minix/lib/libminixfs/cache.c
Ben Gras a89ec8bc3b can't get_block(NO_DEV) any more
. 'anonymous' cache blocks (retrieved with NO_DEV as dev
	  parameter) were used to implement read()s from holes in
	  inodes that should return zeroes
	. this is an awkward special case in the cache code though
	  and there's a more direct way to implement the same functionality:
	  instead of copying from a new, anonymous, zero block, to
	  the user target buffer, simply sys_safememset the user target
	  buffer directly. as this was the only use of this feature,
	  this is all that's needed to simplify the cache code a little.
2012-11-16 16:37:44 +01:00

692 lines
19 KiB
C

#define _SYSTEM
#include <assert.h>
#include <errno.h>
#include <math.h>
#include <stdlib.h>
#include <sys/param.h>
#include <sys/param.h>
#include <minix/dmap.h>
#include <minix/libminixfs.h>
#include <minix/syslib.h>
#include <minix/sysutil.h>
#include <minix/u64.h>
#include <minix/bdev.h>
#define BP_CLEAN 0 /* on-disk block and memory copies identical */
#define BP_DIRTY 1 /* on-disk block and memory copies differ */
#define BUFHASH(b) ((b) % nr_bufs)
#define MARKCLEAN lmfs_markclean
#define MINBUFS 6 /* minimal no of bufs for sanity check */
static struct buf *front; /* points to least recently used free block */
static struct buf *rear; /* points to most recently used free block */
static unsigned int bufs_in_use;/* # bufs currently in use (not on free list)*/
static void rm_lru(struct buf *bp);
static void read_block(struct buf *);
static void flushall(dev_t dev);
static int vmcache = 0; /* are we using vm's secondary cache? (initially not) */
static struct buf *buf;
static struct buf **buf_hash; /* the buffer hash table */
static unsigned int nr_bufs;
static int may_use_vmcache;
static int fs_block_size = 1024; /* raw i/o block size */
static int rdwt_err;
u32_t fs_bufs_heuristic(int minbufs, u32_t btotal, u32_t bfree,
int blocksize, dev_t majordev)
{
struct vm_stats_info vsi;
int bufs;
u32_t kbytes_used_fs, kbytes_total_fs, kbcache, kb_fsmax;
u32_t kbytes_remain_mem, bused;
bused = btotal-bfree;
/* but we simply need minbufs no matter what, and we don't
* want more than that if we're a memory device
*/
if(majordev == MEMORY_MAJOR) {
return minbufs;
}
/* set a reasonable cache size; cache at most a certain
* portion of the used FS, and at most a certain %age of remaining
* memory
*/
if((vm_info_stats(&vsi) != OK)) {
bufs = 1024;
printf("fslib: heuristic info fail: default to %d bufs\n", bufs);
return bufs;
}
kbytes_remain_mem = div64u(mul64u(vsi.vsi_free, vsi.vsi_pagesize), 1024);
/* check fs usage. */
kbytes_used_fs = div64u(mul64u(bused, blocksize), 1024);
kbytes_total_fs = div64u(mul64u(btotal, blocksize), 1024);
/* heuristic for a desired cache size based on FS usage;
* but never bigger than half of the total filesystem
*/
kb_fsmax = sqrt_approx(kbytes_used_fs)*40;
kb_fsmax = MIN(kb_fsmax, kbytes_total_fs/2);
/* heuristic for a maximum usage - 10% of remaining memory */
kbcache = MIN(kbytes_remain_mem/10, kb_fsmax);
bufs = kbcache * 1024 / blocksize;
/* but we simply need MINBUFS no matter what */
if(bufs < minbufs)
bufs = minbufs;
return bufs;
}
void
lmfs_markdirty(struct buf *bp)
{
bp->lmfs_dirt = BP_DIRTY;
}
void
lmfs_markclean(struct buf *bp)
{
bp->lmfs_dirt = BP_CLEAN;
}
int
lmfs_isclean(struct buf *bp)
{
return bp->lmfs_dirt == BP_CLEAN;
}
dev_t
lmfs_dev(struct buf *bp)
{
return bp->lmfs_dev;
}
int lmfs_bytes(struct buf *bp)
{
return bp->lmfs_bytes;
}
/*===========================================================================*
* lmfs_get_block *
*===========================================================================*/
struct buf *lmfs_get_block(
register dev_t dev, /* on which device is the block? */
register block_t block, /* which block is wanted? */
int only_search /* if NO_READ, don't read, else act normal */
)
{
/* Check to see if the requested block is in the block cache. If so, return
* a pointer to it. If not, evict some other block and fetch it (unless
* 'only_search' is 1). All the blocks in the cache that are not in use
* are linked together in a chain, with 'front' pointing to the least recently
* used block and 'rear' to the most recently used block. If 'only_search' is
* 1, the block being requested will be overwritten in its entirety, so it is
* only necessary to see if it is in the cache; if it is not, any free buffer
* will do. It is not necessary to actually read the block in from disk.
