532 lines
20 KiB
C
Executable file
532 lines
20 KiB
C
Executable file
/* This task handles the interface between the kernel and user-level servers.
|
|
* System services can be accessed by doing a system call. System calls are
|
|
* transformed into request messages, which are handled by this task. By
|
|
* convention, a sys_call() is transformed in a SYS_CALL request message that
|
|
* is handled in a function named do_call().
|
|
*
|
|
* A private call vector is used to map all system calls to the functions that
|
|
* handle them. The actual handler functions are contained in separate files
|
|
* to keep this file clean. The call vector is used in the system task's main
|
|
* loop to handle all incoming requests.
|
|
*
|
|
* In addition to the main sys_task() entry point, which starts the main loop,
|
|
* there are several other minor entry points:
|
|
* cause_sig: take action to cause a signal to occur
|
|
* clear_proc: clean up a process in the process table, e.g. on exit
|
|
* umap_local: map virtual address in LOCAL_SEG to physical
|
|
* umap_remote: map virtual address in REMOTE_SEG to physical
|
|
* umap_bios: map virtual address in BIOS_SEG to physical
|
|
* numap_local: umap_local D segment from proc nr instead of pointer
|
|
* virtual_copy: copy bytes from one virtual address to another
|
|
* vir_copy: copy bytes from one process to another
|
|
* generic_handler: interrupt handler for user-level device drivers
|
|
*
|
|
* Changes:
|
|
* Oct 29, 2004 new clear_proc() function (Jorrit N. Herder)
|
|
* Oct 17, 2004 generic handler and IRQ policies (Jorrit N. Herder)
|
|
* Oct 10, 2004 dispatch system calls from call vector (Jorrit N. Herder)
|
|
* Sep 30, 2004 source code documentation updated (Jorrit N. Herder)
|
|
* Sep 10, 2004 system call functions in library (Jorrit N. Herder)
|
|
* 2003/2004 various new syscalls (see syslib.h) (Jorrit N. Herder)
|
|
*/
|
|
|
|
#include "kernel.h"
|
|
#include "system.h"
|
|
#include <stdlib.h>
|
|
#include <signal.h>
|
|
#include <unistd.h>
|
|
#include <sys/sigcontext.h>
|
|
#include <sys/svrctl.h>
|
|
#include <minix/callnr.h>
|
|
#include "sendmask.h"
|
|
#if (CHIP == INTEL)
|
|
#include "protect.h"
|
|
#endif
|
|
|
|
FORWARD _PROTOTYPE( void initialize, (void));
|
|
|
|
/* Declaration of the call vector that defines the mapping of system calls to
|
|
* handler functions. The order of the do_call handler functions must match
|
|
* the SYS_CALL numbering defined in <minix/com.h>.
|
|
*/
|
|
PUBLIC _PROTOTYPE (int (*call_vec[]), (message *m_ptr) ) = {
|
|
do_times, /* 0: get uptime and process CPU time consumption */
|
|
do_xit, /* 1: informs kernel that a process has exited */
|
|
do_unused, /* 2: unused */
|
|
do_sigctl, /* 3: MM signal control (incl. POSIX style handling) */
|
|
do_fork, /* 4: informs kernel that a process has forked */
|
|
do_newmap, /* 5: allows MM to set up a process memory map */
|
|
do_copy, /* 6: copy a block of data between processes */
|
|
do_exec, /* 7: sets program counter and stack pointer after EXEC */
|
|
do_unused, /* 8: unused */
|
|
do_abort, /* 9: MM or FS cannot go on; abort MINIX */
|
|
do_kill, /* 10: cause a signal to be sent via MM */
|
|
do_umap, /* 11: compute the physical address for a virtual address */
|
|
do_unused, /* 12: returns the next free chunk of physical memory */
|
|
do_trace, /* 13: request a trace operation */
|
|
do_vcopy, /* 14: request a series of data blocks to be copied */
|
|
do_signalrm, /* 15: schedule an alarm that causes an alarm signal */
|
|
do_syncalrm, /* 16: schedule an alarm that sends a notification message */
|
|
do_flagalrm, /* 17: schedule an alarm that sets a timeout flag to 1 */
|
|
do_unused, /* 18: unused */
|
|
do_svrctl, /* 19: handles miscelleneous kernel control functions */
|
|
do_sdevio, /* 20: device I/O: phys_insb, _insw, _outsb, _outsw */
|
|
do_unused, /* 21: unused */
|
|
do_getinfo, /* 22: request some kind of system information */
|
|
do_devio, /* 23: device I/O: inb, inw, inl, outb, outw, outl */
|
|
do_vdevio, /* 24: device I/O: vector with in[b|w|l], out[b|w|l] */
|
|
do_irqctl, /* 25: request an interrupt control operation */
|
|
do_kmalloc, /* 26: request allocation of (DMA) buffer in mem chunk */
|
|
do_iopenable, /* 27: allow a user process to use I/O instructions */
|
|
do_phys2seg, /* 28: do a phys addr to segment selector/ offset conversion */
|
|
do_exit, /* 29: an server or driver requests to be aborted */
|
|
do_vircopy, /* 30: copy from process to process (virtual addressing) */
|
|
do_physcopy, /* 31: copy from anywhere to anywhere (physical addressing) */
|
|
};
|
|
|
|
/* Check if system call table is correct. This should not fail. No space is
|
|
* allocated here, because the dummy is declared extern. If the call vector
|
|
* is unbalanced, the array size will be negative and this won't compile.
