minix/minix/tests/test74.c
David van Moolenbroek 7c48de6cc4 Resolve more warnings
Change-Id: Ibc1b7f7cd45ad7295285e59c6ce55888266fece8
2015-09-23 12:04:58 +00:00

846 lines
23 KiB
C

/* Test 74 - mmap functionality & regression test.
*
* This test tests some basic functionality of mmap, and also some
* cases that are quite complex for the system to handle.
*
* Memory pages are generally made available on demand. Memory copying
* is done by the kernel. As the kernel may encounter pagefaults in
* legitimate memory ranges (e.g. pages that aren't mapped; pages that
* are mapped RO as they are COW), it cooperates with VM to make the
* mappings and let the copy succeed transparently.
*
* With file-mapped ranges this can result in a deadlock, if care is
* not taken, as the copy might be request by VFS or an FS. This test
* triggers as many of these states as possible to ensure they are
* successful or (where appropriate) fail gracefully, i.e. without
* deadlock.
*
* To do this, system calls are done with source or target buffers with
* missing or readonly mappings, both anonymous and file-mapped. The
* cache is flushed before mmap() so that we know the mappings should
* not be present on mmap() time. Then e.g. a read() or write() is
* executed with that buffer as target. This triggers a FS copying
* to or from a missing range that it itself is needed to map in first.
* VFS detects this, requests VM to map in the pages, which does so with
* the help of another VFS thread and the FS, and then re-issues the
* request to the FS.
*
* Another case is the VFS itself does such a copy. This is actually
* unusual as filenames are already faulted in by the requesting process
* in libc by strlen(). select() allows such a case, however, so this
* is tested too. We are satisfied if the call completes.
*/
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <sys/ioc_memory.h>
#include <sys/param.h>
#include <minix/paths.h>
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <dirent.h>
#include "common.h"
#include "testcache.h"
int max_error = 0; /* make all e()'s fatal */
int
dowriteblock(int b, int blocksize, u32_t seed, char *data)
{
u64_t offset;
int fd;
get_fd_offset(b, blocksize, &offset, &fd);
if(pwrite(fd, data, blocksize, offset) < blocksize) {
perror("pwrite");
return -1;
}
return blocksize;
}
int
readblock(int b, int blocksize, u32_t seed, char *data)
{
u64_t offset;
int fd;
char *mmapdata;
int pread_first = random() % 2;
get_fd_offset(b, blocksize, &offset, &fd);
if(pread_first) {
if(pread(fd, data, blocksize, offset) < blocksize) {
perror("pread");
return -1;
}
}
if((mmapdata = mmap(NULL, blocksize, PROT_READ, MAP_PRIVATE | MAP_FILE,
fd, offset)) == MAP_FAILED) {
perror("mmap");
return -1;
}
if(!pread_first) {
if(pread(fd, data, blocksize, offset) < blocksize) {
perror("pread");
return -1;
}
}
if(memcmp(mmapdata, data, blocksize)) {
fprintf(stderr, "readblock: mmap, pread mismatch\n");
return -1;
}
if(munmap(mmapdata, blocksize) < 0) {
perror("munmap");
return -1;
}
return blocksize;
}
void testend(void) { }
static void do_read(void *buf, int fd, int writable)
{
ssize_t ret;
size_t n = PAGE_SIZE;
struct stat sb;
if(fstat(fd, &sb) < 0) e(1);
if(S_ISDIR(sb.st_mode)) return;