* If 'only_search' is PREFETCH, the block need not be read from the disk,
* and the device is not to be marked on the block, so callers can tell if
* the block returned is valid.
* In addition to the LRU chain, there is also a hash chain to link together
* blocks whose block numbers end with the same bit strings, for fast lookup.
*/
int b;
static struct buf *bp, *prev_ptr;
u64_t yieldid = VM_BLOCKID_NONE, getid = make64(dev, block);
assert(buf_hash);
assert(buf);
assert(nr_bufs > 0);
ASSERT(fs_block_size > 0);
assert(dev != NO_DEV);
/* Search the hash chain for (dev, block). Do_read() can use
* lmfs_get_block(NO_DEV ...) to get an unnamed block to fill with zeros when
* someone wants to read from a hole in a file, in which case this search
* is skipped
*/
b = BUFHASH(block);
bp = buf_hash[b];
while (bp != NULL) {
if (bp->lmfs_blocknr == block && bp->lmfs_dev == dev) {
/* Block needed has been found. */
if (bp->lmfs_count == 0) rm_lru(bp);
bp->lmfs_count++; /* record that block is in use */
ASSERT(bp->lmfs_bytes == fs_block_size);
ASSERT(bp->lmfs_dev == dev);
ASSERT(bp->lmfs_dev != NO_DEV);
ASSERT(bp->data);
return(bp);
} else {
/* This block is not the one sought. */
bp = bp->lmfs_hash; /* move to next block on hash chain */
}
}
/* Desired block is not on available chain. Take oldest block ('front'). */
if ((bp = front) == NULL) panic("all buffers in use: %d", nr_bufs);
if(bp->lmfs_bytes < fs_block_size) {
ASSERT(!bp->data);
ASSERT(bp->lmfs_bytes == 0);
if(!(bp->data = alloc_contig( (size_t) fs_block_size, 0, NULL))) {
printf("fs cache: couldn't allocate a new block.\n");
for(bp = front;
bp && bp->lmfs_bytes < fs_block_size; bp = bp->lmfs_next)
;
if(!bp) {
panic("no buffer available");
}
} else {
bp->lmfs_bytes = fs_block_size;
}
}
ASSERT(bp);
ASSERT(bp->data);
ASSERT(bp->lmfs_bytes == fs_block_size);
ASSERT(bp->lmfs_count == 0);
rm_lru(bp);
/* Remove the block that was just taken from its hash chain. */
b = BUFHASH(bp->lmfs_blocknr);
prev_ptr = buf_hash[b];
if (prev_ptr == bp) {
buf_hash[b] = bp->lmfs_hash;
} else {
/* The block just taken is not on the front of its hash chain. */
while (prev_ptr->lmfs_hash != NULL)
if (prev_ptr->lmfs_hash == bp) {
prev_ptr->lmfs_hash = bp->lmfs_hash; /* found it */
break;
} else {
prev_ptr = prev_ptr->lmfs_hash; /* keep looking */
}
}
/* If the block taken is dirty, make it clean by writing it to the disk.
* Avoid hysteresis by flushing all other dirty blocks for the same device.
*/
if (bp->lmfs_dev != NO_DEV) {
if (bp->lmfs_dirt == BP_DIRTY) flushall(bp->lmfs_dev);
/* Are we throwing out a block that contained something?
* Give it to VM for the second-layer cache.
