minix/tests/lib/libc/regex/data/att/nullsubexpr.dat
Lionel Sambuc 11be35a165 Importing NetBSD "Kyua" test framework
To do so, a few dependencies have been imported:

 * external/bsd/lutok
 * external/mit/lua
 * external/public-domain/sqlite
 * external/public-domain/xz

The Kyua framework is the new generation of ATF (Automated Test
Framework), it is composed of:

 * external/bsd/atf
 * external/bsd/kyua-atf-compat
 * external/bsd/kyua-cli
 * external/bsd/kyua-tester
 * tests

Kyua/ATF being written in C++, it depends on libstdc++ which is
provided by GCC. As this is not part of the sources, Kyua is only
compiled when the native GCC utils are installed.

To install Kyua do the following:

 * In a cross-build enviromnent, add the following to the build.sh
   commandline: -V MKBINUTILS=yes -V MKGCCCMDS=yes

WARNING:
  At this point the import is still experimental, and not supported
  on native builds (a.k.a make build).

Change-Id: I26aee23c5bbd2d64adcb7c1beb98fe0d479d7ada
2013-07-23 20:43:41 +02:00

73 lines
1.8 KiB
Text

NOTE null subexpression matches : 2002-06-06
E (a*)* a (0,1)(0,1)
E SAME x (0,0)(0,0)
E SAME aaaaaa (0,6)(0,6)
E SAME aaaaaax (0,6)(0,6)
E (a*)+ a (0,1)(0,1)
E SAME x (0,0)(0,0)
E SAME aaaaaa (0,6)(0,6)
E SAME aaaaaax (0,6)(0,6)
E (a+)* a (0,1)(0,1)
E SAME x (0,0)
E SAME aaaaaa (0,6)(0,6)
E SAME aaaaaax (0,6)(0,6)
E (a+)+ a (0,1)(0,1)
E SAME x NOMATCH
E SAME aaaaaa (0,6)(0,6)
E SAME aaaaaax (0,6)(0,6)
E ([a]*)* a (0,1)(0,1)
E SAME x (0,0)(0,0)
E SAME aaaaaa (0,6)(0,6)
E SAME aaaaaax (0,6)(0,6)
E ([a]*)+ a (0,1)(0,1)
E SAME x (0,0)(0,0)
E SAME aaaaaa (0,6)(0,6)
E SAME aaaaaax (0,6)(0,6)
E ([^b]*)* a (0,1)(0,1)
E SAME b (0,0)(0,0)
E SAME aaaaaa (0,6)(0,6)
E SAME aaaaaab (0,6)(0,6)
E ([ab]*)* a (0,1)(0,1)
E SAME aaaaaa (0,6)(0,6)
E SAME ababab (0,6)(0,6)
E SAME bababa (0,6)(0,6)
E SAME b (0,1)(0,1)
E SAME bbbbbb (0,6)(0,6)
E SAME aaaabcde (0,5)(0,5)
E ([^a]*)* b (0,1)(0,1)
E SAME bbbbbb (0,6)(0,6)
E SAME aaaaaa (0,0)(0,0)
E ([^ab]*)* ccccxx (0,6)(0,6)
E SAME ababab (0,0)(0,0)
E ((z)+|a)* zabcde (0,2)(1,2)
{E a+? aaaaaa (0,1) no *? +? mimimal match ops
E (a) aaa (0,1)(0,1)
E (a*?) aaa (0,0)(0,0)
E (a)*? aaa (0,0)
E (a*?)*? aaa (0,0)
}
B \(a*\)*\(x\) x (0,1)(0,0)(0,1)
B \(a*\)*\(x\) ax (0,2)(0,1)(1,2)
B \(a*\)*\(x\) axa (0,2)(0,1)(1,2)
B \(a*\)*\(x\)\(\1\) x (0,1)(0,0)(0,1)(1,1)
B \(a*\)*\(x\)\(\1\) ax (0,2)(1,1)(1,2)(2,2)
B \(a*\)*\(x\)\(\1\) axa (0,3)(0,1)(1,2)(2,3)
B \(a*\)*\(x\)\(\1\)\(x\) axax (0,4)(0,1)(1,2)(2,3)(3,4)
B \(a*\)*\(x\)\(\1\)\(x\) axxa (0,3)(1,1)(1,2)(2,2)(2,3)
E (a*)*(x) x (0,1)(0,0)(0,1)
E (a*)*(x) ax (0,2)(0,1)(1,2)
E (a*)*(x) axa (0,2)(0,1)(1,2)
E (a*)+(x) x (0,1)(0,0)(0,1)
E (a*)+(x) ax (0,2)(0,1)(1,2)
E (a*)+(x) axa (0,2)(0,1)(1,2)
E (a*){2}(x) x (0,1)(0,0)(0,1)
E (a*){2}(x) ax (0,2)(1,1)(1,2)
E (a*){2}(x) axa (0,2)(1,1)(1,2)