ret = read(fd, buf, n);
/* if the buffer is writable, it should succeed */
if(writable) { if(ret != n) e(3); return; }
/* if the buffer is not writable, it should fail with EFAULT */
if(ret >= 0) e(4);
if(errno != EFAULT) e(5);
}
static void do_write(void *buf, int fd, int writable)
{
size_t n = PAGE_SIZE;
struct stat sb;
if(fstat(fd, &sb) < 0) e(1);
if(S_ISDIR(sb.st_mode)) return;
if(write(fd, buf, n) != n) e(3);
}
static void do_stat(void *buf, int fd, int writable)
{
int r;
r = fstat(fd, (struct stat *) buf);
/* should succeed if buf is writable */
if(writable) { if(r < 0) e(3); return; }
/* should fail with EFAULT if buf is not */
if(r >= 0) e(4);
if(errno != EFAULT) e(5);
}
static void do_getdents(void *buf, int fd, int writable)
{
struct stat sb;
int r;
if(fstat(fd, &sb) < 0) e(1);
if(!S_ISDIR(sb.st_mode)) return; /* OK */
r = getdents(fd, buf, PAGE_SIZE);
if(writable) { if(r < 0) e(3); return; }
/* should fail with EFAULT if buf is not */
if(r >= 0) e(4);
if(errno != EFAULT) e(5);
}
static void do_readlink1(void *buf, int fd, int writable)
{
char target[200];
/* the system call just has to fail gracefully */
readlink(buf, target, sizeof(target));
}
#define NODENAME "a"
#define TARGETNAME "b"
static void do_readlink2(void *buf, int fd, int writable)
{
ssize_t rl;
unlink(NODENAME);
if(symlink(TARGETNAME, NODENAME) < 0) e(1);
rl=readlink(NODENAME, buf, sizeof(buf));
/* if buf is writable, it should succeed, with a certain result */
if(writable) {
if(rl < 0) e(2);
((char *) buf)[rl] = '\0';
if(strcmp(buf, TARGETNAME)) {
fprintf(stderr, "readlink: expected %s, got %s\n",
TARGETNAME, (char *)buf);
e(3);
}
return;
}
/* if buf is not writable, it should fail with EFAULT */
if(rl >= 0) e(4);
if(errno != EFAULT) e(5);
}
static void do_symlink1(void *buf, int fd, int writable)
{
int r;
/* the system call just has to fail gracefully */
r = symlink(buf, NODENAME);
}
static void do_symlink2(void *buf, int fd, int writable)
{
int r;
/* the system call just has to fail gracefully */
r = symlink(NODENAME, buf);
}
static void do_open(void *buf, int fd, int writable)
{
int r;
/* the system call just has to fail gracefully */
r = open(buf, O_RDONLY);
if(r >= 0) close(r);
}
static void do_select1(void *buf, int fd, int writable)
{
int r;
struct timeval timeout = { 0, 200000 }; /* 0.2 sec */
/* the system call just has to fail gracefully */
r = select(1, buf, NULL, NULL, &timeout);
}
static void do_select2(void *buf, int fd, int writable)
{
int r;
struct timeval timeout = { 0, 200000 }; /* 1 sec */
/* the system call just has to fail gracefully */
r = select(1, NULL, buf, NULL, &timeout);
}
static void do_select3(void *buf, int fd, int writable)
{
int r;
struct timeval timeout = { 0, 200000 }; /* 1 sec */
/* the system call just has to fail gracefully */
r = select(1, NULL, NULL, buf, &timeout);
}
static void fillfile(int fd, int size)
{
char *buf = malloc(size);
if(size < 1 || size % PAGE_SIZE || !buf) { e(1); }
memset(buf, 'A', size);
buf[50] = '\0'; /* so it can be used as a filename arg */
buf[size-1] = '\0';
if(write(fd, buf, size) != size) { e(2); }
if(lseek(fd, SEEK_SET, 0) < 0) { e(3); }
free(buf);
}
static void make_buffers(int size,