*/
yieldid = make64(bp->lmfs_dev, bp->lmfs_blocknr);
assert(bp->lmfs_bytes == fs_block_size);
bp->lmfs_dev = NO_DEV;
}
/* Fill in block's parameters and add it to the hash chain where it goes. */
MARKCLEAN(bp); /* NO_DEV blocks may be marked dirty */
bp->lmfs_dev = dev; /* fill in device number */
bp->lmfs_blocknr = block; /* fill in block number */
bp->lmfs_count++; /* record that block is being used */
b = BUFHASH(bp->lmfs_blocknr);
bp->lmfs_hash = buf_hash[b];
buf_hash[b] = bp; /* add to hash list */
assert(dev != NO_DEV);
/* Go get the requested block unless searching or prefetching. */
if(only_search == PREFETCH || only_search == NORMAL) {
/* Block is not found in our cache, but we do want it
* if it's in the vm cache.
*/
if(vmcache) {
/* If we can satisfy the PREFETCH or NORMAL request
* from the vm cache, work is done.
*/
if(vm_yield_block_get_block(yieldid, getid,
bp->data, fs_block_size) == OK) {
return bp;
}
}
}
if(only_search == PREFETCH) {
/* PREFETCH: don't do i/o. */
bp->lmfs_dev = NO_DEV;
} else if (only_search == NORMAL) {
read_block(bp);
} else if(only_search == NO_READ) {
/* we want this block, but its contents
* will be overwritten. VM has to forget
* about it.
*/
if(vmcache) {
vm_forgetblock(getid);
}
} else
panic("unexpected only_search value: %d", only_search);
assert(bp->data);
return(bp); /* return the newly acquired block */
}
/*===========================================================================*
* lmfs_put_block *
*===========================================================================*/
void lmfs_put_block(bp, block_type)
register struct buf *bp; /* pointer to the buffer to be released */
int block_type; /* INODE_BLOCK, DIRECTORY_BLOCK, or whatever */
{
/* Return a block to the list of available blocks. Depending on 'block_type'
* it may be put on the front or rear of the LRU chain. Blocks that are
* expected to be needed again shortly (e.g., partially full data blocks)
* go on the rear; blocks that are unlikely to be needed again shortly
* (e.g., full data blocks) go on the front. Blocks whose loss can hurt
* the integrity of the file system (e.g., inode blocks) are written to
* disk immediately if they are dirty.
*/
if (bp == NULL) return; /* it is easier to check here than in caller */
bp->lmfs_count--; /* there is one use fewer now */
if (bp->lmfs_count != 0) return; /* block is still in use */
bufs_in_use--; /* one fewer block buffers in use */
/* Put this block back on the LRU chain. */
if (bp->lmfs_dev == DEV_RAM || (block_type & ONE_SHOT)) {
/* Block probably won't be needed quickly. Put it on front of chain.
* It will be the next block to be evicted from the cache.
*/
bp->lmfs_prev = NULL;
bp->lmfs_next = front;
if (front == NULL)
rear = bp; /* LRU chain was empty */
else
front->lmfs_prev = bp;
front = bp;
}
else {
/* Block probably will be needed quickly. Put it on rear of chain.
* It will not be evicted from the cache for a long time.
*/
bp->lmfs_prev = rear;
bp->lmfs_next = NULL;
if (rear == NULL)
front = bp;
else
rear->lmfs_next = bp;
rear = bp;
}
}
/*===========================================================================*
* read_block *
*===========================================================================*/
static void read_block(bp)
register struct buf *bp; /* buffer pointer */
{
/* Read or write a disk block. This is the only routine in which actual disk
* I/O is invoked. If an error occurs, a message is printed here, but the error
* is not reported to the caller. If the error occurred while purging a block
* from the cache, it is not clear what the caller could do about it anyway.
