minix/kernel/debug.c
Thomas Cort 5142b1f388 kernel: rename realtime to monotonic, add realtime
Old realtime was used for both timers (where an accurate count of
all ticks is needed) and the system time. In order to implement
adjtime(2), these duties must be separated as changing the time
of day by a small amount shouldn't affect timers in any way nor
should it change the boot time.

Following the naming of the clocks used by clock_gettime(2). The
clock named 'realtime' will represent the best guess at the
current wall clock time, and the clock named 'monotonic' will
represent the absolute time the system has been running.
Use monotonic for timers in kernel and in drivers. Use realtime
for determining time of day, dates, etc.

This commit simply renames realtime to monotonic and adds a new
tick counter named realtime. There are no functional changes in
this commit. It just lays the foundation for future work.
2013-04-04 15:04:52 +02:00

517 lines
10 KiB
C

/* This file implements kernel debugging functionality that is not included
* in the standard kernel. Available functionality includes timing of lock
* functions and sanity checking of the scheduling queues.
*/
#include "kernel/kernel.h"
#include <minix/callnr.h>
#include <minix/sysutil.h>
#include <minix/u64.h>
#include <limits.h>
#include <string.h>
#include <assert.h>
#define MAX_LOOP (NR_PROCS + NR_TASKS)
int runqueues_ok_cpu(unsigned cpu)
{
int q, l = 0;
register struct proc *xp;
struct proc **rdy_head, **rdy_tail;
rdy_head = get_cpu_var(cpu, run_q_head);
rdy_tail = get_cpu_var(cpu, run_q_tail);
for (xp = BEG_PROC_ADDR; xp < END_PROC_ADDR; ++xp) {
xp->p_found = 0;
if (l++ > MAX_LOOP) panic("check error");
}
for (q=l=0; q < NR_SCHED_QUEUES; q++) {
if (rdy_head[q] && !rdy_tail[q]) {
printf("head but no tail in %d\n", q);
return 0;
}
if (!rdy_head[q] && rdy_tail[q]) {
printf("tail but no head in %d\n", q);
return 0;
}
if (rdy_tail[q] && rdy_tail[q]->p_nextready) {
printf("tail and tail->next not null in %d\n", q);
return 0;
}
for(xp = rdy_head[q]; xp; xp = xp->p_nextready) {
const vir_bytes vxp = (vir_bytes) xp;
vir_bytes dxp;
if(vxp < (vir_bytes) BEG_PROC_ADDR || vxp >= (vir_bytes) END_PROC_ADDR) {
printf("xp out of range\n");
return 0;
}
dxp = vxp - (vir_bytes) BEG_PROC_ADDR;
if(dxp % sizeof(struct proc)) {
printf("xp not a real pointer");
return 0;
}
if(!proc_ptr_ok(xp)) {
printf("xp bogus pointer");
return 0;
}
if (RTS_ISSET(xp, RTS_SLOT_FREE)) {
printf("scheduling error: dead proc q %d %d\n",
q, xp->p_endpoint);
return 0;
}
if (!proc_is_runnable(xp)) {
printf("scheduling error: unready on runq %d proc %d\n",
q, xp->p_nr);
return 0;
}
if (xp->p_priority != q) {
printf("scheduling error: wrong priority q %d proc %d ep %d name %s\n",
q, xp->p_nr, xp->p_endpoint, xp->p_name);
return 0;
}
if (xp->p_found) {
printf("scheduling error: double sched q %d proc %d\n",
q, xp->p_nr);
return 0;
}
xp->p_found = 1;
if (!xp->p_nextready && rdy_tail[q] != xp) {
printf("sched err: last element not tail q %d proc %d\n",
q, xp->p_nr);
return 0;
}
if (l++ > MAX_LOOP) {
printf("loop in schedule queue?");
return 0;
}
}
}
for (xp = BEG_PROC_ADDR; xp < END_PROC_ADDR; ++xp) {
if(!proc_ptr_ok(xp)) {
printf("xp bogus pointer in proc table\n");
return 0;
}
if (isemptyp(xp))
continue;
if(proc_is_runnable(xp) && !xp->p_found) {
printf("sched error: ready proc %d not on queue\n", xp->p_nr);
return 0;
}
}
/* All is ok. */
return 1;
}
#ifdef CONFIG_SMP
static int runqueues_ok_all(void)
{
unsigned c;
for (c = 0 ; c < ncpus; c++) {
if (!runqueues_ok_cpu(c))
return 0;
}
return 1;
}
int runqueues_ok(void)
{