int *ret_fd_rw, int *ret_fd_ro,
void **filebuf_rw, void **filebuf_ro, void **anonbuf)
{
char fn_rw[] = "testfile_rw.XXXXXX", fn_ro[] = "testfile_ro.XXXXXX";
*ret_fd_rw = mkstemp(fn_rw);
*ret_fd_ro = mkstemp(fn_ro);
if(size < 1 || size % PAGE_SIZE) { e(2); }
if(*ret_fd_rw < 0) { e(1); }
if(*ret_fd_ro < 0) { e(1); }
fillfile(*ret_fd_rw, size);
fillfile(*ret_fd_ro, size);
if(fcntl(*ret_fd_rw, F_FLUSH_FS_CACHE) < 0) { e(4); }
if(fcntl(*ret_fd_ro, F_FLUSH_FS_CACHE) < 0) { e(4); }
if((*filebuf_rw = mmap(0, size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_FILE, *ret_fd_rw, 0)) == MAP_FAILED) {
e(5);
quit();
}
if((*filebuf_ro = mmap(0, size, PROT_READ,
MAP_PRIVATE | MAP_FILE, *ret_fd_ro, 0)) == MAP_FAILED) {
e(5);
quit();
}
if((*anonbuf = mmap(0, size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, -1, 0)) == MAP_FAILED) {
e(6);
quit();
}
if(unlink(fn_rw) < 0) { e(12); }
if(unlink(fn_ro) < 0) { e(12); }
}
static void forget_buffers(void *buf1, void *buf2, void *buf3, int fd1, int fd2, int size)
{
if(munmap(buf1, size) < 0) { e(1); }
if(munmap(buf2, size) < 0) { e(2); }
if(munmap(buf3, size) < 0) { e(2); }
if(fcntl(fd1, F_FLUSH_FS_CACHE) < 0) { e(3); }
if(fcntl(fd2, F_FLUSH_FS_CACHE) < 0) { e(3); }
if(close(fd1) < 0) { e(4); }
if(close(fd2) < 0) { e(4); }
}
#define NEXPERIMENTS 12
struct {
void (*do_operation)(void * buf, int fd, int writable);
} experiments[NEXPERIMENTS] = {
{ do_read },
{ do_write },
{ do_stat },
{ do_getdents },
{ do_readlink1 },
{ do_readlink2 },
{ do_symlink1 },
{ do_symlink2 },
{ do_open, },
{ do_select1 },
{ do_select2 },
{ do_select3 },
};
static void test_memory_types_vs_operations(void)
{
#define NFDS 4
#define BUFSIZE (10 * PAGE_SIZE)
int exp, fds[NFDS];
int f = 0, size = BUFSIZE;
/* open some test fd's */
#define OPEN(fn, mode) { assert(f >= 0 && f < NFDS); \
fds[f] = open(fn, mode); if(fds[f] < 0) { e(2); } f++; }
OPEN("regular", O_RDWR | O_CREAT);
OPEN(".", O_RDONLY);
OPEN("/dev/ram", O_RDWR);
OPEN("/dev/zero", O_RDWR);
/* make sure the regular file has plenty of size to play with */
fillfile(fds[0], BUFSIZE);
/* and the ramdisk too */
if(ioctl(fds[2], MIOCRAMSIZE, &size) < 0) { e(3); }
for(exp = 0; exp < NEXPERIMENTS; exp++) {
for(f = 0; f < NFDS; f++) {
void *anonmem, *filemem_rw, *filemem_ro;
int buffd_rw, buffd_ro;
make_buffers(BUFSIZE, &buffd_rw, &buffd_ro,
&filemem_rw, &filemem_ro, &anonmem);
if(lseek(fds[f], 0, SEEK_SET) != 0) { e(10); }
experiments[exp].do_operation(anonmem, fds[f], 1);
if(lseek(fds[f], 0, SEEK_SET) != 0) { e(11); }
experiments[exp].do_operation(filemem_rw, fds[f], 1);
if(lseek(fds[f], 0, SEEK_SET) != 0) { e(12); }
experiments[exp].do_operation(filemem_ro, fds[f], 0);
forget_buffers(filemem_rw, filemem_ro, anonmem, buffd_rw, buffd_ro, BUFSIZE);
}
}
}
static void basic_regression(void)
{
int fd, fd1, fd2;
ssize_t rb, wr;
char buf[PAGE_SIZE*2];
void *block, *block1, *block2;
#define BLOCKSIZE (PAGE_SIZE*10)
block = mmap(0, BLOCKSIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, -1, 0);
if(block == MAP_FAILED) { e(1); }
memset(block, 0, BLOCKSIZE);
/* shrink from bottom */
munmap(block, PAGE_SIZE);
/* Next test: use a system call write() to access a block of
* unavailable file-mapped memory.
