//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Expr nodes as LLVM code. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CGCXXABI.h" #include "CGCall.h" #include "CGDebugInfo.h" #include "CGObjCRuntime.h" #include "CGRecordLayout.h" #include "CodeGenModule.h" #include "TargetInfo.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/Frontend/CodeGenOptions.h" #include "llvm/ADT/Hashing.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/Support/ConvertUTF.h" using namespace clang; using namespace CodeGen; //===--------------------------------------------------------------------===// // Miscellaneous Helper Methods //===--------------------------------------------------------------------===// llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { unsigned addressSpace = cast(value->getType())->getAddressSpace(); llvm::PointerType *destType = Int8PtrTy; if (addressSpace) destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); if (value->getType() == destType) return value; return Builder.CreateBitCast(value, destType); } /// CreateTempAlloca - This creates a alloca and inserts it into the entry /// block. llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, const Twine &Name) { if (!Builder.isNamePreserving()) return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); } void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, llvm::Value *Init) { llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); llvm::BasicBlock *Block = AllocaInsertPt->getParent(); Block->getInstList().insertAfter(&*AllocaInsertPt, Store); } llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); // FIXME: Should we prefer the preferred type alignment here? CharUnits Align = getContext().getTypeAlignInChars(Ty); Alloc->setAlignment(Align.getQuantity()); return Alloc; } llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) { llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); // FIXME: Should we prefer the preferred type alignment here? CharUnits Align = getContext().getTypeAlignInChars(Ty); Alloc->setAlignment(Align.getQuantity()); return Alloc; } /// EvaluateExprAsBool - Perform the usual unary conversions on the specified /// expression and compare the result against zero, returning an Int1Ty value. llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { if (const MemberPointerType *MPT = E->getType()->getAs()) { llvm::Value *MemPtr = EmitScalarExpr(E); return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); } QualType BoolTy = getContext().BoolTy; if (!E->getType()->isAnyComplexType()) return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); } /// EmitIgnoredExpr - Emit code to compute the specified expression, /// ignoring the result. void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { if (E->isRValue()) return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); // Just emit it as an l-value and drop the result. EmitLValue(E); } /// EmitAnyExpr - Emit code to compute the specified expression which /// can have any type. The result is returned as an RValue struct. /// If this is an aggregate expression, AggSlot indicates where the /// result should be returned. RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot aggSlot, bool ignoreResult) { switch (getEvaluationKind(E->getType())) { case TEK_Scalar: return RValue::get(EmitScalarExpr(E, ignoreResult)); case TEK_Complex: return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); case TEK_Aggregate: if (!ignoreResult && aggSlot.isIgnored()) aggSlot = CreateAggTemp(E->getType(), "agg-temp"); EmitAggExpr(E, aggSlot); return aggSlot.asRValue(); } llvm_unreachable("bad evaluation kind"); } /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will /// always be accessible even if no aggregate location is provided. RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { AggValueSlot AggSlot = AggValueSlot::ignored(); if (hasAggregateEvaluationKind(E->getType())) AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); return EmitAnyExpr(E, AggSlot); } /// EmitAnyExprToMem - Evaluate an expression into a given memory /// location. void CodeGenFunction::EmitAnyExprToMem(const Expr *E, llvm::Value *Location, Qualifiers Quals, bool IsInit) { // FIXME: This function should take an LValue as an argument. switch (getEvaluationKind(E->getType())) { case TEK_Complex: EmitComplexExprIntoLValue(E, MakeNaturalAlignAddrLValue(Location, E->getType()), /*isInit*/ false); return; case TEK_Aggregate: { CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, AggValueSlot::IsDestructed_t(IsInit), AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsAliased_t(!IsInit))); return; } case TEK_Scalar: { RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); LValue LV = MakeAddrLValue(Location, E->getType()); EmitStoreThroughLValue(RV, LV); return; } } llvm_unreachable("bad evaluation kind"); } static void pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, const Expr *E, llvm::Value *ReferenceTemporary) { // Objective-C++ ARC: // If we are binding a reference to a temporary that has ownership, we // need to perform retain/release operations on the temporary. // // FIXME: This should be looking at E, not M. if (CGF.getLangOpts().ObjCAutoRefCount && M->getType()->isObjCLifetimeType()) { QualType ObjCARCReferenceLifetimeType = M->getType(); switch (Qualifiers::ObjCLifetime Lifetime = ObjCARCReferenceLifetimeType.getObjCLifetime()) { case Qualifiers::OCL_None: case Qualifiers::OCL_ExplicitNone: // Carry on to normal cleanup handling. break; case Qualifiers::OCL_Autoreleasing: // Nothing to do; cleaned up by an autorelease pool. return; case Qualifiers::OCL_Strong: case Qualifiers::OCL_Weak: switch (StorageDuration Duration = M->getStorageDuration()) { case SD_Static: // Note: we intentionally do not register a cleanup to release // the object on program termination. return; case SD_Thread: // FIXME: We should probably register a cleanup in this case. return; case SD_Automatic: case SD_FullExpression: assert(!ObjCARCReferenceLifetimeType->isArrayType()); CodeGenFunction::Destroyer *Destroy; CleanupKind CleanupKind; if (Lifetime == Qualifiers::OCL_Strong) { const ValueDecl *VD = M->getExtendingDecl(); bool Precise = VD && isa(VD) && VD->hasAttr(); CleanupKind = CGF.getARCCleanupKind(); Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise : &CodeGenFunction::destroyARCStrongImprecise; } else { // __weak objects always get EH cleanups; otherwise, exceptions // could cause really nasty crashes instead of mere leaks. CleanupKind = NormalAndEHCleanup; Destroy = &CodeGenFunction::destroyARCWeak; } if (Duration == SD_FullExpression) CGF.pushDestroy(CleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, *Destroy, CleanupKind & EHCleanup); else CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, *Destroy, CleanupKind & EHCleanup); return; case SD_Dynamic: llvm_unreachable("temporary cannot have dynamic storage duration"); } llvm_unreachable("unknown storage duration"); } } CXXDestructorDecl *ReferenceTemporaryDtor = 0; if (const RecordType *RT = E->getType()->getBaseElementTypeUnsafe()->getAs()) { // Get the destructor for the reference temporary. CXXRecordDecl *ClassDecl = cast(RT->getDecl()); if (!ClassDecl->hasTrivialDestructor()) ReferenceTemporaryDtor = ClassDecl->getDestructor(); } if (!ReferenceTemporaryDtor) return; // Call the destructor for the temporary. switch (M->getStorageDuration()) { case SD_Static: case SD_Thread: { llvm::Constant *CleanupFn; llvm::Constant *CleanupArg; if (E->getType()->isArrayType()) { CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( cast(ReferenceTemporary), E->getType(), CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, dyn_cast_or_null(M->getExtendingDecl())); CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); } else { CleanupFn = CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); CleanupArg = cast(ReferenceTemporary); } CGF.CGM.getCXXABI().registerGlobalDtor( CGF, *cast(M->getExtendingDecl()), CleanupFn, CleanupArg); break; } case SD_FullExpression: CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions); break; case SD_Automatic: CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions); break; case SD_Dynamic: llvm_unreachable("temporary cannot have dynamic storage duration"); } } static llvm::Value * createReferenceTemporary(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, const Expr *Inner) { switch (M->getStorageDuration()) { case SD_FullExpression: case SD_Automatic: return CGF.CreateMemTemp(Inner->getType(), "ref.tmp"); case SD_Thread: case SD_Static: return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); case SD_Dynamic: llvm_unreachable("temporary can't have dynamic storage duration"); } llvm_unreachable("unknown storage duration"); } LValue CodeGenFunction::EmitMaterializeTemporaryExpr( const MaterializeTemporaryExpr *M) { const Expr *E = M->GetTemporaryExpr(); if (getLangOpts().ObjCAutoRefCount && M->getType()->isObjCLifetimeType() && M->getType().getObjCLifetime() != Qualifiers::OCL_None && M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) { // FIXME: Fold this into the general case below. llvm::Value *Object = createReferenceTemporary(*this, M, E); LValue RefTempDst = MakeAddrLValue(Object, M->getType()); if (llvm::GlobalVariable *Var = dyn_cast(Object)) { // We should not have emitted the initializer for this temporary as a // constant. assert(!Var->hasInitializer()); Var->setInitializer(CGM.EmitNullConstant(E->getType())); } EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); pushTemporaryCleanup(*this, M, E, Object); return RefTempDst; } SmallVector CommaLHSs; SmallVector Adjustments; E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I) EmitIgnoredExpr(CommaLHSs[I]); if (const OpaqueValueExpr *opaque = dyn_cast(E)) { if (opaque->getType()->isRecordType()) { assert(Adjustments.empty()); return EmitOpaqueValueLValue(opaque); } } // Create and initialize the reference temporary. llvm::Value *Object = createReferenceTemporary(*this, M, E); if (llvm::GlobalVariable *Var = dyn_cast(Object)) { // If the temporary is a global and has a constant initializer, we may // have already initialized it. if (!Var->hasInitializer()) { Var->setInitializer(CGM.EmitNullConstant(E->getType())); EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); } } else { EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); } pushTemporaryCleanup(*this, M, E, Object); // Perform derived-to-base casts and/or field accesses, to get from the // temporary object we created (and, potentially, for which we extended // the lifetime) to the subobject we're binding the reference to. for (unsigned I = Adjustments.size(); I != 0; --I) { SubobjectAdjustment &Adjustment = Adjustments[I-1]; switch (Adjustment.Kind) { case SubobjectAdjustment::DerivedToBaseAdjustment: Object = GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, Adjustment.DerivedToBase.BasePath->path_begin(), Adjustment.DerivedToBase.BasePath->path_end(), /*NullCheckValue=*/ false); break; case SubobjectAdjustment::FieldAdjustment: { LValue LV = MakeAddrLValue(Object, E->getType()); LV = EmitLValueForField(LV, Adjustment.Field); assert(LV.isSimple() && "materialized temporary field is not a simple lvalue"); Object = LV.getAddress(); break; } case SubobjectAdjustment::MemberPointerAdjustment: { llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); Object = CGM.getCXXABI().EmitMemberDataPointerAddress( *this, Object, Ptr, Adjustment.Ptr.MPT); break; } } } return MakeAddrLValue(Object, M->getType()); } RValue CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { // Emit the expression as an lvalue. LValue LV = EmitLValue(E); assert(LV.isSimple()); llvm::Value *Value = LV.getAddress(); if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) { // C++11 [dcl.ref]p5 (as amended by core issue 453): // If a glvalue to which a reference is directly bound designates neither // an existing object or function of an appropriate type nor a region of // storage of suitable size and alignment to contain an object of the // reference's type, the behavior is undefined. QualType Ty = E->getType(); EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); } return RValue::get(Value); } /// getAccessedFieldNo - Given an encoded value and a result number, return the /// input field number being accessed. unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts) { return cast(Elts->getAggregateElement(Idx)) ->getZExtValue(); } /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, llvm::Value *High) { llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); llvm::Value *K47 = Builder.getInt64(47); llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); return Builder.CreateMul(B1, KMul); } void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *Address, QualType Ty, CharUnits Alignment) { if (!SanitizePerformTypeCheck) return; // Don't check pointers outside the default address space. The null check // isn't correct, the object-size check isn't supported by LLVM, and we can't // communicate the addresses to the runtime handler for the vptr check. if (Address->getType()->getPointerAddressSpace()) return; llvm::Value *Cond = 0; llvm::BasicBlock *Done = 0; if (SanOpts->Null) { // The glvalue must not be an empty glvalue. Cond = Builder.CreateICmpNE( Address, llvm::Constant::getNullValue(Address->getType())); if (TCK == TCK_DowncastPointer) { // When performing a pointer downcast, it's OK if the value is null. // Skip the remaining checks in that case. Done = createBasicBlock("null"); llvm::BasicBlock *Rest = createBasicBlock("not.null"); Builder.CreateCondBr(Cond, Rest, Done); EmitBlock(Rest); Cond = 0; } } if (SanOpts->ObjectSize && !Ty->isIncompleteType()) { uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); // The glvalue must refer to a large enough storage region. // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation // to check this. // FIXME: Get object address space llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); llvm::Value *Min = Builder.getFalse(); llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy); llvm::Value *LargeEnough = Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min), llvm::ConstantInt::get(IntPtrTy, Size)); Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough; } uint64_t AlignVal = 0; if (SanOpts->Alignment) { AlignVal = Alignment.getQuantity(); if (!Ty->isIncompleteType() && !AlignVal) AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); // The glvalue must be suitably aligned. if (AlignVal) { llvm::Value *Align = Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); llvm::Value *Aligned = Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned; } } if (Cond) { llvm::Constant *StaticData[] = { EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), llvm::ConstantInt::get(SizeTy, AlignVal), llvm::ConstantInt::get(Int8Ty, TCK) }; EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable); } // If possible, check that the vptr indicates that there is a subobject of // type Ty at offset zero within this object. // // C++11 [basic.life]p5,6: // [For storage which does not refer to an object within its lifetime] // The program has undefined behavior if: // -- the [pointer or glvalue] is used to access a non-static data member // or call a non-static member function CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); if (SanOpts->Vptr && (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) && RD && RD->hasDefinition() && RD->isDynamicClass()) { // Compute a hash of the mangled name of the type. // // FIXME: This is not guaranteed to be deterministic! Move to a // fingerprinting mechanism once LLVM provides one. For the time // being the implementation happens to be deterministic. SmallString<64> MangledName; llvm::raw_svector_ostream Out(MangledName); CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), Out); llvm::hash_code TypeHash = hash_value(Out.str()); // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy); llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); Hash = Builder.CreateTrunc(Hash, IntPtrTy); // Look the hash up in our cache. const int CacheSize = 128; llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, "__ubsan_vptr_type_cache"); llvm::Value *Slot = Builder.CreateAnd(Hash, llvm::ConstantInt::get(IntPtrTy, CacheSize-1)); llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; llvm::Value *CacheVal = Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices)); // If the hash isn't in the cache, call a runtime handler to perform the // hard work of checking whether the vptr is for an object of the right // type. This will either fill in the cache and return, or produce a // diagnostic. llvm::Constant *StaticData[] = { EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), llvm::ConstantInt::get(Int8Ty, TCK) }; llvm::Value *DynamicData[] = { Address, Hash }; EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash), "dynamic_type_cache_miss", StaticData, DynamicData, CRK_AlwaysRecoverable); } if (Done) { Builder.CreateBr(Done); EmitBlock(Done); } } /// Determine whether this expression refers to a flexible array member in a /// struct. We disable array bounds checks for such members. static bool isFlexibleArrayMemberExpr(const Expr *E) { // For compatibility with existing code, we treat arrays of length 0 or // 1 as flexible array members. const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); if (const ConstantArrayType *CAT = dyn_cast(AT)) { if (CAT->getSize().ugt(1)) return false; } else if (!isa(AT)) return false; E = E->IgnoreParens(); // A flexible array member must be the last member in the class. if (const MemberExpr *ME = dyn_cast(E)) { // FIXME: If the base type of the member expr is not FD->getParent(), // this should not be treated as a flexible array member access. if (const FieldDecl *FD = dyn_cast(ME->getMemberDecl())) { RecordDecl::field_iterator FI( DeclContext::decl_iterator(const_cast(FD))); return ++FI == FD->getParent()->field_end(); } } return false; } /// If Base is known to point to the start of an array, return the length of /// that array. Return 0 if the length cannot be determined. static llvm::Value *getArrayIndexingBound( CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { // For the vector indexing extension, the bound is the number of elements. if (const VectorType *VT = Base->getType()->getAs()) { IndexedType = Base->getType(); return CGF.Builder.getInt32(VT->getNumElements()); } Base = Base->IgnoreParens(); if (const CastExpr *CE = dyn_cast(Base)) { if (CE->getCastKind() == CK_ArrayToPointerDecay && !isFlexibleArrayMemberExpr(CE->getSubExpr())) { IndexedType = CE->getSubExpr()->getType(); const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); if (const ConstantArrayType *CAT = dyn_cast(AT)) return CGF.Builder.getInt(CAT->getSize()); else if (const VariableArrayType *VAT = dyn_cast(AT)) return CGF.getVLASize(VAT).first; } } return 0; } void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, QualType IndexType, bool Accessed) { assert(SanOpts->ArrayBounds && "should not be called unless adding bounds checks"); QualType IndexedType; llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); if (!Bound) return; bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); llvm::Constant *StaticData[] = { EmitCheckSourceLocation(E->getExprLoc()), EmitCheckTypeDescriptor(IndexedType), EmitCheckTypeDescriptor(IndexType) }; llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) : Builder.CreateICmpULE(IndexVal, BoundVal); EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable); } CodeGenFunction::ComplexPairTy CodeGenFunction:: EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, bool isInc, bool isPre) { ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); llvm::Value *NextVal; if (isa(InVal.first->getType())) { uint64_t AmountVal = isInc ? 