return runqueues_ok_all();
}
#else
int runqueues_ok(void)
{
return runqueues_ok_cpu(0);
}
#endif
char *
rtsflagstr(const u32_t flags)
{
static char str[100];
str[0] = '\0';
#define FLAG(n) if(flags & n) { strlcat(str, #n " ", sizeof(str)); }
FLAG(RTS_SLOT_FREE);
FLAG(RTS_PROC_STOP);
FLAG(RTS_SENDING);
FLAG(RTS_RECEIVING);
FLAG(RTS_SIGNALED);
FLAG(RTS_SIG_PENDING);
FLAG(RTS_P_STOP);
FLAG(RTS_NO_PRIV);
FLAG(RTS_NO_ENDPOINT);
FLAG(RTS_VMINHIBIT);
FLAG(RTS_PAGEFAULT);
FLAG(RTS_VMREQUEST);
FLAG(RTS_VMREQTARGET);
FLAG(RTS_PREEMPTED);
FLAG(RTS_NO_QUANTUM);
return str;
}
char *
miscflagstr(const u32_t flags)
{
static char str[100];
str[0] = '\0';
FLAG(MF_REPLY_PEND);
FLAG(MF_DELIVERMSG);
FLAG(MF_KCALL_RESUME);
return str;
}
char *
schedulerstr(struct proc *scheduler)
{
if (scheduler != NULL)
{
return scheduler->p_name;
}
return "KERNEL";
}
static void
print_proc_name(struct proc *pp)
{
char *name = pp->p_name;
endpoint_t ep = pp->p_endpoint;
if(name) {
printf("%s(%d)", name, ep);
}
else {
printf("%d", ep);
}
}
static void
print_endpoint(endpoint_t ep)
{
int proc_nr;
struct proc *pp = NULL;
switch(ep) {
case ANY:
printf("ANY");
break;
case SELF:
printf("SELF");
break;
case NONE:
printf("NONE");
break;
default:
if(!isokendpt(ep, &proc_nr)) {
printf("??? %d\n", ep);
}
else {
pp = proc_addr(proc_nr);
if(isemptyp(pp)) {
printf("??? empty slot %d\n", proc_nr);
}
else {
print_proc_name(pp);
}
}
break;
}
}
static void
print_sigmgr(struct proc *pp)
{
endpoint_t sig_mgr, bak_sig_mgr;
sig_mgr = priv(pp) ? priv(pp)->s_sig_mgr : NONE;
bak_sig_mgr = priv(pp) ? priv(pp)->s_bak_sig_mgr : NONE;
if(sig_mgr == NONE) { printf("no sigmgr"); return; }
printf("sigmgr ");
print_endpoint(sig_mgr);
if(bak_sig_mgr != NONE) {
printf(" / ");
print_endpoint(bak_sig_mgr);
}
}
void print_proc(struct proc *pp)
{
endpoint_t dep;
printf("%d: %s %d prio %d time %d/%d cycles 0x%x%08x cpu %2d "
"pdbr 0x%lx rts %s misc %s sched %s ",
proc_nr(pp), pp->p_name, pp->p_endpoint,
pp->p_priority, pp->p_user_time,
pp->p_sys_time, ex64hi(pp->p_cycles),
ex64lo(pp->p_cycles), pp->p_cpu,
#if defined(__i386__)
pp->p_seg.p_cr3,
#elif defined(__arm__)
pp->p_seg.p_ttbr,
#endif
rtsflagstr(pp->p_rts_flags), miscflagstr(pp->p_misc_flags),
schedulerstr(pp->p_scheduler));
print_sigmgr(pp);
dep = P_BLOCKEDON(pp);
if(dep != NONE) {
printf(" blocked on: ");
print_endpoint(dep);
}
printf("\n");
}
static void print_proc_depends(struct proc *pp, const int level)
{
struct proc *depproc = NULL;
endpoint_t dep;
#define COL { int i; for(i = 0; i < level; i++) printf("> "); }
if(level >= NR_PROCS) {
printf("loop??\n");
return;
}
COL
print_proc(pp);
COL
proc_stacktrace(pp);
dep = P_BLOCKEDON(pp);
if(dep != NONE && dep != ANY) {
int procno;
if(isokendpt(dep, &procno)) {
depproc = proc_addr(procno);
if(isemptyp(depproc))
depproc = NULL;
}
if (depproc)
print_proc_depends(depproc, level+1);
}
}
void print_proc_recursive(struct proc *pp)
{
print_proc_depends(pp, 0);
}
#if DEBUG_DUMPIPC
static const char *mtypename(int mtype, int iscall)
{
/* use generated file to recognize message types */
if (iscall) {
switch(mtype) {
#define IDENT(x) case x: return #x;
#include "extracted-mtype.h"
#undef IDENT
}
} else {
switch(mtype) {
#define IDENT(x) case x: return #x;
#include "extracted-errno.h"
#undef IDENT
}
}
/* no match */
return NULL;
}
static void printproc(struct proc *rp)
{
if (rp)
printf(" %s(%d)", rp->p_name, rp - proc);
else
printf(" kernel");
}
static void printparam(const char *name, const void *data, size_t size)
{
printf(" %s=", name);
switch (size) {
case sizeof(char): printf("%d", *(char *) data); break;