|
|
*/
|
|
extern int dummy[sizeof(call_vec)==NR_SYS_CALLS*sizeof(call_vec[0]) ? 1 : -1];
|
|
|
|
/* Some system task variables. */
|
|
PRIVATE message m; /* used to receive requests */
|
|
|
|
|
|
/*===========================================================================*
|
|
* sys_task *
|
|
*===========================================================================*/
|
|
PUBLIC void sys_task()
|
|
{
|
|
/* Main entry point of sys_task. Get the message and dispatch on type. */
|
|
|
|
register int result;
|
|
|
|
/* Initialize the system task. */
|
|
initialize();
|
|
|
|
while (TRUE) {
|
|
/* Get work. */
|
|
receive(ANY, &m);
|
|
|
|
/* Handle the request. */
|
|
if ((unsigned) m.m_type < NR_SYS_CALLS) {
|
|
result = (*call_vec[m.m_type])(&m); /* do system call */
|
|
} else {
|
|
kprintf("SYS task got illegal request from %d.\n", m.m_source);
|
|
result = EBADREQUEST; /* illegal message type */
|
|
}
|
|
|
|
/* Send a reply, unless inhibited by a handler function. */
|
|
if (result != EDONTREPLY) {
|
|
m.m_type = result; /* report status of call */
|
|
send(m.m_source, &m); /* send reply to caller */
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*===========================================================================*
|
|
* initialize *
|
|
*===========================================================================*/
|
|
PRIVATE void initialize(void)
|
|
{
|
|
register struct proc *rp;
|
|
int i;
|
|
|
|
/* Initialize IRQ table. */
|
|
for (i=0; i<NR_IRQ_VECTORS; i++)
|
|
irqtab[i].proc_nr = NONE;
|
|
|
|
/* Initialize all alarm timers for all processes. */
|
|
for (rp=BEG_PROC_ADDR; rp < END_PROC_ADDR; rp++) {
|
|
tmr_inittimer(&(rp->p_signalrm));
|
|
tmr_inittimer(&(rp->p_syncalrm));
|
|
tmr_inittimer(&(rp->p_flagalrm));
|
|
}
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* clear_proc *
|
|
*===========================================================================*/
|
|
PUBLIC void clear_proc(proc_nr)
|
|
int proc_nr; /* slot of process to clean up */
|
|
{
|
|
register struct proc *rp, *rc;
|
|
struct proc *np, *xp;
|
|
|
|
/* Get a pointer to the process that exited. */
|
|
rc = proc_addr(proc_nr);
|
|
|
|
/* Turn off any alarm timers at the clock. */
|
|
reset_timer(&rc->p_signalrm);
|
|
reset_timer(&rc->p_flagalrm);
|
|
reset_timer(&rc->p_syncalrm);
|
|
|
|
/* Make sure the exiting process is no longer scheduled. */
|
|
if (rc->p_flags == 0) lock_unready(rc);
|
|
|
|
/* If the process being terminated happens to be queued trying to send a
|
|
* message (e.g., the process was killed by a signal, rather than it doing
|
|
* an exit or it is forcibly shutdown in the stop sequence), then it must
|
|
* be removed from the message queues.