1 : -1; NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); // Add the inc/dec to the real part. NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); } else { QualType ElemTy = E->getType()->getAs()->getElementType(); llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); if (!isInc) FVal.changeSign(); NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); // Add the inc/dec to the real part. NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); } ComplexPairTy IncVal(NextVal, InVal.second); // Store the updated result through the lvalue. EmitStoreOfComplex(IncVal, LV, /*init*/ false); // If this is a postinc, return the value read from memory, otherwise use the // updated value. return isPre ? IncVal : InVal; } //===----------------------------------------------------------------------===// // LValue Expression Emission //===----------------------------------------------------------------------===// RValue CodeGenFunction::GetUndefRValue(QualType Ty) { if (Ty->isVoidType()) return RValue::get(0); switch (getEvaluationKind(Ty)) { case TEK_Complex: { llvm::Type *EltTy = ConvertType(Ty->castAs()->getElementType()); llvm::Value *U = llvm::UndefValue::get(EltTy); return RValue::getComplex(std::make_pair(U, U)); } // If this is a use of an undefined aggregate type, the aggregate must have an // identifiable address. Just because the contents of the value are undefined // doesn't mean that the address can't be taken and compared. case TEK_Aggregate: { llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); return RValue::getAggregate(DestPtr); } case TEK_Scalar: return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); } llvm_unreachable("bad evaluation kind"); } RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, const char *Name) { ErrorUnsupported(E, Name); return GetUndefRValue(E->getType()); } LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, const char *Name) { ErrorUnsupported(E, Name); llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); } LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { LValue LV; if (SanOpts->ArrayBounds && isa(E)) LV = EmitArraySubscriptExpr(cast(E), /*Accessed*/true); else LV = EmitLValue(E); if (!isa(E) && !LV.isBitField() && LV.isSimple()) EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), E->getType(), LV.getAlignment()); return LV; } /// EmitLValue - Emit code to compute a designator that specifies the location /// of the expression. /// /// This can return one of two things: a simple address or a bitfield reference. /// In either case, the LLVM Value* in the LValue structure is guaranteed to be /// an LLVM pointer type. /// /// If this returns a bitfield reference, nothing about the pointee type of the /// LLVM value is known: For example, it may not be a pointer to an integer. /// /// If this returns a normal address, and if the lvalue's C type is fixed size, /// this method guarantees that the returned pointer type will point to an LLVM /// type of the same size of the lvalue's type. If the lvalue has a variable /// length type, this is not possible. /// LValue CodeGenFunction::EmitLValue(const Expr *E) { switch (E->getStmtClass()) { default: return EmitUnsupportedLValue(E, "l-value expression"); case Expr::ObjCPropertyRefExprClass: llvm_unreachable("cannot emit a property reference directly"); case Expr::ObjCSelectorExprClass: return EmitObjCSelectorLValue(cast(E)); case Expr::ObjCIsaExprClass: return EmitObjCIsaExpr(cast(E)); case Expr::BinaryOperatorClass: return EmitBinaryOperatorLValue(cast(E)); case Expr::CompoundAssignOperatorClass: if (!E->getType()->isAnyComplexType()) return EmitCompoundAssignmentLValue(cast(E)); return EmitComplexCompoundAssignmentLValue(cast(E)); case Expr::CallExprClass: case Expr::CXXMemberCallExprClass: case Expr::CXXOperatorCallExprClass: case Expr::UserDefinedLiteralClass: return EmitCallExprLValue(cast(E)); case Expr::VAArgExprClass: return EmitVAArgExprLValue(cast(E)); case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast(E)); case Expr::ParenExprClass: return EmitLValue(cast(E)->getSubExpr()); case Expr::GenericSelectionExprClass: return EmitLValue(cast(E)->getResultExpr()); case Expr::PredefinedExprClass: return EmitPredefinedLValue(cast(E)); case Expr::StringLiteralClass: return EmitStringLiteralLValue(cast(E)); case Expr::ObjCEncodeExprClass: return EmitObjCEncodeExprLValue(cast(E)); case Expr::PseudoObjectExprClass: return EmitPseudoObjectLValue(cast(E)); case Expr::InitListExprClass: return EmitInitListLValue(cast(E)); case Expr::CXXTemporaryObjectExprClass: case Expr::CXXConstructExprClass: return EmitCXXConstructLValue(cast(E)); case Expr::CXXBindTemporaryExprClass: return EmitCXXBindTemporaryLValue(cast(E)); case Expr::CXXUuidofExprClass: return EmitCXXUuidofLValue(cast(E)); case Expr::LambdaExprClass: return EmitLambdaLValue(cast(E)); case Expr::ExprWithCleanupsClass: { const ExprWithCleanups *cleanups = cast(E); enterFullExpression(cleanups); RunCleanupsScope Scope(*this); return EmitLValue(cleanups->getSubExpr()); } case Expr::CXXDefaultArgExprClass: return EmitLValue(cast(E)->getExpr()); case Expr::CXXDefaultInitExprClass: { CXXDefaultInitExprScope Scope(*this); return EmitLValue(cast(E)->getExpr()); } case Expr::CXXTypeidExprClass: return EmitCXXTypeidLValue(cast(E)); case Expr::ObjCMessageExprClass: return EmitObjCMessageExprLValue(cast(E)); case Expr::ObjCIvarRefExprClass: return EmitObjCIvarRefLValue(cast(E)); case Expr::StmtExprClass: return EmitStmtExprLValue(cast(E)); case Expr::UnaryOperatorClass: return EmitUnaryOpLValue(cast(E)); case Expr::ArraySubscriptExprClass: return EmitArraySubscriptExpr(cast(E)); case Expr::ExtVectorElementExprClass: return EmitExtVectorElementExpr(cast(E)); case Expr::MemberExprClass: return EmitMemberExpr(cast(E)); case Expr::CompoundLiteralExprClass: return EmitCompoundLiteralLValue(cast(E)); case Expr::ConditionalOperatorClass: return EmitConditionalOperatorLValue(cast(E)); case Expr::BinaryConditionalOperatorClass: return EmitConditionalOperatorLValue(cast(E)); case Expr::ChooseExprClass: return EmitLValue(cast(E)->getChosenSubExpr()); case Expr::OpaqueValueExprClass: return EmitOpaqueValueLValue(cast(E)); case Expr::SubstNonTypeTemplateParmExprClass: return EmitLValue(cast(E)->getReplacement()); case Expr::ImplicitCastExprClass: case Expr::CStyleCastExprClass: case Expr::CXXFunctionalCastExprClass: case Expr::CXXStaticCastExprClass: case Expr::CXXDynamicCastExprClass: case Expr::CXXReinterpretCastExprClass: case Expr::CXXConstCastExprClass: case Expr::ObjCBridgedCastExprClass: return EmitCastLValue(cast(E)); case Expr::MaterializeTemporaryExprClass: return EmitMaterializeTemporaryExpr(cast(E)); } } /// Given an object of the given canonical type, can we safely copy a /// value out of it based on its initializer? static bool isConstantEmittableObjectType(QualType type) { assert(type.isCanonical()); assert(!type->isReferenceType()); // Must be const-qualified but non-volatile. Qualifiers qs = type.getLocalQualifiers(); if (!qs.hasConst() || qs.hasVolatile()) return false; // Otherwise, all object types satisfy this except C++ classes with // mutable subobjects or non-trivial copy/destroy behavior. if (const RecordType *RT = dyn_cast(type)) if (const CXXRecordDecl *RD = dyn_cast(RT->getDecl())) if (RD->hasMutableFields() || !RD->isTrivial()) return false; return true; } /// Can we constant-emit a load of a reference to a variable of the /// given type? This is different from predicates like /// Decl::isUsableInConstantExpressions because we do want it to apply /// in situations that don't necessarily satisfy the language's rules /// for this (e.g. C++'s ODR-use rules). For example, we want to able /// to do this with const float variables even if those variables /// aren't marked 'constexpr'. enum ConstantEmissionKind { CEK_None, CEK_AsReferenceOnly, CEK_AsValueOrReference, CEK_AsValueOnly }; static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { type = type.getCanonicalType(); if (const ReferenceType *ref = dyn_cast(type)) { if (isConstantEmittableObjectType(ref->getPointeeType())) return CEK_AsValueOrReference; return CEK_AsReferenceOnly; } if (isConstantEmittableObjectType(type)) return CEK_AsValueOnly; return CEK_None; } /// Try to emit a reference to the given value without producing it as /// an l-value. This is actually more than an optimization: we can't /// produce an l-value for variables that we never actually captured /// in a block or lambda, which means const int variables or