*/
int r, op_failed;
u64_t pos;
dev_t dev = bp->lmfs_dev;
op_failed = 0;
assert(dev != NO_DEV);
pos = mul64u(bp->lmfs_blocknr, fs_block_size);
r = bdev_read(dev, pos, bp->data, fs_block_size,
BDEV_NOFLAGS);
if (r < 0) {
printf("fs cache: I/O error on device %d/%d, block %u\n",
major(dev), minor(dev), bp->lmfs_blocknr);
op_failed = 1;
} else if (r != (ssize_t) fs_block_size) {
r = END_OF_FILE;
op_failed = 1;
}
if (op_failed) {
bp->lmfs_dev = NO_DEV; /* invalidate block */
/* Report read errors to interested parties. */
rdwt_err = r;
}
}
/*===========================================================================*
* lmfs_invalidate *
*===========================================================================*/
void lmfs_invalidate(
dev_t device /* device whose blocks are to be purged */
)
{
/* Remove all the blocks belonging to some device from the cache. */
register struct buf *bp;
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
if (bp->lmfs_dev == device) bp->lmfs_dev = NO_DEV;
vm_forgetblocks();
}
/*===========================================================================*
* flushall *
*===========================================================================*/
static void flushall(dev_t dev)
{
/* Flush all dirty blocks for one device. */
register struct buf *bp;
static struct buf **dirty; /* static so it isn't on stack */
static unsigned int dirtylistsize = 0;
int ndirty;
if(dirtylistsize != nr_bufs) {
if(dirtylistsize > 0) {
assert(dirty != NULL);
free(dirty);
}
if(!(dirty = malloc(sizeof(dirty[0])*nr_bufs)))
panic("couldn't allocate dirty buf list");
dirtylistsize = nr_bufs;
}
for (bp = &buf[0], ndirty = 0; bp < &buf[nr_bufs]; bp++) {
if (bp->lmfs_dirt == BP_DIRTY && bp->lmfs_dev == dev) {
dirty[ndirty++] = bp;
}
}
lmfs_rw_scattered(dev, dirty, ndirty, WRITING);
}
/*===========================================================================*
* lmfs_rw_scattered *
*===========================================================================*/
void lmfs_rw_scattered(
dev_t dev, /* major-minor device number */
struct buf **bufq, /* pointer to array of buffers */
int bufqsize, /* number of buffers */
int rw_flag /* READING or WRITING */
)
{
/* Read or write scattered data from a device. */
register struct buf *bp;
int gap;
register int i;
register iovec_t *iop;
static iovec_t *iovec = NULL;
u64_t pos;
int j, r;
STATICINIT(iovec, NR_IOREQS);
/* (Shell) sort buffers on lmfs_blocknr. */
gap = 1;
do
gap = 3 * gap + 1;
while (gap <= bufqsize);
while (gap != 1) {
gap /= 3;
for (j = gap; j < bufqsize; j++) {
for (i = j - gap;
i >= 0 && bufq[i]->lmfs_blocknr > bufq[i + gap]->lmfs_blocknr;
i -= gap) {
bp = bufq[i];
bufq[i] = bufq[i + gap];
bufq[i + gap] = bp;
}
}
}
/* Set up I/O vector and do I/O. The result of bdev I/O is OK if everything
* went fine, otherwise the error code for the first failed transfer.
*/
while (bufqsize > 0) {
for (j = 0, iop = iovec; j < NR_IOREQS && j < bufqsize; j++, iop++) {
bp = bufq[j];
if (bp->lmfs_blocknr != (block_t) bufq[0]->lmfs_blocknr + j) break;
iop->iov_addr = (vir_bytes) bp->data;
iop->iov_size = (vir_bytes) fs_block_size;
}
pos = mul64u(bufq[0]->lmfs_blocknr, fs_block_size);
if (rw_flag == READING)
r = bdev_gather(dev, pos, iovec, j, BDEV_NOFLAGS);
else
r = bdev_scatter(dev, pos, iovec, j, BDEV_NOFLAGS);
/* Harvest the results. The driver may have returned an error, or it
* may have done less than what we asked for.
*/
if (r < 0) {
printf("fs cache: I/O error %d on device %d/%d, block %u\n",
r, major(dev), minor(dev), bufq[0]->lmfs_blocknr);
}
for (i = 0; i < j; i++) {
bp = bufq[i];
if (r < (ssize_t) fs_block_size) {
/* Transfer failed. */
if (i == 0) {
bp->lmfs_dev = NO_DEV; /* Invalidate block */
vm_forgetblocks();
}
break;
}
if (rw_flag == READING) {
bp->lmfs_dev = dev; /* validate block */
lmfs_put_block(bp, PARTIAL_DATA_BLOCK);
} else {
MARKCLEAN(bp);
}
r -= fs_block_size;
}
bufq += i;
bufqsize -= i;
if (rw_flag == READING) {
/* Don't bother reading more than the device is willing to
* give at this time. Don't forget to release those extras.
*/
while (bufqsize > 0) {
lmfs_put_block(*bufq++, PARTIAL_DATA_BLOCK);
bufqsize--;
}
}
if (rw_flag == WRITING && i == 0) {
/* We're not making progress, this means we might keep
* looping. Buffers remain dirty if un-written. Buffers are
* lost if invalidate()d or LRU-removed while dirty. This
* is better than keeping unwritable blocks around forever..
