minix/minix/fs/mfs/read.c
David van Moolenbroek 0314acfb2d libminixfs: miscellaneous API cleanup
Mostly removal of unused parameters from calls.

Change-Id: I0eb7b568265d1669492d958e78b9e69d7cf6fc05
2015-08-14 18:39:00 +00:00

573 lines
18 KiB
C

#include "fs.h"
#include <stddef.h>
#include <string.h>
#include <stdlib.h>
#include "buf.h"
#include "inode.h"
#include "super.h"
#include <sys/param.h>
#include <sys/dirent.h>
#include <assert.h>
static struct buf *rahead(struct inode *rip, block_t baseblock, u64_t
position, unsigned bytes_ahead);
static int rw_chunk(struct inode *rip, u64_t position, unsigned off,
size_t chunk, unsigned left, int call, struct fsdriver_data *data,
unsigned buf_off, unsigned int block_size, int *completed);
/*===========================================================================*
* fs_readwrite *
*===========================================================================*/
ssize_t fs_readwrite(ino_t ino_nr, struct fsdriver_data *data, size_t nrbytes,
off_t position, int call)
{
int r;
int regular;
off_t f_size, bytes_left;
size_t off, cum_io, block_size, chunk;
mode_t mode_word;
int completed;
struct inode *rip;
r = OK;
/* Find the inode referred */
if ((rip = find_inode(fs_dev, ino_nr)) == NULL)
return(EINVAL);
mode_word = rip->i_mode & I_TYPE;
regular = (mode_word == I_REGULAR);
/* Determine blocksize */
block_size = rip->i_sp->s_block_size;
f_size = rip->i_size;
lmfs_reset_rdwt_err();
/* If this is file i/o, check we can write */
if (call == FSC_WRITE) {
if(rip->i_sp->s_rd_only)
return EROFS;
/* Check in advance to see if file will grow too big. */
if (position > (off_t) (rip->i_sp->s_max_size - nrbytes))
return(EFBIG);
/* Clear the zone containing present EOF if hole about
* to be created. This is necessary because all unwritten
* blocks prior to the EOF must read as zeros.
*/
if(position > f_size) clear_zone(rip, f_size, 0);
}
cum_io = 0;
/* Split the transfer into chunks that don't span two blocks. */
while (nrbytes > 0) {
off = ((unsigned int) position) % block_size; /* offset in blk*/
chunk = block_size - off;
if (chunk > nrbytes)
chunk = nrbytes;
if (call != FSC_WRITE) {
bytes_left = f_size - position;
if (position >= f_size) break; /* we are beyond EOF */
if (chunk > (unsigned int) bytes_left) chunk = bytes_left;
}
/* Read or write 'chunk' bytes. */
r = rw_chunk(rip, ((u64_t)((unsigned long)position)), off, chunk,
nrbytes, call, data, cum_io, block_size, &completed);
if (r != OK) break; /* EOF reached */
if (lmfs_rdwt_err() < 0) break;
/* Update counters and pointers. */
nrbytes -= chunk; /* bytes yet to be read */
cum_io += chunk; /* bytes read so far */
position += (off_t) chunk; /* position within the file */
}
/* On write, update file size and access time. */
if (call == FSC_WRITE) {
if (regular || mode_word == I_DIRECTORY) {
if (position > f_size) rip->i_size = position;
}
}
rip->i_seek = NO_SEEK;
if (lmfs_rdwt_err() != OK) r = lmfs_rdwt_err(); /* check for disk error */
if (lmfs_rdwt_err() == END_OF_FILE) r = OK;
if (r != OK)
return r;
/* even on a ROFS, writing to a device node on it is fine,
* just don't update the inode stats for it. And dito for reading.