*
* This is a thorny corner case to make succeed transparently
* because
* (1) it is a filesystem that is doing the memory access
* (copy from the constblock1 range in this process to the
* FS) but is also the FS needed to satisfy the range if it
* isn't in the cache.
* (2) there are two separate memory regions involved, requiring
* separate VFS requests from VM to properly satisfy, requiring
* some complex state to be kept.
*/
fd1 = open("../testsh1", O_RDONLY);
fd2 = open("../testsh2", O_RDONLY);
if(fd1 < 0 || fd2 < 0) { e(2); }
/* just check that we can't mmap() a file writable */
if(mmap(NULL, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FILE, fd1, 0) != MAP_FAILED) {
e(1);
}
/* check that we can mmap() a file MAP_SHARED readonly */
if(mmap(NULL, PAGE_SIZE, PROT_READ, MAP_SHARED | MAP_FILE, fd1, 0) == MAP_FAILED) {
e(1);
}
/* clear cache of files before mmap so pages won't be present already */
if(fcntl(fd1, F_FLUSH_FS_CACHE) < 0) { e(1); }
if(fcntl(fd2, F_FLUSH_FS_CACHE) < 0) { e(1); }
#define LOCATION1 (void *) 0x90000000
#define LOCATION2 ((void *)((char *)LOCATION1 + PAGE_SIZE))
block1 = mmap(LOCATION1, PAGE_SIZE, PROT_READ, MAP_PRIVATE | MAP_FILE, fd1, 0);
if(block1 == MAP_FAILED) { e(4); }
if(block1 != LOCATION1) { e(5); }
block2 = mmap(LOCATION2, PAGE_SIZE, PROT_READ, MAP_PRIVATE | MAP_FILE, fd2, 0);
if(block2 == MAP_FAILED) { e(10); }
if(block2 != LOCATION2) { e(11); }
unlink("testfile");
fd = open("testfile", O_CREAT | O_RDWR);
if(fd < 0) { e(15); }
/* write() using the mmap()ped memory as buffer */
if((wr=write(fd, LOCATION1, sizeof(buf))) != sizeof(buf)) {
fprintf(stderr, "wrote %zd bytes instead of %zd\n",
wr, sizeof(buf));
e(20);
quit();
}
/* verify written contents */
if((rb=pread(fd, buf, sizeof(buf), 0)) != sizeof(buf)) {
if(rb < 0) perror("pread");
fprintf(stderr, "wrote %zd bytes\n", wr);
fprintf(stderr, "read %zd bytes instead of %zd\n",
rb, sizeof(buf));
e(21);
quit();
}
if(memcmp(buf, LOCATION1, sizeof(buf))) {
e(22);
quit();
}
close(fd);
close(fd1);
close(fd2);
}
/*
* Test mmap on none-dev file systems - file systems that do not have a buffer
* cache and therefore have to fake mmap support. We use procfs as target.
* The idea is that while we succeed in mapping in /proc/uptime, we also get
* a new uptime value every time we map in the page -- VM must not cache it.