|
|
*/
|
|
if (rc->p_flags & SENDING) {
|
|
/* Check all proc slots to see if the exiting process is queued. */
|
|
for (rp = BEG_PROC_ADDR; rp < END_PROC_ADDR; rp++) {
|
|
if (rp->p_callerq == NIL_PROC) continue;
|
|
if (rp->p_callerq == rc) {
|
|
/* Exiting process is on front of this queue. */
|
|
rp->p_callerq = rc->p_sendlink;
|
|
break;
|
|
} else {
|
|
/* See if exiting process is in middle of queue. */
|
|
np = rp->p_callerq;
|
|
while ( ( xp = np->p_sendlink) != NIL_PROC) {
|
|
if (xp == rc) {
|
|
np->p_sendlink = xp->p_sendlink;
|
|
break;
|
|
} else {
|
|
np = xp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Now clean up the process table entry. Reset to defaults. */
|
|
kstrncpy(rc->p_name, "<noname>", PROC_NAME_LEN); /* unset name */
|
|
sigemptyset(&rc->p_pending); /* remove pending signals */
|
|
rc->p_pendcount = 0; /* all signals are gone */
|
|
rc->p_flags = 0; /* remove all flags */
|
|
rc->p_type = P_NONE; /* announce slot empty */
|
|
rc->p_sendmask = DENY_ALL_MASK; /* set most restrictive mask */
|
|
|
|
#if (CHIP == M68000)
|
|
pmmu_delete(rc); /* we're done, remove tables */
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
/*===========================================================================*
|
|
* generic_handler *
|
|
*===========================================================================*/
|
|
PUBLIC int generic_handler(hook)
|
|
irq_hook_t *hook;
|
|
{
|
|
/* This function handles hardware interrupt in a generic way, according to
|
|
* the policy set with SYS_IRQCTL. This is rather complicated since different
|
|
* devices require different actions. Options are (1) do nothing, (2a) read a
|
|
* port and optionally (2b) strobe the port high or (2c) low with the value
|
|
* read, or (3) write a value to a port. Finally, the policy may or may not
|
|
* reenable IRQs. A notification is sent in all cases.
|
|
*/
|
|
irq_policy_t policy = irqtab[hook->irq].policy;
|
|
int proc_nr = irqtab[hook->irq].proc_nr;
|
|
long port = irqtab[hook->irq].port;
|
|
phys_bytes addr = irqtab[hook->irq].addr;
|
|
long mask_val = irqtab[hook->irq].mask_val;
|
|
|
|
/* Read a value from the given port. Possibly also strobe the port with the
|
|
* read value. Strobe it high by using the mask provided by the caller;
|
|
* strobe it low by writing back the value we read.
|
|
*/
|
|
if (policy & (IRQ_READ_PORT|IRQ_STROBE|IRQ_ECHO_VAL)) {
|
|
switch(policy & (IRQ_BYTE|IRQ_WORD|IRQ_LONG)) {
|
|
case IRQ_BYTE: { /* byte values */
|
|
u8_t byteval = inb(port);
|
|
if (policy & IRQ_STROBE) outb(port, byteval | mask_val);
|
|
if (policy & IRQ_ECHO_VAL) outb(port, byteval);
|
|
if (policy & IRQ_READ_PORT)
|
|
phys_copy(vir2phys(&byteval), addr, sizeof(u8_t));
|
|
break;
|
|
} case IRQ_WORD: { /* word values */
|
|
u16_t wordval = inw(port);
|
|
if (policy & IRQ_STROBE) outw(port, wordval | mask_val);
|
|
if (policy & IRQ_ECHO_VAL) outw(port, wordval);
|
|
if (policy & IRQ_READ_PORT)
|
|
phys_copy(vir2phys(&wordval), addr, sizeof(u16_t));
|
|
break;
|
|
} case IRQ_LONG: { /* long values */
|
|
u32_t longval = inl(port);
|
|
if (policy & IRQ_STROBE) outl(port, longval | mask_val);
|
|
if (policy & IRQ_ECHO_VAL) outl(port, longval);
|
|
if (policy & IRQ_READ_PORT)
|
|
phys_copy(vir2phys(&longval), addr, sizeof(u32_t));
|
|
break;
|
|
} default: /* do nothing */ ; /* wrong type flags */
|
|
}
|
|
}
|
|
/* Write a value to some port. This is straightforward. Note that both
|
|
* reading and writing is not possible, hence 'else if' instead of 'if'.
