? SIGSTOP : SIGTRAP;
|
|
|
|
check_sig(rmp->mp_pid, sn);
|
|
}
|
|
|
|
new_sp= (char *)rmp->mp_procargs;
|
|
pc= 0; /* for now */
|
|
r= sys_exec(rmp->mp_endpoint, new_sp, rmp->mp_name, pc);
|
|
if (r != OK) panic(__FILE__, "sys_exec failed", r);
|
|
}
|
|
|