*/
static void
nonedev_regression(void)
{
int fd, fd2;
char *buf;
unsigned long uptime1, uptime2, uptime3;
subtest++;
if ((fd = open(_PATH_PROC "uptime", O_RDONLY)) < 0) e(1);
buf = mmap(NULL, 4096, PROT_READ, MAP_PRIVATE | MAP_FILE, fd, 0);
if (buf == MAP_FAILED) e(2);
if (buf[4095] != 0) e(3);
if ((uptime1 = atoi(buf)) == 0) e(4);
if (munmap(buf, 4096) != 0) e(5);
sleep(2);
buf = mmap(NULL, 4096, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_FILE,
fd, 0);
if (buf == MAP_FAILED) e(6);
if (buf[4095] != 0) e(7);
if ((uptime2 = atoi(buf)) == 0) e(8);
if (uptime1 == uptime2) e(9);
if (munmap(buf, 4096) != 0) e(10);
sleep(2);
buf = mmap(NULL, 4096, PROT_READ, MAP_SHARED | MAP_FILE, fd, 0);
if (buf == MAP_FAILED) e(11);
if (buf[4095] != 0) e(12);
if ((uptime3 = atoi(buf)) == 0) e(13);
if (uptime1 == uptime3) e(14);
if (uptime2 == uptime3) e(15);
if (munmap(buf, 4096) != 0) e(16);
/* Also test page faults not incurred by the process itself. */
if ((fd2 = open("testfile", O_CREAT | O_TRUNC | O_WRONLY)) < 0) e(17);
if (unlink("testfile") != 0) e(18);
buf = mmap(NULL, 4096, PROT_READ, MAP_SHARED | MAP_FILE, fd, 0);
if (buf == MAP_FAILED) e(19);
if (write(fd2, buf, 10) != 10) e(20);
if (munmap(buf, 4096) != 0) e(21);
close(fd2);
close(fd);
}
/*
* Regression test for a nasty memory-mapped file corruption bug, which is not
* easy to reproduce but, before being solved, did occur in practice every once
* in a while. The executive summary is that through stale inode associations,
* VM could end up using an old block to satisfy a memory mapping.
*
* This subtest relies on a number of assumptions regarding allocation and
* reuse of inode numbers and blocks. These assumptions hold for MFS but
* possibly no other file system. However, if the subtest's assumptions are
* not met, it will simply succeed.
*/
static void
corruption_regression(void)
{
char *ptr, *buf;
struct statvfs sf;
struct stat st;
size_t block_size;
off_t size;
int fd, fd2;
subtest = 1;
if (statvfs(".", &sf) != 0) e(0);
block_size = sf.f_bsize;
if ((buf = malloc(block_size * 2)) == NULL) e(0);
/*
* We first need a file that is just large enough that it requires the
* allocation of a metadata block - an indirect block - when more data
* is written to it. This is fileA. We keep it open throughout the
* test so we can unlink it immediately.
*/
if ((fd = open("fileA", O_CREAT | O_TRUNC | O_WRONLY, 0600)) == -1)
e(0);
if (unlink("fileA") != 0) e(0);
/*
* Write to fileA until its next block requires the allocation of an
* additional metadata block - an indirect block.
*/
size = 0;
memset(buf, 'A', block_size);
do {
/*
* Repeatedly write an extra block, until the file consists of
* more blocks than just the file data.
*/
if (write(fd, buf, block_size) != block_size) e(0);
size += block_size;
if (size >= block_size * 64) {
/*
* It doesn't look like this is going to work.
* Skip this subtest altogether.
*/
if (close(fd) != 0) e(0);
free(buf);
return;
}
if (fstat(fd, &st) != 0) e(0);
} while (st.st_blocks * 512 == size);
/* Once we get there, go one step back by truncating by one block. */
size -= block_size; /* for MFS, size will end up being 7*block_size */
if (ftruncate(fd, size) != 0) e(0);
/*
* Create a first file, fileB, and write two blocks to it. FileB's
* blocks are going to end up in the secondary VM cache, associated to
* fileB's inode number (and two different offsets within the file).
* The block cache does not know about files getting deleted, so we can
* unlink fileB immediately after creating it. So far so good.
*/
if ((fd2 = open("fileB", O_CREAT | O_TRUNC | O_WRONLY, 0600)) == -1)
e(0);
if (unlink("fileB") != 0) e(0);
memset(buf, 'B', block_size * 2);
if (write(fd2, buf, block_size * 2) != block_size * 2) e(0);
if (close(fd2) != 0) e(0);
/*
* Write one extra block to fileA, hoping that this causes allocation
* of a metadata block as well. This is why we tried to get fileA to
* the point that one more block would also require the allocation of a
* metadata block. Our intent is to recycle the blocks that we just
* allocated and freed for fileB. As of writing, for the metadata
* block, this will *not* break the association with fileB's inode,
* which by itself is not a problem, yet crucial to reproducing
* the actual problem a bit later. Note that the test does not rely on
* whether the file system allocates the data block or the metadata
* block first, although it does need reverse deallocation (see below).
