minix/minix/tests/test72.c
David van Moolenbroek 1311233cfb libminixfs: keep track of block usage
This patch changes the libminixfs API and implementation such that the
library is at all times aware of how many total and used blocks there
are in the file system.  This removes the last upcall of libminixfs
into file systems (fs_blockstats).  In the process, make this part of
the libminixfs API a little prettier and more robust.  Change file
systems accordingly.  Since this change only adds to MFS being unable
to deal with zones and blocks having different sizes, fail to mount
such file systems immediately rather than triggering an assert later.

Change-Id: I078e589c7e1be1fa691cf391bf5dfddd1baf2c86
2015-08-14 18:39:21 +00:00

292 lines
5.4 KiB
C

/* Test 72 - libminixfs unit test.
*
* Exercise the caching functionality of libminixfs in isolation.
*/
#define _MINIX_SYSTEM
#include <minix/sysutil.h>
#include <minix/syslib.h>
#include <minix/vm.h>
#include <minix/bdev.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/ioc_memory.h>
#include <stdio.h>
#include <stdarg.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <math.h>
#include <minix/libminixfs.h>
int max_error = 0;
#include "common.h"
#include "testcache.h"
#define MYMAJOR 40 /* doesn't really matter, shouldn't be NO_DEV though */
#define MYDEV makedev(MYMAJOR, 1)
static int curblocksize = -1;
static char *writtenblocks[MAXBLOCKS];
/* Some functions used by testcache.c */
int
dowriteblock(int b, int blocksize, u32_t seed, char *data)
{
struct buf *bp;
assert(blocksize == curblocksize);
if(!(bp = lmfs_get_block(MYDEV, b, NORMAL))) {
e(30);
return 0;
}
memcpy(bp->data, data, blocksize);
lmfs_markdirty(bp);
lmfs_put_block(bp);
return blocksize;
}
int
readblock(int b, int blocksize, u32_t seed, char *data)
{
struct buf *bp;
assert(blocksize == curblocksize);
if(!(bp = lmfs_get_block(MYDEV, b, NORMAL))) {
e(30);
return 0;
}
memcpy(data, bp->data, blocksize);
lmfs_put_block(bp);
return blocksize;
}
void testend(void)
{
int i;
for(i = 0; i < MAXBLOCKS; i++) {
if(writtenblocks[i]) {
free(writtenblocks[i]);
writtenblocks[i] = NULL;
}
}
}
/* Fake some libminixfs client functions */
static void allocate(int b)
{
assert(curblocksize > 0);
assert(!writtenblocks[b]);
if(!(writtenblocks[b] = calloc(1, curblocksize))) {
fprintf(stderr, "out of memory allocating block %d\n", b);
exit(1);
}
}
/* Fake some libblockdriver functions */
ssize_t
bdev_gather(dev_t dev, u64_t pos, iovec_t *vec, int count, int flags)
{
int i, block;
size_t size, block_off;
ssize_t tot = 0;
assert(dev == MYDEV);
assert(curblocksize > 0);
assert(!(pos % curblocksize));
for(i = 0; i < count; i++) {
char *data = (char *) vec[i].iov_addr;
block = pos / curblocksize;
block_off = (size_t)(pos % curblocksize);
size = vec[i].iov_size;
assert(size == PAGE_SIZE);
assert(block >= 0);
assert(block < MAXBLOCKS);
assert(block_off + size <= curblocksize);
if(!writtenblocks[block]) {
allocate(block);
}
memcpy(data, writtenblocks[block] + block_off, size);
pos += size;
tot += size;
}
return tot;
}
ssize_t
bdev_scatter(dev_t dev, u64_t pos, iovec_t *vec, int count, int flags)
{
int i, block;
size_t size, block_off;
ssize_t tot = 0;
assert(dev == MYDEV);
assert(curblocksize > 0);
assert(!(pos % curblocksize));
for(i = 0; i < count; i++) {
char *data = (char *) vec[i].iov_addr;
block = pos / curblocksize;
block_off = (size_t)(pos % curblocksize);
size = vec[i].iov_size;
assert(size == PAGE_SIZE);
assert(block >= 0);
assert(block < MAXBLOCKS);
assert(block_off + size <= curblocksize);
if(!writtenblocks[block]) {
allocate(block);
}
memcpy(writtenblocks[block] + block_off, data, size);
pos += size;
tot += size;
}
return tot;
}
ssize_t
bdev_read(dev_t dev, u64_t pos, char *data, size_t count, int flags)
{
int block;
assert(dev == MYDEV);
assert(curblocksize > 0);
assert(!(pos % curblocksize));
assert(count > 0);
assert(!(count % curblocksize));
assert(count == PAGE_SIZE);
assert(curblocksize == PAGE_SIZE);
block = pos / curblocksize;
assert(block >= 0);
assert(block < MAXBLOCKS);
if(!writtenblocks[block]) {
allocate(block);
}
memcpy(data, writtenblocks[block], curblocksize);
return count;
}
/* Fake some libsys functions */
__dead void
panic(const char *fmt, ...)
{
va_list va;
va_start(va, fmt);
vfprintf(stderr, fmt, va);
va_end(va);
exit(1);
}
int
vm_info_stats(struct vm_stats_info *vsi)
{
return ENOSYS;
}
void
util_stacktrace(void)
{
fprintf(stderr, "fake stacktrace\n");
}
void *alloc_contig(size_t len, int flags, phys_bytes *phys)
{
return malloc(len);
}
int free_contig(void *addr, size_t len)
{
free(addr);
return 0;
}
u32_t sqrt_approx(u32_t v)
{
return (u32_t) sqrt(v);
}
int vm_set_cacheblock(void *block, dev_t dev, off_t dev_offset,
ino_t ino, off_t ino_offset, u32_t *flags, int blocksize, int setflags)
{
return ENOSYS;
}
void *vm_map_cacheblock(dev_t dev, off_t dev_offset,
ino_t ino, off_t ino_offset, u32_t *flags, int blocksize)
{
return MAP_FAILED;
}
int vm_forget_cacheblock(dev_t dev, off_t dev_offset, int blocksize)
{
return 0;
}
int vm_clear_cache(dev_t dev)
{
return 0;
}
int
main(int argc, char *argv[])
{
size_t newblocksize;
int wss, cs, n = 0, p;
#define ITER 3
#define BLOCKS 200
start(72);
lmfs_setquiet(1);
/* Can the cache handle differently sized blocks? */
for(p = 1; p <= 3; p++) {
/* Do not update curblocksize until the cache is flushed. */
newblocksize = PAGE_SIZE*p;
lmfs_set_blocksize(newblocksize);
curblocksize = newblocksize; /* now it's safe to update */
lmfs_buf_pool(BLOCKS);
if(dotest(curblocksize, BLOCKS, ITER)) e(n);
n++;
}
/* Can the cache handle various combinations of the working set
* being larger and smaller than the cache?
*/
for(wss = 2; wss <= 3; wss++) {
int wsblocks = 10*wss*wss*wss*wss*wss;
for(cs = wsblocks/4; cs <= wsblocks*3; cs *= 1.5) {
lmfs_set_blocksize(PAGE_SIZE);
curblocksize = PAGE_SIZE; /* same as above */
lmfs_buf_pool(cs);
if(dotest(curblocksize, wsblocks, ITER)) e(n);
n++;
}
}
quit();
return 0;
}