*/
break;
}
}
}
/*===========================================================================*
* rm_lru *
*===========================================================================*/
static void rm_lru(bp)
struct buf *bp;
{
/* Remove a block from its LRU chain. */
struct buf *next_ptr, *prev_ptr;
bufs_in_use++;
next_ptr = bp->lmfs_next; /* successor on LRU chain */
prev_ptr = bp->lmfs_prev; /* predecessor on LRU chain */
if (prev_ptr != NULL)
prev_ptr->lmfs_next = next_ptr;
else
front = next_ptr; /* this block was at front of chain */
if (next_ptr != NULL)
next_ptr->lmfs_prev = prev_ptr;
else
rear = prev_ptr; /* this block was at rear of chain */
}
/*===========================================================================*
* cache_resize *
*===========================================================================*/
static void cache_resize(unsigned int blocksize, unsigned int bufs)
{
struct buf *bp;
assert(blocksize > 0);
assert(bufs >= MINBUFS);
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
if(bp->lmfs_count != 0) panic("change blocksize with buffer in use");
lmfs_buf_pool(bufs);
fs_block_size = blocksize;
}
/*===========================================================================*
* lmfs_set_blocksize *
*===========================================================================*/
void lmfs_set_blocksize(int new_block_size, int major)
{
int bufs;
u32_t btotal, bfree, bused;
cache_resize(new_block_size, MINBUFS);
fs_blockstats(&btotal, &bfree, &bused);
bufs = fs_bufs_heuristic(10, btotal, bfree,
new_block_size, major);
cache_resize(new_block_size, bufs);
/* Decide whether to use seconday cache or not.
* Only do this if
* - it's available, and
* - use of it hasn't been disabled for this fs, and
* - our main FS device isn't a memory device
*/
vmcache = 0;
if(vm_forgetblock(VM_BLOCKID_NONE) != ENOSYS &&
may_use_vmcache && major != MEMORY_MAJOR) {
vmcache = 1;
}
}
/*===========================================================================*
* lmfs_buf_pool *
*===========================================================================*/
void lmfs_buf_pool(int new_nr_bufs)
{
/* Initialize the buffer pool. */
register struct buf *bp;
assert(new_nr_bufs >= MINBUFS);
if(nr_bufs > 0) {
assert(buf);
(void) fs_sync();
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
if(bp->data) {
assert(bp->lmfs_bytes > 0);
free_contig(bp->data, bp->lmfs_bytes);
}
}
}
if(buf)
free(buf);
if(!(buf = calloc(sizeof(buf[0]), new_nr_bufs)))
panic("couldn't allocate buf list (%d)", new_nr_bufs);
if(buf_hash)
free(buf_hash);
if(!(buf_hash = calloc(sizeof(buf_hash[0]), new_nr_bufs)))
panic("couldn't allocate buf hash list (%d)", new_nr_bufs);
nr_bufs = new_nr_bufs;
bufs_in_use = 0;
front = &buf[0];
rear = &buf[nr_bufs - 1];
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
bp->lmfs_blocknr = NO_BLOCK;
bp->lmfs_dev = NO_DEV;
bp->lmfs_next = bp + 1;
bp->lmfs_prev = bp - 1;
bp->data = NULL;
bp->lmfs_bytes = 0;
}
front->lmfs_prev = NULL;
rear->lmfs_next = NULL;
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) bp->lmfs_hash = bp->lmfs_next;
buf_hash[0] = front;
vm_forgetblocks();
}
int lmfs_bufs_in_use(void)
{
return bufs_in_use;
}
int lmfs_nr_bufs(void)
{
return nr_bufs;
}
void lmfs_flushall(void)
{
struct buf *bp;
for(bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
if(bp->lmfs_dev != NO_DEV && bp->lmfs_dirt == BP_DIRTY)
flushall(bp->lmfs_dev);
}
int lmfs_fs_block_size(void)
{
return fs_block_size;
}
void lmfs_may_use_vmcache(int ok)
{
may_use_vmcache = ok;
}
void lmfs_reset_rdwt_err(void)
{
rdwt_err = OK;
}
int lmfs_rdwt_err(void)
{
return rdwt_err;
}