*/
memset(buf, 'A', block_size);
if (write(fd, buf, block_size) != block_size) e(0);
/*
* Create a new file, fileC, which recycles the inode number of fileB,
* but uses two new blocks to store its data. These new blocks will
* get associated to the fileB inode number, and one of them will
* thereby eclipse (but not remove) the association of fileA's metadata
* block to the inode of fileB.
*/
if ((fd2 = open("fileC", O_CREAT | O_TRUNC | O_WRONLY, 0600)) == -1)
e(0);
if (unlink("fileC") != 0) e(0);
memset(buf, 'C', block_size * 2);
if (write(fd2, buf, block_size * 2) != block_size * 2) e(0);
if (close(fd2) != 0) e(0);
/*
* Free up the extra fileA blocks for reallocation, in particular
* including the metadata block. Again, this will not affect the
* contents of the VM cache in any way. FileA's metadata block remains
* cached in VM, with the inode association for fileB's block.
*/
if (ftruncate(fd, size) != 0) e(0);
/*
* Now create yet one more file, fileD, which also recycles the inode
* number of fileB and fileC. Write two blocks to it; these blocks
* should recycle the blocks we just freed. One of these is fileA's
* just-freed metadata block, for which the new inode association will
* be equal to the inode association it had already (as long as blocks
* are freed in reverse order of their allocation, which happens to be
* the case for MFS). As a result, the block is not updated in the VM
* cache, and VM will therefore continue to see the inode association
* for the corresponding block of fileC which is still in the VM cache.
*/
if ((fd2 = open("fileD", O_CREAT | O_TRUNC | O_RDWR, 0600)) == -1)
e(0);
memset(buf, 'D', block_size * 2);
if (write(fd2, buf, block_size * 2) != block_size * 2) e(0);
ptr = mmap(NULL, block_size * 2, PROT_READ, MAP_FILE, fd2, 0);
if (ptr == MAP_FAILED) e(0);
/*
* Finally, we can test the issue. Since fileC's block is still the
* block for which VM has the corresponding inode association, VM will
* now find and map in fileC's block, instead of fileD's block. The
* result is that we get a memory-mapped area with stale contents,
* different from those of the underlying file.
*/
if (memcmp(buf, ptr, block_size * 2)) e(0);
/* Clean up. */
if (munmap(ptr, block_size * 2) != 0) e(0);
if (close(fd2) != 0) e(0);
if (unlink("fileD") != 0) e(0);
if (close(fd) != 0) e(0);
free(buf);
}
/*
* Test mmap on file holes. Holes are a tricky case with the current VM
* implementation. There are two main issues. First, whenever a file data
* block is freed, VM has to know about this, or it will later blindly map in
* the old data. This, file systems explicitly tell VM (through libminixfs)
* whenever a block is freed, upon which VM cache forgets the block. Second,
* blocks are accessed primarily by a <dev,dev_off> pair and only additionally
* by a <ino,ino_off> pair. Holes have no meaningful value for the first pair,
* but do need to be registered in VM with the second pair, or accessing them
* will generate a segmentation fault. Thus, file systems explicitly tell VM
* (through libminixfs) when a hole is being peeked; libminixfs currently fakes
* a device offset to make this work.
*/
static void
hole_regression(void)
{
struct statvfs st;
size_t block_size;
char *buf;
int fd;
if (statvfs(".", &st) < 0) e(1);
block_size = st.f_bsize;
if ((buf = malloc(block_size)) == NULL) e(2);
if ((fd = open("testfile", O_CREAT | O_TRUNC | O_RDWR)) < 0) e(3);
if (unlink("testfile") != 0) e(4);
/*
* We perform the test twice, in a not-so-perfect attempt to test the
* two aspects independently. The first part immediately creates a
* hole, and is supposed to fail only if reporting holes to VM does not
* work. However, it may also fail if a page for a previous file with
* the same inode number as "testfile" is still in the VM cache.