*/
if (!rip->i_sp->s_rd_only) {
if (call == FSC_READ) rip->i_update |= ATIME;
if (call == FSC_WRITE) rip->i_update |= CTIME | MTIME;
IN_MARKDIRTY(rip); /* inode is thus now dirty */
}
return cum_io;
}
/*===========================================================================*
* rw_chunk *
*===========================================================================*/
static int rw_chunk(rip, position, off, chunk, left, call, data, buf_off,
block_size, completed)
register struct inode *rip; /* pointer to inode for file to be rd/wr */
u64_t position; /* position within file to read or write */
unsigned off; /* off within the current block */
size_t chunk; /* number of bytes to read or write */
unsigned left; /* max number of bytes wanted after position */
int call; /* FSC_READ, FSC_WRITE, or FSC_PEEK */
struct fsdriver_data *data; /* structure for (remote) user buffer */
unsigned buf_off; /* offset in user buffer */
unsigned int block_size; /* block size of FS operating on */
int *completed; /* number of bytes copied */
{
/* Read or write (part of) a block. */
register struct buf *bp = NULL;
register int r = OK;
int n;
block_t b;
dev_t dev;
ino_t ino = VMC_NO_INODE;
u64_t ino_off = rounddown(position, block_size);
*completed = 0;
if (ex64hi(position) != 0)
panic("rw_chunk: position too high");
b = read_map(rip, (off_t) ex64lo(position), 0);
dev = rip->i_dev;
ino = rip->i_num;
assert(ino != VMC_NO_INODE);
if (b == NO_BLOCK) {
if (call == FSC_READ) {
/* Reading from a nonexistent block. Must read as all zeros.*/
r = fsdriver_zero(data, buf_off, chunk);
if(r != OK) {
printf("MFS: fsdriver_zero failed\n");
}
return r;
} else if (call == FSC_PEEK) {
/* Peeking a nonexistent block. Report to VM. */
lmfs_zero_block_ino(dev, ino, ino_off);
return OK;
} else {
/* Writing to a nonexistent block.
* Create and enter in inode.
*/
if ((bp = new_block(rip, (off_t) ex64lo(position))) == NULL)
return(err_code);
}
} else if (call != FSC_WRITE) {
/* Read and read ahead if convenient. */
bp = rahead(rip, b, position, left);
} else {
/* Normally an existing block to be partially overwritten is first read
* in. However, a full block need not be read in. If it is already in
* the cache, acquire it, otherwise just acquire a free buffer.
*/
n = (chunk == block_size ? NO_READ : NORMAL);
if (off == 0 && (off_t) ex64lo(position) >= rip->i_size)
n = NO_READ;
assert(ino != VMC_NO_INODE);
assert(!(ino_off % block_size));
bp = lmfs_get_block_ino(dev, b, n, ino, ino_off);
}
/* In all cases, bp now points to a valid buffer. */
assert(bp != NULL);
if (call == FSC_WRITE && chunk != block_size &&
(off_t) ex64lo(position) >= rip->i_size && off == 0) {
zero_block(bp);
}
if (call == FSC_READ) {
/* Copy a chunk from the block buffer to user space. */
r = fsdriver_copyout(data, buf_off, b_data(bp)+off, chunk);
} else if (call == FSC_WRITE) {
/* Copy a chunk from user space to the block buffer. */
r = fsdriver_copyin(data, buf_off, b_data(bp)+off, chunk);
MARKDIRTY(bp);
}
put_block(bp);
return(r);
}
/*===========================================================================*
* read_map *
*===========================================================================*/
block_t read_map(rip, position, opportunistic)
register struct inode *rip; /* ptr to inode to map from */
off_t position; /* position in file whose blk wanted */
int opportunistic; /* if nonzero, only use cache for metadata */
{
/* Given an inode and a position within the corresponding file, locate the
* block (not zone) number in which that position is to be found and return it.