|
|
*/
|
|
else if (policy & (IRQ_WRITE_PORT)) {
|
|
switch(policy & (IRQ_BYTE|IRQ_WORD|IRQ_LONG)) {
|
|
case IRQ_BYTE: outb(port, (u8_t) mask_val); break;
|
|
case IRQ_WORD: outw(port, (u16_t) mask_val); break;
|
|
case IRQ_LONG: outl(port, (u32_t) mask_val); break;
|
|
default: /* do nothing */ ; /* wrong type flags */
|
|
}
|
|
}
|
|
|
|
/* Almost done, send a HARD_INT notification to allow further processing
|
|
* and possibly reenable interrupts - this depends on the policy given.
|
|
*/
|
|
notify(proc_nr, HARD_INT);
|
|
return(policy & IRQ_REENABLE);
|
|
}
|
|
|
|
|
|
/*===========================================================================*
|
|
* cause_sig *
|
|
*===========================================================================*/
|
|
PUBLIC void cause_sig(proc_nr, sig_nr)
|
|
int proc_nr; /* process to be signalled */
|
|
int sig_nr; /* signal to be sent, 1 to _NSIG */
|
|
{
|
|
/* A task wants to send a signal to a process. Examples of such tasks are:
|
|
* TTY wanting to cause SIGINT upon getting a DEL
|
|
* CLOCK wanting to cause SIGALRM when timer expires
|
|
* FS also uses this to send a signal, via the SYS_KILL message. Signals are
|
|
* handled by sending a message to MM. This central function handles the
|
|
* signals and makes sure the MM gets them by sending a notification. The
|
|
* process being signaled is blocked while MM has not finished all signals
|
|
* for it. These signals are counted in p_pendcount, and the SIG_PENDING
|
|
* flag is kept nonzero while there are some. It is not sufficient to ready
|
|
* the process when MM is informed, because MM can block waiting for FS to
|
|
* do a core dump.
|
|
*/
|
|
register struct proc *rp, *mmp;
|
|
|
|
rp = proc_addr(proc_nr);
|
|
if (sigismember(&rp->p_pending, sig_nr))
|
|
return; /* this signal already pending */
|
|
sigaddset(&rp->p_pending, sig_nr);
|
|
++rp->p_pendcount; /* count new signal pending */
|
|
if (rp->p_flags & PENDING)
|
|
return; /* another signal already pending */
|
|
if (rp->p_flags == 0) lock_unready(rp);
|
|
rp->p_flags |= PENDING | SIG_PENDING;
|
|
notify(MM_PROC_NR, KSIG_PENDING);
|
|
}
|
|
|
|
|
|
/*===========================================================================*
|
|
* umap_bios *
|
|
*===========================================================================*/
|
|
PUBLIC phys_bytes umap_bios(rp, vir_addr, bytes)
|
|
register struct proc *rp; /* pointer to proc table entry for process */
|
|
vir_bytes vir_addr; /* virtual address in BIOS segment */
|
|
vir_bytes bytes; /* # of bytes to be copied */
|
|
{
|
|
/* Calculate the physical memory address at the BIOS. */
|
|
phys_bytes phys_addr;
|
|
|
|
phys_addr = (phys_bytes) vir_addr; /* no check currently! */
|
|
|
|
return phys_addr;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* umap_local *
|
|
*===========================================================================*/
|
|
PUBLIC phys_bytes umap_local(rp, seg, vir_addr, bytes)
|
|
register struct proc *rp; /* pointer to proc table entry for process */
|
|
int seg; /* T, D, or S segment */
|
|
vir_bytes vir_addr; /* virtual address in bytes within the seg */
|
|
vir_bytes bytes; /* # of bytes to be copied */
|
|
{
|
|
/* Calculate the physical memory address for a given virtual address. */
|
|
|
|
vir_clicks vc; /* the virtual address in clicks */
|
|
phys_bytes pa; /* intermediate variables as phys_bytes */
|
|
#if (CHIP == INTEL)
|
|
phys_bytes seg_base;
|
|
#endif
|
|
|
|
/* If 'seg' is D it could really be S and vice versa. T really means T.