case sizeof(short): printf("%d", *(short *) data); break;
case sizeof(int): printf("%d", *(int *) data); break;
default: printf("(%u bytes)", size); break;
}
}
static void printmsg(message *msg, struct proc *src, struct proc *dst,
char operation, int iscall, int printparams)
{
const char *name;
int mtype = msg->m_type;
/* source, destination and message type */
printf("%c", operation);
printproc(src);
printproc(dst);
name = mtypename(mtype, iscall);
if (name) {
printf(" %s(%d)", name, mtype);
} else {
printf(" %d", mtype);
}
if (iscall && printparams) {
#define IDENT(x, y) if (mtype == x) printparam(#y, &msg->y, sizeof(msg->y));
#include "extracted-mfield.h"
#undef IDENT
}
printf("\n");
}
#endif
#if DEBUG_IPCSTATS
#define IPCPROCS (NR_PROCS+1) /* number of slots we need */
#define KERNELIPC NR_PROCS /* slot number to use for kernel calls */
static int messages[IPCPROCS][IPCPROCS];
#define PRINTSLOTS 20
static struct {
int src, dst, messages;
} winners[PRINTSLOTS];
static int total, goodslots;
static void printstats(int ticks)
{
int i;
for(i = 0; i < goodslots; i++) {
#define name(s) (s == KERNELIPC ? "kernel" : proc_addr(s)->p_name)
#define persec(n) (system_hz*(n)/ticks)
char *n1 = name(winners[i].src),
*n2 = name(winners[i].dst);
printf("%2d. %8s -> %8s %9d/s\n",
i, n1, n2, persec(winners[i].messages));
}
printf("total %d/s\n", persec(total));
}
static void sortstats(void)
{
/* Print top message senders/receivers. */
int src_slot, dst_slot;
total = goodslots = 0;
for(src_slot = 0; src_slot < IPCPROCS; src_slot++) {
for(dst_slot = 0; dst_slot < IPCPROCS; dst_slot++) {
int w = PRINTSLOTS, rem,
n = messages[src_slot][dst_slot];
total += n;
while(w > 0 && n > winners[w-1].messages)
w--;
if(w >= PRINTSLOTS) continue;
/* This combination has beaten the current winners
* and should be inserted at position 'w.'
*/
rem = PRINTSLOTS-w-1;
assert(rem >= 0);
assert(rem < PRINTSLOTS);
if(rem > 0) {
assert(w+1 <= PRINTSLOTS-1);
assert(w >= 0);
memmove(&winners[w+1], &winners[w],
rem*sizeof(winners[0]));
}
winners[w].src = src_slot;
winners[w].dst = dst_slot;
winners[w].messages = n;
if(goodslots < PRINTSLOTS) goodslots++;
}
}
}
#define proc2slot(p, s) { \
if(p) { s = p->p_nr; } \
else { s = KERNELIPC; } \
assert(s >= 0 && s < IPCPROCS); \
}
static void statmsg(message *msg, struct proc *srcp, struct proc *dstp)
{
int src, dst, now, secs, dt;
static int lastprint;
/* Stat message. */
assert(src);
proc2slot(srcp, src);
proc2slot(dstp, dst);
messages[src][dst]++;
/* Print something? */
now = get_monotonic();
dt = now - lastprint;
secs = dt/system_hz;
if(secs >= 30) {
memset(winners, 0, sizeof(winners));
sortstats();
printstats(dt);
memset(messages, 0, sizeof(messages));
lastprint = now;
}
}
#endif
#if DEBUG_IPC_HOOK
void hook_ipc_msgkcall(message *msg, struct proc *proc)
{
#if DEBUG_DUMPIPC
printmsg(msg, proc, NULL, 'k', 1, 1);
#endif
}
void hook_ipc_msgkresult(message *msg, struct proc *proc)
{
#if DEBUG_DUMPIPC
printmsg(msg, NULL, proc, 'k', 0, 0);
#endif
#if DEBUG_IPCSTATS
statmsg(msg, proc, NULL);
#endif
}
void hook_ipc_msgrecv(message *msg, struct proc *src, struct proc *dst)
{
#if DEBUG_DUMPIPC
printmsg(msg, src, dst, 'r', src->p_misc_flags & MF_REPLY_PEND, 0);
#endif
#if DEBUG_IPCSTATS
statmsg(msg, src, dst);
#endif
}
void hook_ipc_msgsend(message *msg, struct proc *src, struct proc *dst)
{
#if DEBUG_DUMPIPC
printmsg(msg, src, dst, 's', src->p_misc_flags & MF_REPLY_PEND, 1);
#endif
}
void hook_ipc_clear(struct proc *p)
{
#if DEBUG_IPCSTATS
int slot, i;
assert(p);
proc2slot(p, slot);
for(i = 0; i < IPCPROCS; i++)
messages[slot][i] = messages[i][slot] = 0;
#endif
}
#endif