*/
struct buf *bp;
zone_t z;
int scale, boff, index, zind;
unsigned int dzones, nr_indirects;
block_t b;
unsigned long excess, zone, block_pos;
int iomode;
iomode = opportunistic ? PEEK : NORMAL;
scale = rip->i_sp->s_log_zone_size; /* for block-zone conversion */
block_pos = position/rip->i_sp->s_block_size; /* relative blk # in file */
zone = block_pos >> scale; /* position's zone */
boff = (int) (block_pos - (zone << scale) ); /* relative blk # within zone */
dzones = rip->i_ndzones;
nr_indirects = rip->i_nindirs;
/* Is 'position' to be found in the inode itself? */
if (zone < dzones) {
zind = (int) zone; /* index should be an int */
z = rip->i_zone[zind];
if (z == NO_ZONE) return(NO_BLOCK);
b = (block_t) ((z << scale) + boff);
return(b);
}
/* It is not in the inode, so it must be single or double indirect. */
excess = zone - dzones; /* first Vx_NR_DZONES don't count */
if (excess < nr_indirects) {
/* 'position' can be located via the single indirect block. */
z = rip->i_zone[dzones];
} else {
/* 'position' can be located via the double indirect block. */
if ( (z = rip->i_zone[dzones+1]) == NO_ZONE) return(NO_BLOCK);
excess -= nr_indirects; /* single indir doesn't count*/
b = (block_t) z << scale;
ASSERT(rip->i_dev != NO_DEV);
index = (int) (excess/nr_indirects);
if ((unsigned int) index > rip->i_nindirs)
return(NO_BLOCK); /* Can't go beyond double indirects */
bp = get_block(rip->i_dev, b, iomode); /* get double indirect block */
if (bp == NULL)
return NO_BLOCK; /* peeking failed */
ASSERT(lmfs_dev(bp) != NO_DEV);
ASSERT(lmfs_dev(bp) == rip->i_dev);
z = rd_indir(bp, index); /* z= zone for single*/
put_block(bp); /* release double ind block */
excess = excess % nr_indirects; /* index into single ind blk */
}
/* 'z' is zone num for single indirect block; 'excess' is index into it. */
if (z == NO_ZONE) return(NO_BLOCK);
b = (block_t) z << scale; /* b is blk # for single ind */
bp = get_block(rip->i_dev, b, iomode); /* get single indirect block */
if (bp == NULL)
return NO_BLOCK; /* peeking failed */
z = rd_indir(bp, (int) excess); /* get block pointed to */
put_block(bp); /* release single indir blk */
if (z == NO_ZONE) return(NO_BLOCK);
b = (block_t) ((z << scale) + boff);
return(b);
}
struct buf *get_block_map(register struct inode *rip, u64_t position)
{
block_t b = read_map(rip, position, 0); /* get block number */
int block_size = get_block_size(rip->i_dev);
if(b == NO_BLOCK)
return NULL;
position = rounddown(position, block_size);
assert(rip->i_num != VMC_NO_INODE);
return lmfs_get_block_ino(rip->i_dev, b, NORMAL, rip->i_num, position);
}
/*===========================================================================*
* rd_indir *
*===========================================================================*/
zone_t rd_indir(bp, index)
struct buf *bp; /* pointer to indirect block */
int index; /* index into *bp */
{
struct super_block *sp;
zone_t zone;
if(bp == NULL)
panic("rd_indir() on NULL");
sp = get_super(lmfs_dev(bp)); /* need super block to find file sys type */
/* read a zone from an indirect block */
assert(sp->s_version == V3);
zone = (zone_t) conv4(sp->s_native, (long) b_v2_ind(bp)[index]);
if (zone != NO_ZONE &&
(zone < (zone_t) sp->s_firstdatazone || zone >= sp->s_zones)) {
printf("Illegal zone number %ld in indirect block, index %d\n",
(long) zone, index);
panic("check file system");
}
return(zone);
}
/*===========================================================================*
* rahead *
*===========================================================================*/
static struct buf *rahead(rip, baseblock, position, bytes_ahead)
register struct inode *rip; /* pointer to inode for file to be read */
block_t baseblock; /* block at current position */
u64_t position; /* position within file */
unsigned bytes_ahead; /* bytes beyond position for immediate use */
{
/* Fetch a block from the cache or the device. If a physical read is
* required, prefetch as many more blocks as convenient into the cache.