|
|
* If the virtual address falls in the gap, it causes a problem. On the
|
|
* 8088 it is probably a legal stack reference, since "stackfaults" are
|
|
* not detected by the hardware. On 8088s, the gap is called S and
|
|
* accepted, but on other machines it is called D and rejected.
|
|
* The Atari ST behaves like the 8088 in this respect.
|
|
*/
|
|
|
|
if (bytes <= 0) return( (phys_bytes) 0);
|
|
vc = (vir_addr + bytes - 1) >> CLICK_SHIFT; /* last click of data */
|
|
|
|
#if (CHIP == INTEL) || (CHIP == M68000)
|
|
if (seg != T)
|
|
seg = (vc < rp->p_memmap[D].mem_vir + rp->p_memmap[D].mem_len ? D : S);
|
|
#else
|
|
if (seg != T)
|
|
seg = (vc < rp->p_memmap[S].mem_vir ? D : S);
|
|
#endif
|
|
|
|
if((vir_addr>>CLICK_SHIFT) >= rp->p_memmap[seg].mem_vir +
|
|
rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
|
|
#if (CHIP == INTEL)
|
|
seg_base = (phys_bytes) rp->p_memmap[seg].mem_phys;
|
|
seg_base = seg_base << CLICK_SHIFT; /* segment origin in bytes */
|
|
#endif
|
|
pa = (phys_bytes) vir_addr;
|
|
#if (CHIP != M68000)
|
|
pa -= rp->p_memmap[seg].mem_vir << CLICK_SHIFT;
|
|
return(seg_base + pa);
|
|
#endif
|
|
#if (CHIP == M68000)
|
|
pa -= (phys_bytes)rp->p_memmap[seg].mem_vir << CLICK_SHIFT;
|
|
pa += (phys_bytes)rp->p_memmap[seg].mem_phys << CLICK_SHIFT;
|
|
return(pa);
|
|
#endif
|
|
}
|
|
|
|
|
|
/*==========================================================================*
|
|
* numap_local *
|
|
*==========================================================================*/
|
|
PUBLIC phys_bytes numap_local(proc_nr, vir_addr, bytes)
|
|
int proc_nr; /* process number to be mapped */
|
|
vir_bytes vir_addr; /* virtual address in bytes within D seg */
|
|
vir_bytes bytes; /* # of bytes required in segment */
|
|
{
|
|
/* Do umap_local() starting from a process number instead of a pointer.
|
|
* This function is used by device drivers, so they need not know about the
|
|
* process table. To save time, there is no 'seg' parameter. The segment
|
|
* is always D.
|
|
*/
|
|
return(umap_local(proc_addr(proc_nr), D, vir_addr, bytes));
|
|
}
|
|
|
|
|
|
#if ENABLE_MESSAGE_STATS
|
|
|
|
/*===========================================================================*
|
|
* do_mstats *
|
|
*===========================================================================*/
|
|
PRIVATE int do_mstats(m_ptr)
|
|
message *m_ptr; /* pointer to request message */
|
|
{
|
|
int r = 0;
|
|
|
|
if(m_ptr->m1_i1 > 0) {
|
|
struct message_statentry *dest;
|
|
struct proc *p;
|
|
p = proc_addr(m_ptr->m1_i3);
|
|
dest = proc_vir2phys(p, m_ptr->m1_p1);
|
|
r = mstat_copy(dest, m_ptr->m1_i1);
|
|
}
|
|
|
|
if(m_ptr->m1_i2) {
|
|
mstat_reset();
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
#endif /* ENABLE_MESSAGE_STATS */
|
|
|
|
/*===========================================================================*
|
|
* umap_remote *
|
|
*===========================================================================*/
|
|
PUBLIC phys_bytes umap_remote(rp, seg, vir_addr, bytes)
|
|
register struct proc *rp; /* pointer to proc table entry for process */
|
|
int seg; /* index of remote segment */
|
|
vir_bytes vir_addr; /* virtual address in bytes within the seg */
|
|
vir_bytes bytes; /* # of bytes to be copied */
|
|
{
|
|
/* Calculate the physical memory address for a given virtual address. */
|
|
phys_bytes phys_addr;
|
|
|
|
phys_addr = (phys_bytes) 0; /* no yet supported currently! */
|
|
|
|
return phys_addr;
|
|
}
|
|
|
|
/*==========================================================================*
|
|
* virtual_copy *
|
|
*==========================================================================*/
|
|
PUBLIC int virtual_copy(src_addr, dst_addr, bytes)
|
|
struct vir_addr *src_addr; /* source virtual address */
|
|
struct vir_addr *dst_addr; /* destination virtual address */
|
|
vir_bytes bytes; /* # of bytes to copy */
|
|
{
|
|
/* Copy bytes from virtual address src_addr to virtual address dst_addr.