*/
memset(buf, 12, block_size);
if (write(fd, buf, block_size) != block_size) e(5);
if (lseek(fd, block_size * 2, SEEK_CUR) != block_size * 3) e(6);
memset(buf, 78, block_size);
if (write(fd, buf, block_size) != block_size) e(7);
free(buf);
if ((buf = mmap(NULL, 4 * block_size, PROT_READ, MAP_SHARED | MAP_FILE,
fd, 0)) == MAP_FAILED) e(8);
if (buf[0 * block_size] != 12 || buf[1 * block_size - 1] != 12) e(9);
if (buf[1 * block_size] != 0 || buf[2 * block_size - 1] != 0) e(10);
if (buf[2 * block_size] != 0 || buf[3 * block_size - 1] != 0) e(11);
if (buf[3 * block_size] != 78 || buf[4 * block_size - 1] != 78) e(12);
if (munmap(buf, 4 * block_size) != 0) e(13);
/*
* The second part first creates file content and only turns part of it
* into a file hole, thus ensuring that VM has previously cached pages
* for the blocks that are freed. The test will fail if VM keeps the
* pages around in its cache.
*/
if ((buf = malloc(block_size)) == NULL) e(14);
if (lseek(fd, block_size, SEEK_SET) != block_size) e(15);
memset(buf, 34, block_size);
if (write(fd, buf, block_size) != block_size) e(16);
memset(buf, 56, block_size);
if (write(fd, buf, block_size) != block_size) e(17);
if (ftruncate(fd, block_size) != 0) e(18);
if (lseek(fd, block_size * 3, SEEK_SET) != block_size * 3) e(19);
memset(buf, 78, block_size);
if (write(fd, buf, block_size) != block_size) e(20);
free(buf);
if ((buf = mmap(NULL, 4 * block_size, PROT_READ, MAP_SHARED | MAP_FILE,
fd, 0)) == MAP_FAILED) e(21);
if (buf[0 * block_size] != 12 || buf[1 * block_size - 1] != 12) e(22);
if (buf[1 * block_size] != 0 || buf[2 * block_size - 1] != 0) e(23);
if (buf[2 * block_size] != 0 || buf[3 * block_size - 1] != 0) e(24);
if (buf[3 * block_size] != 78 || buf[4 * block_size - 1] != 78) e(25);
if (munmap(buf, 4 * block_size) != 0) e(26);
close(fd);
}
int
main(int argc, char *argv[])
{
int i, iter = 2;
start(74);
basic_regression();
nonedev_regression();
/*
* Any inode or block allocation happening concurrently with this
* subtest will make the subtest succeed without testing the actual
* issue. Thus, repeat the subtest a fair number of times.
*/
for (i = 0; i < 10; i++)
corruption_regression();
hole_regression();
test_memory_types_vs_operations();
makefiles(MAXFILES);
cachequiet(!bigflag);
if(bigflag) iter = 3;
/* Try various combinations working set sizes
* and block sizes in order to specifically
* target the primary cache, then primary+secondary
* cache, then primary+secondary cache+secondary
* cache eviction.
*/
if(dotest(PAGE_SIZE, 100, iter)) e(5);
if(dotest(PAGE_SIZE*2, 100, iter)) e(2);
if(dotest(PAGE_SIZE*3, 100, iter)) e(3);
if(dotest(PAGE_SIZE, 20000, iter)) e(5);
if(bigflag) {
u32_t totalmem, freemem, cachedmem;
if(dotest(PAGE_SIZE, 150000, iter)) e(5);
getmem(&totalmem, &freemem, &cachedmem);
if(dotest(PAGE_SIZE, totalmem*1.5, iter)) e(6);
}
quit();
return 0;
}