* This usually covers bytes_ahead and is at least BLOCKS_MINIMUM.
* The device driver may decide it knows better and stop reading at a
* cylinder boundary (or after an error). Rw_scattered() puts an optional
* flag on all reads to allow this.
*/
/* Minimum number of blocks to prefetch. */
int nr_bufs = lmfs_nr_bufs();
# define BLOCKS_MINIMUM (nr_bufs < 50 ? 18 : 32)
int scale, read_q_size;
unsigned int blocks_ahead, fragment, block_size;
block_t block, blocks_left;
off_t ind1_pos;
dev_t dev;
struct buf *bp;
static unsigned int readqsize = 0;
static struct buf **read_q;
u64_t position_running;
int inuse_before = lmfs_bufs_in_use();
if(readqsize != nr_bufs) {
if(readqsize > 0) {
assert(read_q != NULL);
free(read_q);
}
if(!(read_q = malloc(sizeof(read_q[0])*nr_bufs)))
panic("couldn't allocate read_q");
readqsize = nr_bufs;
}
dev = rip->i_dev;
assert(dev != NO_DEV);
block_size = get_block_size(dev);
block = baseblock;
fragment = position % block_size;
position -= fragment;
position_running = position;
bytes_ahead += fragment;
blocks_ahead = (bytes_ahead + block_size - 1) / block_size;
bp = lmfs_get_block_ino(dev, block, PREFETCH, rip->i_num, position);
assert(bp != NULL);
assert(bp->lmfs_count > 0);
if (lmfs_dev(bp) != NO_DEV) return(bp);
/* The best guess for the number of blocks to prefetch: A lot.
* It is impossible to tell what the device looks like, so we don't even
* try to guess the geometry, but leave it to the driver.
*
* The floppy driver can read a full track with no rotational delay, and it
* avoids reading partial tracks if it can, so handing it enough buffers to
* read two tracks is perfect. (Two, because some diskette types have
* an odd number of sectors per track, so a block may span tracks.)
*
* The disk drivers don't try to be smart. With todays disks it is
* impossible to tell what the real geometry looks like, so it is best to
* read as much as you can. With luck the caching on the drive allows
* for a little time to start the next read.
*
* The current solution below is a bit of a hack, it just reads blocks from
* the current file position hoping that more of the file can be found. A
* better solution must look at the already available zone pointers and
* indirect blocks (but don't call read_map!).
*/
blocks_left = (block_t) (rip->i_size-ex64lo(position)+(block_size-1)) /
block_size;
/* Go for the first indirect block if we are in its neighborhood. */
scale = rip->i_sp->s_log_zone_size;
ind1_pos = (off_t) rip->i_ndzones * (block_size << scale);
if ((off_t) ex64lo(position) <= ind1_pos && rip->i_size > ind1_pos) {
blocks_ahead++;
blocks_left++;
}
/* No more than the maximum request. */
if (blocks_ahead > NR_IOREQS) blocks_ahead = NR_IOREQS;
/* Read at least the minimum number of blocks, but not after a seek. */
if (blocks_ahead < BLOCKS_MINIMUM && rip->i_seek == NO_SEEK)
blocks_ahead = BLOCKS_MINIMUM;
/* Can't go past end of file. */
if (blocks_ahead > blocks_left) blocks_ahead = blocks_left;
read_q_size = 0;
/* Acquire block buffers. */
for (;;) {
block_t thisblock;
assert(bp->lmfs_count > 0);
read_q[read_q_size++] = bp;
if (--blocks_ahead == 0) break;
/* Don't trash the cache, leave 4 free. */
if (lmfs_bufs_in_use() >= nr_bufs - 4) break;
block++;
position_running += block_size;
thisblock = read_map(rip, (off_t) ex64lo(position_running), 1);
if (thisblock != NO_BLOCK) {