|
|
* Virtual addresses can be in LOCAL_SEG, REMOTE_SEG, or BIOS_SEG.
|
|
*/
|
|
struct vir_addr *vir_addr[2]; /* virtual source and destination address */
|
|
phys_bytes phys_addr[2]; /* absolute source and destination */
|
|
int seg_index;
|
|
int i;
|
|
|
|
/* Check copy count. */
|
|
if (bytes <= 0) {
|
|
kprintf("v_cp: copy count problem <= 0\n", NO_ARG);
|
|
return(EDOM);
|
|
}
|
|
|
|
/* Do some more checks and map virtual addresses to physical addresses. */
|
|
vir_addr[_SRC_] = src_addr;
|
|
vir_addr[_DST_] = dst_addr;
|
|
for (i=_SRC_; i<=_DST_; i++) {
|
|
|
|
/* Get physical address. */
|
|
switch((vir_addr[i]->segment & SEGMENT_TYPE)) {
|
|
case LOCAL_SEG:
|
|
seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
|
|
phys_addr[i] = umap_local( proc_addr(vir_addr[i]->proc_nr),
|
|
seg_index, vir_addr[i]->offset, bytes );
|
|
break;
|
|
case REMOTE_SEG:
|
|
seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
|
|
phys_addr[i] = umap_remote( proc_addr(vir_addr[i]->proc_nr),
|
|
seg_index, vir_addr[i]->offset, bytes );
|
|
break;
|
|
case BIOS_SEG:
|
|
phys_addr[i] = umap_bios( proc_addr(vir_addr[i]->proc_nr),
|
|
vir_addr[i]->offset, bytes );
|
|
break;
|
|
default:
|
|
kprintf("v_cp: Unknown segment type: %d\n",
|
|
vir_addr[i]->segment & SEGMENT_TYPE);
|
|
return(EINVAL);
|
|
}
|
|
|
|
/* Check if mapping succeeded. */
|
|
if (phys_addr[i] <= 0) {
|
|
kprintf("v_cp: Mapping failed ... phys <= 0\n", NO_ARG);
|
|
return(EFAULT);
|
|
}
|
|
}
|
|
|
|
/* Now copy bytes between physical addresseses. */
|
|
phys_copy(phys_addr[_SRC_], phys_addr[_DST_], (phys_bytes) bytes);
|
|
return(OK);
|
|
}
|
|
|
|
/*==========================================================================*
|
|
* vir_copy *
|
|
*==========================================================================*/
|
|
PUBLIC int vir_copy(src_proc, src_vir, dst_proc, dst_vir, bytes)
|
|
int src_proc; /* source process */
|
|
vir_bytes src_vir; /* source virtual address within D seg */
|
|
int dst_proc; /* destination process */
|
|
vir_bytes dst_vir; /* destination virtual address within D seg */
|
|
vir_bytes bytes; /* # of bytes to copy */
|
|
{
|
|
/* Copy bytes from one process to another. Meant for the easy cases, where
|
|
* speed isn't required. (One can normally do without one of the umaps.)
|
|
*/
|
|
phys_bytes src_phys, dst_phys;
|
|
|
|
src_phys = umap_local(proc_addr(src_proc), D, src_vir, bytes);
|
|
dst_phys = umap_local(proc_addr(dst_proc), D, dst_vir, bytes);
|
|
if (src_phys == 0 || dst_phys == 0) return(EFAULT);
|
|
phys_copy(src_phys, dst_phys, (phys_bytes) bytes);
|
|
return(OK);
|
|
}
|
|
|
|
|
|
|