bp = lmfs_get_block_ino(dev, thisblock, PREFETCH, rip->i_num,
position_running);
} else {
bp = get_block(dev, block, PREFETCH);
}
assert(bp);
assert(bp->lmfs_count > 0);
if (lmfs_dev(bp) != NO_DEV) {
/* Oops, block already in the cache, get out. */
put_block(bp);
break;
}
}
lmfs_rw_scattered(dev, read_q, read_q_size, READING);
assert(inuse_before == lmfs_bufs_in_use());
return(lmfs_get_block_ino(dev, baseblock, NORMAL, rip->i_num, position));
}
/*===========================================================================*
* fs_getdents *
*===========================================================================*/
ssize_t fs_getdents(ino_t ino_nr, struct fsdriver_data *data, size_t bytes,
off_t *posp)
{
#define GETDENTS_BUFSIZE (sizeof(struct dirent) + MFS_NAME_MAX + 1)
#define GETDENTS_ENTRIES 8
static char getdents_buf[GETDENTS_BUFSIZE * GETDENTS_ENTRIES];
struct fsdriver_dentry fsdentry;
struct inode *rip, *entrip;
int r, done;
unsigned int block_size, len, type;
off_t pos, off, block_pos, new_pos, ent_pos;
struct buf *bp;
struct direct *dp;
char *cp;
/* Check whether the position is properly aligned */
pos = *posp;
if( (unsigned int) pos % DIR_ENTRY_SIZE)
return(ENOENT);
if( (rip = get_inode(fs_dev, ino_nr)) == NULL)
return(EINVAL);
block_size = rip->i_sp->s_block_size;
off = (pos % block_size); /* Offset in block */
block_pos = pos - off;
done = FALSE; /* Stop processing directory blocks when done is set */
fsdriver_dentry_init(&fsdentry, data, bytes, getdents_buf,
sizeof(getdents_buf));
/* The default position for the next request is EOF. If the user's buffer
* fills up before EOF, new_pos will be modified. */
new_pos = rip->i_size;
r = 0;
for(; block_pos < rip->i_size; block_pos += block_size) {
/* Since directories don't have holes, 'bp' cannot be NULL. */
bp = get_block_map(rip, block_pos); /* get a dir block */
assert(bp != NULL);
/* Search a directory block. */
if (block_pos < pos)
dp = &b_dir(bp)[off / DIR_ENTRY_SIZE];
else
dp = &b_dir(bp)[0];
for (; dp < &b_dir(bp)[NR_DIR_ENTRIES(block_size)]; dp++) {
if (dp->mfs_d_ino == 0)
continue; /* Entry is not in use */
/* Compute the length of the name */
cp = memchr(dp->mfs_d_name, '\0', sizeof(dp->mfs_d_name));
if (cp == NULL)
len = sizeof(dp->mfs_d_name);
else
len = cp - (dp->mfs_d_name);
/* Need the position of this entry in the directory */
ent_pos = block_pos + ((char *) dp - (char *) bp->data);
/* We also need(?) the file type of the target inode. */
if (!(entrip = get_inode(fs_dev, (ino_t) dp->mfs_d_ino)))
panic("unexpected get_inode failure");
type = IFTODT(entrip->i_mode);
put_inode(entrip);
/* MFS does not store file types in its directory entries, and
* fetching the mode from the inode is seriously expensive.
* Userland should always be prepared to receive DT_UNKNOWN.
*/
r = fsdriver_dentry_add(&fsdentry, (ino_t) dp->mfs_d_ino,
dp->mfs_d_name, len, type);
/* If the user buffer is full, or an error occurred, stop. */
if (r <= 0) {
done = TRUE;
/* Record the position of this entry, it is the
* starting point of the next request (unless the
* postion is modified with lseek).
*/
new_pos = ent_pos;
break;
}
}
put_block(bp);
if (done)
break;
}
if (r >= 0 && (r = fsdriver_dentry_finish(&fsdentry)) >= 0) {
*posp = new_pos;
if(!rip->i_sp->s_rd_only) {
rip->i_update |= ATIME;
IN_MARKDIRTY(rip);
}
}
put_inode(rip); /* release the inode */
return(r);
}