constexpr /// literals or similar. CodeGenFunction::ConstantEmission CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { ValueDecl *value = refExpr->getDecl(); // The value needs to be an enum constant or a constant variable. ConstantEmissionKind CEK; if (isa(value)) { CEK = CEK_None; } else if (VarDecl *var = dyn_cast(value)) { CEK = checkVarTypeForConstantEmission(var->getType()); } else if (isa(value)) { CEK = CEK_AsValueOnly; } else { CEK = CEK_None; } if (CEK == CEK_None) return ConstantEmission(); Expr::EvalResult result; bool resultIsReference; QualType resultType; // It's best to evaluate all the way as an r-value if that's permitted. if (CEK != CEK_AsReferenceOnly && refExpr->EvaluateAsRValue(result, getContext())) { resultIsReference = false; resultType = refExpr->getType(); // Otherwise, try to evaluate as an l-value. } else if (CEK != CEK_AsValueOnly && refExpr->EvaluateAsLValue(result, getContext())) { resultIsReference = true; resultType = value->getType(); // Failure. } else { return ConstantEmission(); } // In any case, if the initializer has side-effects, abandon ship. if (result.HasSideEffects) return ConstantEmission(); // Emit as a constant. llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); // Make sure we emit a debug reference to the global variable. // This should probably fire even for if (isa(value)) { if (!getContext().DeclMustBeEmitted(cast(value))) EmitDeclRefExprDbgValue(refExpr, C); } else { assert(isa(value)); EmitDeclRefExprDbgValue(refExpr, C); } // If we emitted a reference constant, we need to dereference that. if (resultIsReference) return ConstantEmission::forReference(C); return ConstantEmission::forValue(C); } llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, SourceLocation Loc) { return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), lvalue.getAlignment().getQuantity(), lvalue.getType(), Loc, lvalue.getTBAAInfo(), lvalue.getTBAABaseType(), lvalue.getTBAAOffset()); } static bool hasBooleanRepresentation(QualType Ty) { if (Ty->isBooleanType()) return true; if (const EnumType *ET = Ty->getAs()) return ET->getDecl()->getIntegerType()->isBooleanType(); if (const AtomicType *AT = Ty->getAs()) return hasBooleanRepresentation(AT->getValueType()); return false; } static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, llvm::APInt &Min, llvm::APInt &End, bool StrictEnums) { const EnumType *ET = Ty->getAs(); bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && ET && !ET->getDecl()->isFixed(); bool IsBool = hasBooleanRepresentation(Ty); if (!IsBool && !IsRegularCPlusPlusEnum) return false; if (IsBool) { Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); } else { const EnumDecl *ED = ET->getDecl(); llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); unsigned Bitwidth = LTy->getScalarSizeInBits(); unsigned NumNegativeBits = ED->getNumNegativeBits(); unsigned NumPositiveBits = ED->getNumPositiveBits(); if (NumNegativeBits) { unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); assert(NumBits <= Bitwidth); End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); Min = -End; } else { assert(NumPositiveBits <= Bitwidth); End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; Min = llvm::APInt(Bitwidth, 0); } } return true; } llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { llvm::APInt Min, End; if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums)) return 0; llvm::MDBuilder MDHelper(getLLVMContext()); return MDHelper.createRange(Min, End); } llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, unsigned Alignment, QualType Ty, SourceLocation Loc, llvm::MDNode *TBAAInfo, QualType TBAABaseType, uint64_t TBAAOffset) { // For better performance, handle vector loads differently. if (Ty->isVectorType()) { llvm::Value *V; const llvm::Type *EltTy = cast(Addr->getType())->getElementType(); const llvm::VectorType *VTy = cast(EltTy); // Handle vectors of size 3, like size 4 for better performance. if (VTy->getNumElements() == 3) { // Bitcast to vec4 type. llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 4); llvm::PointerType *ptVec4Ty = llvm::PointerType::get(vec4Ty, (cast( Addr->getType()))->getAddressSpace()); llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, "castToVec4"); // Now load value. llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); // Shuffle vector to get vec3. llvm::Constant *Mask[] = { llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0), llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1), llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2) }; llvm::Value *MaskV = llvm::ConstantVector::get(Mask); V = Builder.CreateShuffleVector(LoadVal, llvm::UndefValue::get(vec4Ty), MaskV, "extractVec"); return EmitFromMemory(V, Ty); } } // Atomic operations have to be done on integral types. if (Ty->isAtomicType()) { LValue lvalue = LValue::MakeAddr(Addr, Ty, CharUnits::fromQuantity(Alignment), getContext(), TBAAInfo); return EmitAtomicLoad(lvalue, Loc).getScalarVal(); } llvm::LoadInst *Load = Builder.CreateLoad(Addr); if (Volatile) Load->setVolatile(true); if (Alignment) Load->setAlignment(Alignment); if (TBAAInfo) { llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, TBAAOffset); if (TBAAPath) CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/); } if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) || (SanOpts->Enum && Ty->getAs())) { llvm::APInt Min, End; if (getRangeForType(*this, Ty, Min, End, true)) { --End; llvm::Value *Check; if (!Min) Check = Builder.CreateICmpULE( Load, llvm::ConstantInt::get(getLLVMContext(), End)); else { llvm::Value *Upper = Builder.CreateICmpSLE( Load, llvm::ConstantInt::get(getLLVMContext(), End)); llvm::Value *Lower = Builder.CreateICmpSGE( Load, llvm::ConstantInt::get(getLLVMContext(), Min)); Check = Builder.CreateAnd(Upper, Lower); } llvm::Constant *StaticArgs[] = { EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty) }; EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load), CRK_Recoverable); } } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); return EmitFromMemory(Load, Ty); } llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { // Bool has a different representation in memory than in registers. if (hasBooleanRepresentation(Ty)) { // This should really always be an i1, but sometimes it's already // an i8, and it's awkward to track those cases down. if (Value->getType()->isIntegerTy(1)) return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && "wrong value rep of bool"); } return Value; } llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { // Bool has a different representation in memory than in registers. if (hasBooleanRepresentation(Ty)) { assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && "wrong value rep of bool"); return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); } return Value; } void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, bool Volatile, unsigned Alignment, QualType Ty, llvm::MDNode *TBAAInfo, bool isInit, QualType TBAABaseType, uint64_t TBAAOffset) { // Handle vectors differently to get better performance. if (Ty->isVectorType()) { llvm::Type *SrcTy = Value->getType(); llvm::VectorType *VecTy = cast(SrcTy); // Handle vec3 special. if (VecTy->getNumElements() == 3) { llvm::LLVMContext &VMContext = getLLVMContext(); // Our source is a vec3, do a shuffle vector to make it a vec4. SmallVector Mask; Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0)); Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1)); Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 2)); Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); llvm::Value *MaskV = llvm::ConstantVector::get(Mask); Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), MaskV, "extractVec"); SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); } llvm::PointerType *DstPtr = cast(Addr->getType()); if (DstPtr->getElementType() != SrcTy) { llvm::Type *MemTy = llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); } } Value = EmitToMemory(Value, Ty); if (Ty->isAtomicType()) { EmitAtomicStore(RValue::get(Value), LValue::MakeAddr(Addr, Ty, CharUnits::fromQuantity(Alignment), getContext(), TBAAInfo), isInit); return; } llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); if (Alignment) Store->setAlignment(Alignment); if (TBAAInfo) { llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, TBAAOffset); if (TBAAPath) CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/); } } void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit) { EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), lvalue.getAlignment().getQuantity(), lvalue.getType(), lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), lvalue.getTBAAOffset()); } /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this /// method emits the address of the lvalue, then loads the result as an rvalue, /// returning the rvalue. RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { if (LV.isObjCWeak()) { // load of a __weak object. llvm::Value *AddrWeakObj = LV.getAddress(); return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, AddrWeakObj)); } if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); Object = EmitObjCConsumeObject(LV.getType(), Object); return RValue::get(Object); } if (LV.isSimple()) { assert(!LV.getType()->isFunctionType()); // Everything needs a load. return RValue::get(EmitLoadOfScalar(LV, Loc)); } if (LV.isVectorElt()) { llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), LV.isVolatileQualified()); Load->setAlignment(LV.getAlignment().getQuantity()); return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), "vecext")); } // If this is a reference to a subset of the elements of a vector, either // shuffle the input or extract/insert them as appropriate. if (LV.isExtVectorElt()) return EmitLoadOfExtVectorElementLValue(LV); assert(LV.isBitField() && "Unknown LValue type!"); return EmitLoadOfBitfieldLValue(LV); } RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { const CGBitFieldInfo &Info = LV.getBitFieldInfo(); // Get the output type. llvm::Type *ResLTy = ConvertType(LV.getType()); llvm::Value *Ptr = LV.getBitFieldAddr(); llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); cast(Val)->setAlignment(Info.StorageAlignment); if (Info.IsSigned) { assert(static_cast(Info.Offset + Info.Size) <= Info.StorageSize); unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; if (HighBits) Val = Builder.CreateShl(Val, HighBits, "bf.shl"); if (Info.Offset + HighBits) Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); } else { if (Info.Offset) Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); if (static_cast(Info.Offset) + Info.Size < Info.StorageSize) Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, Info.Size), "bf.clear"); } Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); return RValue::get(Val); } // If this is a reference to a subset of the elements of a vector, create an // appropriate shufflevector. RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), LV.isVolatileQualified()); Load->setAlignment(LV.getAlignment().getQuantity()); llvm::Value *Vec = Load; const llvm::Constant *Elts = LV.getExtVectorElts(); // If the result of the expression is a non-vector type, we must be extracting // a single element. Just codegen as an extractelement. const VectorType *ExprVT = LV.getType()->getAs(); if (!ExprVT) { unsigned InIdx = getAccessedFieldNo(0, Elts); llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); return RValue::get(Builder.CreateExtractElement(Vec, Elt)); } // Always use shuffle vector to try to retain the original program structure unsigned NumResultElts = ExprVT->getNumElements(); SmallVector Mask; for (unsigned i = 0; i != NumResultElts; ++i) Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); llvm::Value *MaskV = llvm::ConstantVector::get(Mask); Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), MaskV); return RValue::get(Vec); } /// EmitStoreThroughLValue - Store the specified rvalue into the specified /// lvalue, where both are guaranteed to the have the same type, and that type /// is 'Ty'. void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { if (!Dst.isSimple()) { if (Dst.isVectorElt()) { // Read/modify/write the vector, inserting the new element. llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), Dst.isVolatileQualified()); Load->setAlignment(Dst.getAlignment().getQuantity()); llvm::Value *Vec = Load; Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), Dst.getVectorIdx(), "vecins"); llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), Dst.isVolatileQualified()); Store->setAlignment(Dst.getAlignment().getQuantity()); return; } // If this is an update of extended vector elements, insert them as // appropriate. if (Dst.isExtVectorElt()) return EmitStoreThroughExtVectorComponentLValue(Src, Dst); assert(Dst.isBitField() && "Unknown LValue type"); return EmitStoreThroughBitfieldLValue(Src, Dst); } // There's special magic for assigning into an ARC-qualified l-value. if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { switch (Lifetime) { case Qualifiers::OCL_None: llvm_unreachable("present but none"); case Qualifiers::OCL_ExplicitNone: // nothing special break; case Qualifiers::OCL_Strong: EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); return; case Qualifiers::OCL_Weak: EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); return; case Qualifiers::OCL_Autoreleasing: Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), Src.getScalarVal())); // fall into the normal path break; } } if (Dst.isObjCWeak() && !Dst.isNonGC()) { // load of a __weak object. llvm::Value *LvalueDst = Dst.getAddress(); llvm::Value *src = Src.getScalarVal(); CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); return; } if (Dst.isObjCStrong() && !Dst.isNonGC()) { // load of a __strong object. llvm::Value *LvalueDst = Dst.getAddress(); llvm::Value *src = Src.getScalarVal(); if (Dst.isObjCIvar()) { assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); llvm::Type *ResultType = ConvertType(getContext().LongTy); llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); llvm::Value *dst = RHS; RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); llvm::Value *LHS = Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, BytesBetween); } else if (Dst.isGlobalObjCRef()) { CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, Dst.isThreadLocalRef()); } else CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); return; } assert(Src.isScalar() && "Can't emit an agg store with this method"); EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); } void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, llvm::Value **Result) { const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); llvm::Value *Ptr = Dst.getBitFieldAddr(); // Get the source value, truncated to the width of the bit-field. llvm::Value *SrcVal = Src.getScalarVal(); // Cast the source to the storage type and shift it into place. SrcVal = Builder.CreateIntCast(SrcVal, Ptr->getType()->getPointerElementType(), /*IsSigned=*/false); llvm::Value *MaskedVal = SrcVal; // See if there are other bits in the bitfield's storage we'll need to load // and mask together with source before storing. if (Info.StorageSize != Info.Size) { assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); cast(Val)->setAlignment(Info.StorageAlignment); // Mask the source value as needed. if (!hasBooleanRepresentation(Dst.getType())) SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(Info.StorageSize, Info.Size), "bf.value"); MaskedVal = SrcVal; if (Info.Offset) SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); // Mask out the original value. Val = Builder.CreateAnd(Val, ~llvm::APInt::getBitsSet(Info.StorageSize, Info.Offset, Info.Offset + Info.Size), "bf.clear"); // Or together the unchanged values and the source value. SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); } else { assert(Info.Offset == 0); } // Write the new value back out. llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); Store->setAlignment(Info.StorageAlignment); // Return the new value of the bit-field, if requested. if (Result) { llvm::Value *ResultVal = MaskedVal; // Sign extend the value if needed. if (Info.IsSigned) { assert(Info.Size <= Info.StorageSize); unsigned HighBits = Info.StorageSize - Info.Size; if (HighBits) { ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); } } ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, "bf.result.cast"); *Result = EmitFromMemory(ResultVal, Dst.getType()); } } void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst) { // This access turns into a read/modify/write of the vector. Load the input // value now. llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), Dst.isVolatileQualified()); Load->setAlignment(Dst.getAlignment().getQuantity()); llvm::Value *Vec = Load; const llvm::Constant *Elts = Dst.getExtVectorElts(); llvm::Value *SrcVal = Src.getScalarVal(); if (const VectorType *VTy = Dst.getType()->getAs()) { unsigned NumSrcElts = VTy->getNumElements(); unsigned NumDstElts = cast(Vec->getType())->getNumElements(); if (NumDstElts == NumSrcElts) { // Use shuffle vector is the src and destination are the same number of // elements and restore the vector mask since it is on the side it will be // stored. SmallVector Mask(NumDstElts); for (unsigned i = 0; i != NumSrcElts; ++i) Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); llvm::Value *MaskV = llvm::ConstantVector::get(Mask); Vec = Builder.CreateShuffleVector(SrcVal, llvm::UndefValue::get(Vec->getType()), MaskV); } else if (NumDstElts > NumSrcElts) { // Extended the source vector to the same length and then shuffle it // into the destination. // FIXME: since we're shuffling with undef, can we just use the indices // into that? This could be simpler. SmallVector ExtMask; for (unsigned i = 0; i != NumSrcElts; ++i) ExtMask.push_back(Builder.getInt32(i)); ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, llvm::UndefValue::get(SrcVal->getType()), ExtMaskV); // build identity SmallVector Mask; for (unsigned i = 0; i != NumDstElts; ++i) Mask.push_back(Builder.getInt32(i)); // When the vector size is odd and .odd or .hi is used, the last element // of the Elts constant array will be one past the size of the vector. // Ignore the last element here, if it is greater than the mask size. if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) NumSrcElts--; // modify when what gets shuffled in for (unsigned i = 0; i != NumSrcElts; ++i) Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); llvm::Value *MaskV = llvm::ConstantVector::get(Mask); Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); } else { // We should never shorten the vector llvm_unreachable("unexpected shorten vector length"); } } else { // If the Src is a scalar (not a vector) it must be updating one element. unsigned InIdx = getAccessedFieldNo(0, Elts); llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); } llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified()); Store->setAlignment(Dst.getAlignment().getQuantity()); } // setObjCGCLValueClass - sets class of he lvalue for the purpose of // generating write-barries API. It is currently a global, ivar, // or neither. static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, LValue &LV, bool IsMemberAccess=false) { if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) return; if (isa(E)) { QualType ExpTy = E->getType(); if (IsMemberAccess && ExpTy->isPointerType()) { // If ivar is a structure pointer, assigning to field of // this struct follows gcc's behavior and makes it a non-ivar // writer-barrier conservatively. ExpTy = ExpTy->getAs()->getPointeeType(); if (ExpTy->isRecordType()) { LV.setObjCIvar(false); return; } } LV.setObjCIvar(true); ObjCIvarRefExpr *Exp = cast(const_cast(E)); LV.setBaseIvarExp(Exp->getBase()); LV.setObjCArray(E->getType()->isArrayType()); return; } if (const DeclRefExpr *Exp = dyn_cast(E)) { if (const VarDecl *VD = dyn_cast(Exp->getDecl())) { if (VD->hasGlobalStorage()) { LV.setGlobalObjCRef(true); LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); } } LV.setObjCArray(E->getType()->isArrayType()); return; } if (const UnaryOperator *Exp = dyn_cast(E)) { setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); return; } if (const ParenExpr *Exp = dyn_cast(E)) { setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); if (LV.isObjCIvar()) { // If cast is to a structure pointer, follow gcc's behavior and make it // a non-ivar write-barrier. QualType ExpTy = E->getType(); if (ExpTy->isPointerType()) ExpTy = ExpTy->getAs()->getPointeeType(); if (ExpTy->isRecordType()) LV.setObjCIvar(false); } return; } if (const GenericSelectionExpr *Exp = dyn_cast(E)) { setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); return; } if (const ImplicitCastExpr *Exp = dyn_cast(E)) { setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); return; } if (const CStyleCastExpr *Exp = dyn_cast(E)) { setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); return; } if (const ObjCBridgedCastExpr *Exp = dyn_cast(E)) { setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); return; } if (const ArraySubscriptExpr *Exp = dyn_cast(E)) { setObjCGCLValueClass(Ctx, Exp->getBase(), LV); if (LV.isObjCIvar() && !LV.isObjCArray()) // Using array syntax to assigning to what an ivar points to is not // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; LV.setObjCIvar(false); else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) // Using array syntax to assigning to what global points to is not // same as assigning to the global itself. {id *G;} G[i] = 0; LV.setGlobalObjCRef(false); return; } if (const MemberExpr *Exp = dyn_cast(E)) { setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); // We don't know if member is an 'ivar', but this flag is looked at // only in the context of LV.isObjCIvar(). LV.setObjCArray(E->getType()->isArrayType()); return; } } static llvm::Value * EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, llvm::Value *V, llvm::Type *IRType, StringRef Name = StringRef()) { unsigned AS = cast(V->getType())->getAddressSpace(); return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); } static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, const Expr *E, const VarDecl *VD) { llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); CharUnits Alignment = CGF.getContext().getDeclAlign(VD); QualType T = E->getType(); LValue LV; if (VD->getType()->isReferenceType()) { llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); LI->setAlignment(Alignment.getQuantity()); V = LI; LV = CGF.MakeNaturalAlignAddrLValue(V, T); } else { LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); } setObjCGCLValueClass(CGF.getContext(), E, LV); return LV; } static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E, const FunctionDecl *FD) { llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); if (!FD->hasPrototype()) { if (const FunctionProtoType *Proto = FD->getType()->getAs()) { // Ugly case: for a K&R-style definition, the type of the definition // isn't the same as the type of a use. Correct for this with a // bitcast. QualType NoProtoType = CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); NoProtoType = CGF.getContext().getPointerType(NoProtoType); V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); } } CharUnits Alignment = CGF.getContext().getDeclAlign(FD); return CGF.MakeAddrLValue(V, E->getType(), Alignment); } static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, llvm::Value *ThisValue) { QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); return CGF.EmitLValueForField(LV, FD); } LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { const NamedDecl *ND = E->getDecl(); CharUnits Alignment = getContext().getDeclAlign(ND); QualType T = E->getType(); // A DeclRefExpr for a reference initialized by a constant expression can // appear without being odr-used. Directly emit the constant initializer. if (const VarDecl *VD = dyn_cast(ND)) { const Expr *Init = VD->getAnyInitializer(VD); if (Init && !isa(VD) && VD->getType()->isReferenceType() && VD->isUsableInConstantExpressions(getContext()) && VD->checkInitIsICE()) { llvm::Constant *Val = CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); assert(Val && "failed to emit reference constant expression"); // FIXME: Eventually we will want to emit vector element references. return MakeAddrLValue(Val, T, Alignment); } } // FIXME: We should be able to assert this for FunctionDecls as well! // FIXME: We should be able to assert this for all DeclRefExprs, not just // those with a valid source location. assert((ND->isUsed(false) || !isa(ND) || !E->getLocation().isValid()) && "Should not use decl without marking it used!"); if (ND->hasAttr()) { const ValueDecl *VD = cast(ND); llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); return MakeAddrLValue(Aliasee, T, Alignment); } if (const VarDecl *VD = dyn_cast(ND)) { // Check if this is a global variable. if (VD->hasLinkage() || VD->isStaticDataMember()) { // If it's thread_local, emit a call to its wrapper function instead. if (VD->getTLSKind() == VarDecl::TLS_Dynamic) return CGM.getCXXABI().EmitThreadLocalDeclRefExpr(*this, E); return EmitGlobalVarDeclLValue(*this, E, VD); } bool isBlockVariable = VD->hasAttr(); llvm::Value *V = LocalDeclMap.lookup(VD); if (!V && VD->isStaticLocal()) V = CGM.getStaticLocalDeclAddress(VD); // Use special handling for lambdas. if (!V) { if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); } else if (CapturedStmtInfo) { if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD)) return EmitCapturedFieldLValue(*this, FD, CapturedStmtInfo->getContextValue()); } assert(isa(CurCodeDecl) && E->refersToEnclosingLocal()); return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), T, Alignment); } assert(V && "DeclRefExpr not entered in LocalDeclMap?"); if (isBlockVariable) V = BuildBlockByrefAddress(V, VD); LValue LV; if (VD->getType()->isReferenceType()) { llvm::LoadInst *LI = Builder.CreateLoad(V); LI->setAlignment(Alignment.getQuantity()); V = LI; LV = MakeNaturalAlignAddrLValue(V, T); } else { LV = MakeAddrLValue(V, T, Alignment); } bool isLocalStorage = VD->hasLocalStorage(); bool NonGCable = isLocalStorage && !VD->getType()->isReferenceType() && !isBlockVariable; if (NonGCable) { LV.getQuals().removeObjCGCAttr(); LV.setNonGC(true); } bool isImpreciseLifetime = (isLocalStorage && !VD->hasAttr()); if (isImpreciseLifetime) LV.setARCPreciseLifetime(ARCImpreciseLifetime); setObjCGCLValueClass(getContext(), E, LV); return LV; } if (const FunctionDecl *FD = dyn_cast(ND)) return EmitFunctionDeclLValue(*this, E, FD); llvm_unreachable("Unhandled DeclRefExpr"); } LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { // __extension__ doesn't affect lvalue-ness. if (E->getOpcode() == UO_Extension) return EmitLValue(E->getSubExpr()); QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); switch (E->getOpcode()) { default: llvm_unreachable("Unknown unary operator lvalue!"); case UO_Deref: { QualType T = E->getSubExpr()->getType()->getPointeeType(); assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); // We should not generate __weak write barrier on indirect reference // of a pointer to object; as in void foo (__weak id *param); *param = 0; // But, we continue to generate __strong write barrier on indirect write // into a pointer to object. if (getLangOpts().ObjC1 && getLangOpts().getGC() != LangOptions::NonGC && LV.isObjCWeak()) LV.setNonGC(!E->isOBJCGCCandidate(getContext())); return LV; } case UO_Real: case UO_Imag: { LValue LV = EmitLValue(E->getSubExpr()); assert(LV.isSimple() && "real/imag on non-ordinary l-value"); llvm::Value *Addr = LV.getAddress(); // __real is valid on scalars. This is a faster way of testing that. // __imag can only produce an rvalue on scalars. if (E->getOpcode() == UO_Real && !cast(Addr->getType()) ->getElementType()->isStructTy()) { assert(E->getSubExpr()->getType()->isArithmeticType()); return LV; } assert(E->getSubExpr()->getType()->isAnyComplexType()); unsigned Idx = E->getOpcode() == UO_Imag; return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), Idx, "idx"), ExprTy); } case UO_PreInc: case UO_PreDec: { LValue LV = EmitLValue(E->getSubExpr()); bool isInc = E->getOpcode() == UO_PreInc; if (E->getType()->isAnyComplexType()) EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); else EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); return LV; } } } LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), E->getType()); } LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), E->getType()); } static llvm::Constant* GetAddrOfConstantWideString(StringRef Str, const char *GlobalName, ASTContext &Context, QualType Ty, SourceLocation Loc, CodeGenModule &CGM) { StringLiteral *SL = StringLiteral::Create(Context, Str, StringLiteral::Wide, /*Pascal = */false, Ty, Loc); llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL); llvm::GlobalVariable *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, llvm::GlobalValue::PrivateLinkage, C, GlobalName); const unsigned WideAlignment = Context.getTypeAlignInChars(Ty).getQuantity(); GV->setAlignment(WideAlignment); return GV; } static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, SmallString<32>& Target) { Target.resize(CharByteWidth * (Source.size() + 1)); char *ResultPtr = &Target[0]; const UTF8 *ErrorPtr; bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); (void)success; assert(success); Target.resize(ResultPtr - &Target[0]); } LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { switch (E->getIdentType()) { default: return EmitUnsupportedLValue(E, "predefined expression"); case PredefinedExpr::Func: case PredefinedExpr::Function: case PredefinedExpr::LFunction: case PredefinedExpr::FuncDName: case PredefinedExpr::PrettyFunction: { PredefinedExpr::IdentType IdentType = E->getIdentType(); std::string GlobalVarName; switch (IdentType) { default: llvm_unreachable("Invalid type"); case PredefinedExpr::Func: GlobalVarName = "__func__."; break; case PredefinedExpr::Function: GlobalVarName = "__FUNCTION__."; break; case PredefinedExpr::FuncDName: GlobalVarName = "__FUNCDNAME__."; break; case PredefinedExpr::LFunction: GlobalVarName = "L__FUNCTION__."; break; case PredefinedExpr::PrettyFunction: GlobalVarName = "__PRETTY_FUNCTION__."; break; } StringRef FnName = CurFn->getName(); if (FnName.startswith("\01")) FnName = FnName.substr(1); GlobalVarName += FnName; // If this is outside of a function use the top level decl. const Decl *CurDecl = CurCodeDecl; if (CurDecl == 0 || isa(CurDecl)) CurDecl = getContext().getTranslationUnitDecl(); const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual(); std::string FunctionName; if (isa(CurDecl)) { // Blocks use the mangled function name. // FIXME: ComputeName should handle blocks. FunctionName = FnName.str(); } else if (isa(CurDecl)) { // For a captured statement, the function name is its enclosing // function name not the one compiler generated. FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl); } else { FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl); assert(cast(E->getType())->getSize() - 1 == FunctionName.size() && "Computed __func__ length differs from type!"); } llvm::Constant *C; if (ElemType->isWideCharType()) { SmallString<32> RawChars; ConvertUTF8ToWideString( getContext().getTypeSizeInChars(ElemType).getQuantity(), FunctionName, RawChars); C = GetAddrOfConstantWideString(RawChars, GlobalVarName.c_str(), getContext(), E->getType(), E->getLocation(), CGM); } else { C = CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str(), 1); } return MakeAddrLValue(C, E->getType()); } } } /// Emit a type description suitable for use by a runtime sanitizer library. The /// format of a type descriptor is /// /// \code /// { i16 TypeKind, i16 TypeInfo } /// \endcode /// /// followed by an array of i8 containing the type name. TypeKind is 0 for an /// integer, 1 for a floating point value, and -1 for anything else. llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { // Only emit each type's descriptor once. if (llvm::Constant *C = CGM.getTypeDescriptor(T)) return C; uint16_t TypeKind = -1; uint16_t TypeInfo = 0; if (T->isIntegerType()) { TypeKind = 0; TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | (T->isSignedIntegerType() ? 1 : 0); } else if (T->isFloatingType()) { TypeKind = 1; TypeInfo = getContext().getTypeSize(T); } // Format the type name as if for a diagnostic, including quotes and // optionally an 'aka'. SmallString<32> Buffer; CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, (intptr_t)T.getAsOpaquePtr(), 0, 0, 0, 0, 0, 0, Buffer, ArrayRef()); llvm::Constant *Components[] = { Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) }; llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); llvm::GlobalVariable *GV = new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(), /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); GV->setUnnamedAddr(true); // Remember the descriptor for this type. CGM.setTypeDescriptor(T, GV); return GV; } llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { llvm::Type *TargetTy = IntPtrTy; // Floating-point types which fit into intptr_t are bitcast to integers // and then passed directly (after zero-extension, if necessary). if (V->getType()->isFloatingPointTy()) { unsigned Bits = V->getType()->getPrimitiveSizeInBits(); if (Bits <= TargetTy->getIntegerBitWidth()) V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), Bits)); } // Integers which fit in intptr_t are zero-extended and passed directly. if (V->getType()->isIntegerTy() && V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) return Builder.CreateZExt(V, TargetTy); // Pointers are passed directly, everything else is passed by address. if (!V->getType()->isPointerTy()) { llvm::Value *Ptr = CreateTempAlloca(V->getType()); Builder.CreateStore(V, Ptr); V = Ptr; } return Builder.CreatePtrToInt(V, TargetTy); } /// \brief Emit a representation of a SourceLocation for passing to a handler /// in a sanitizer runtime library. The format for this data is: /// \code /// struct SourceLocation { /// const char *Filename; /// int32_t Line, Column; /// }; /// \endcode /// For an invalid SourceLocation, the Filename pointer is null. llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); llvm::Constant *Data[] = { PLoc.isValid() ? CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src") : llvm::Constant::getNullValue(Int8PtrTy), Builder.getInt32(PLoc.isValid() ? PLoc.getLine() : 0), Builder.getInt32(PLoc.isValid() ? PLoc.getColumn() : 0) }; return llvm::ConstantStruct::getAnon(Data); } void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName, ArrayRef StaticArgs, ArrayRef DynamicArgs, CheckRecoverableKind RecoverKind) { assert(SanOpts != &SanitizerOptions::Disabled); if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) { assert (RecoverKind != CRK_AlwaysRecoverable && "Runtime call required for AlwaysRecoverable kind!"); return EmitTrapCheck(Checked); } llvm::BasicBlock *Cont = createBasicBlock("cont"); llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName); llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler); // Give hint that we very much don't expect to execute the handler // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp llvm::MDBuilder MDHelper(getLLVMContext()); llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); EmitBlock(Handler); llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); llvm::GlobalValue *InfoPtr = new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, llvm::GlobalVariable::PrivateLinkage, Info); InfoPtr->setUnnamedAddr(true); SmallVector Args; SmallVector ArgTypes; Args.reserve(DynamicArgs.size() + 1); ArgTypes.reserve(DynamicArgs.size() + 1); // Handler functions take an i8* pointing to the (handler-specific) static // information block, followed by a sequence of intptr_t arguments // representing operand values. Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); ArgTypes.push_back(Int8PtrTy); for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { Args.push_back(EmitCheckValue(DynamicArgs[i])); ArgTypes.push_back(IntPtrTy); } bool Recover = (RecoverKind == CRK_AlwaysRecoverable) || ((RecoverKind == CRK_Recoverable) && CGM.getCodeGenOpts().SanitizeRecover); llvm::FunctionType *FnType = llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); llvm::AttrBuilder B; if (!Recover) { B.addAttribute(llvm::Attribute::NoReturn) .addAttribute(llvm::Attribute::NoUnwind); } B.addAttribute(llvm::Attribute::UWTable); // Checks that have two variants use a suffix to differentiate them bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) && !CGM.getCodeGenOpts().SanitizeRecover; std::string FunctionName = ("__ubsan_handle_" + CheckName + (NeedsAbortSuffix? "_abort" : "")).str(); llvm::Value *Fn = CGM.CreateRuntimeFunction(FnType, FunctionName, llvm::AttributeSet::get(getLLVMContext(), llvm::AttributeSet::FunctionIndex, B)); llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args); if (Recover) { Builder.CreateBr(Cont); } else { HandlerCall->setDoesNotReturn(); Builder.CreateUnreachable(); } EmitBlock(Cont); } void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { llvm::BasicBlock *Cont = createBasicBlock("cont"); // If we're optimizing, collapse all calls to trap down to just one per // function to save on code size. if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { TrapBB = createBasicBlock("trap"); Builder.CreateCondBr(Checked, Cont, TrapBB); EmitBlock(TrapBB); llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); llvm::CallInst *TrapCall = Builder.CreateCall(F); TrapCall->setDoesNotReturn(); TrapCall->setDoesNotThrow(); Builder.CreateUnreachable(); } else { Builder.CreateCondBr(Checked, Cont, TrapBB); } EmitBlock(Cont); } /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an /// array to pointer, return the array subexpression. static const Expr *isSimpleArrayDecayOperand(const Expr *E) { // If this isn't just an array->pointer decay, bail out. const CastExpr *CE = dyn_cast(E); if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) return 0; // If this is a decay from variable width array, bail out. const Expr *SubExpr = CE->getSubExpr(); if (SubExpr->getType()->isVariableArrayType()) return 0; return SubExpr; } LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, bool Accessed) { // The index must always be an integer, which is not an aggregate. Emit it. llvm::Value *Idx = EmitScalarExpr(E->getIdx()); QualType IdxTy = E->getIdx()->getType(); bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); if (SanOpts->ArrayBounds) EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); // If the base is a vector type, then we are forming a vector element lvalue // with this subscript. if (E->getBase()->getType()->isVectorType()) { // Emit the vector as an lvalue to get its address. LValue LHS = EmitLValue(E->getBase()); assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), LHS.getAlignment()); } // Extend or truncate the index type to 32 or 64-bits. if (Idx->getType() != IntPtrTy) Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); // We know that the pointer points to a type of the correct size, unless the // size is a VLA or Objective-C interface. llvm::Value *Address = 0; CharUnits ArrayAlignment; if (const VariableArrayType *vla = getContext().getAsVariableArrayType(E->getType())) { // The base must be a pointer, which is not an aggregate. Emit // it. It needs to be emitted first in case it's what captures // the VLA bounds. Address = EmitScalarExpr(E->getBase()); // The element count here is the total number of non-VLA elements. llvm::Value *numElements = getVLASize(vla).first; // Effectively, the multiply by the VLA size is part of the GEP. // GEP indexes are signed, and scaling an index isn't permitted to // signed-overflow, so we use the same semantics for our explicit // multiply. We suppress this if overflow is not undefined behavior. if (getLangOpts().isSignedOverflowDefined()) { Idx = Builder.CreateMul(Idx, numElements); Address = Builder.CreateGEP(Address, Idx, "arrayidx"); } else { Idx = Builder.CreateNSWMul(Idx, numElements); Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); } } else if (const ObjCObjectType *OIT = E->getType()->getAs()){ // Indexing over an interface, as in "NSString *P; P[4];" llvm::Value *InterfaceSize = llvm::ConstantInt::get(Idx->getType(), getContext().getTypeSizeInChars(OIT).getQuantity()); Idx = Builder.CreateMul(Idx, InterfaceSize); // The base must be a pointer, which is not an aggregate. Emit it. llvm::Value *Base = EmitScalarExpr(E->getBase()); Address = EmitCastToVoidPtr(Base); Address = Builder.CreateGEP(Address, Idx, "arrayidx"); Address = Builder.CreateBitCast(Address, Base->getType()); } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { // If this is A[i] where A is an array, the frontend will have decayed the // base to be a ArrayToPointerDecay implicit cast. While correct, it is // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a // "gep x, i" here. Emit one "gep A, 0, i". assert(Array->getType()->isArrayType() && "Array to pointer decay must have array source type!"); LValue ArrayLV; // For simple multidimensional array indexing, set the 'accessed' flag for // better bounds-checking of the base expression. if (const ArraySubscriptExpr *ASE = dyn_cast(Array)) ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); else ArrayLV = EmitLValue(Array); llvm::Value *ArrayPtr = ArrayLV.getAddress(); llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); llvm::Value *Args[] = { Zero, Idx }; // Propagate the alignment from the array itself to the result. ArrayAlignment = ArrayLV.getAlignment(); if (getLangOpts().isSignedOverflowDefined()) Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); else Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); } else { // The base must be a pointer, which is not an aggregate. Emit it. llvm::Value *Base = EmitScalarExpr(E->getBase()); if (getLangOpts().isSignedOverflowDefined()) Address = Builder.CreateGEP(Base, Idx, "arrayidx"); else Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); } QualType T = E->getBase()->getType()->getPointeeType(); assert(!T.isNull() && "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); // Limit the alignment to that of the result type. LValue LV; if (!ArrayAlignment.isZero()) { CharUnits Align = getContext().getTypeAlignInChars(T); ArrayAlignment = std::min(Align, ArrayAlignment); LV = MakeAddrLValue(Address, T, ArrayAlignment); } else { LV = MakeNaturalAlignAddrLValue(Address, T); } LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); if (getLangOpts().ObjC1 && getLangOpts().getGC() != LangOptions::NonGC) { LV.setNonGC(!E->isOBJCGCCandidate(getContext())); setObjCGCLValueClass(getContext(), E, LV); } return LV; } static llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, SmallVectorImpl &Elts) { SmallVector CElts; for (unsigned i = 0, e = Elts.size(); i != e; ++i) CElts.push_back(Builder.getInt32(Elts[i])); return llvm::ConstantVector::get(CElts); } LValue CodeGenFunction:: EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { // Emit the base vector as an l-value. LValue Base; // ExtVectorElementExpr's base can either be a vector or pointer to vector. if (E->isArrow()) { // If it is a pointer to a vector, emit the address and form an lvalue with // it. llvm::Value *Ptr = EmitScalarExpr(E->getBase()); const PointerType *PT = E->getBase()->getType()->getAs(); Base = MakeAddrLValue(Ptr, PT->getPointeeType()); Base.getQuals().removeObjCGCAttr(); } else if (E->getBase()->isGLValue()) { // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), // emit the base as an lvalue. assert(E->getBase()->getType()->isVectorType()); Base = EmitLValue(E->getBase()); } else { // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. assert(E->getBase()->getType()->isVectorType() && "Result must be a vector"); llvm::Value *Vec = EmitScalarExpr(E->getBase()); // Store the vector to memory (because LValue wants an address). llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); Builder.CreateStore(Vec, VecMem); Base = MakeAddrLValue(VecMem, E->getBase()->getType()); } QualType type = E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); // Encode the element access list into a vector of unsigned indices. SmallVector Indices; E->getEncodedElementAccess(Indices); if (Base.isSimple()) { llvm::Constant *CV = GenerateConstantVector(Builder, Indices); return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, Base.getAlignment()); } assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); llvm::Constant *BaseElts = Base.getExtVectorElts(); SmallVector CElts; for (unsigned i = 0, e = Indices.size(); i != e; ++i) CElts.push_back(BaseElts->getAggregateElement(Indices[i])); llvm::Constant *CV = llvm::ConstantVector::get(CElts); return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, Base.getAlignment()); } LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { Expr *BaseExpr = E->getBase(); // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. LValue BaseLV; if (E->isArrow()) { llvm::Value *Ptr = EmitScalarExpr(BaseExpr); QualType PtrTy = BaseExpr->getType()->getPointeeType(); EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); } else BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); NamedDecl *ND = E->getMemberDecl(); if (FieldDecl *Field = dyn_cast(ND)) { LValue LV = EmitLValueForField(BaseLV, Field); setObjCGCLValueClass(getContext(), E, LV); return LV; } if (VarDecl *VD = dyn_cast(ND)) return EmitGlobalVarDeclLValue(*this, E, VD); if (const FunctionDecl *FD = dyn_cast(ND)) return EmitFunctionDeclLValue(*this, E, FD); llvm_unreachable("Unhandled member declaration!"); } /// Given that we are currently emitting a lambda, emit an l-value for /// one of its members. LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { assert(cast(CurCodeDecl)->getParent()->isLambda()); assert(cast(CurCodeDecl)->getParent() == Field->getParent()); QualType LambdaTagType = getContext().getTagDeclType(Field->getParent()); LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); return EmitLValueForField(LambdaLV, Field); } LValue CodeGenFunction::EmitLValueForField(LValue base, const FieldDecl *field) { if (field->isBitField()) { const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(field->getParent()); const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); llvm::Value *Addr = base.getAddress(); unsigned Idx = RL.getLLVMFieldNo(field); if (Idx != 0) // For structs, we GEP to the field that the record layout suggests. Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); // Get the access type. llvm::Type *PtrTy = llvm::Type::getIntNPtrTy( getLLVMContext(), Info.StorageSize, CGM.getContext().getTargetAddressSpace(base.getType())); if (Addr->getType() != PtrTy) Addr = Builder.CreateBitCast(Addr, PtrTy); QualType fieldType = field->getType().withCVRQualifiers(base.getVRQualifiers()); return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment()); } const RecordDecl *rec = field->getParent(); QualType type = field->getType(); CharUnits alignment = getContext().getDeclAlign(field); // FIXME: It should be impossible to have an LValue without alignment for a // complete type. if (!base.getAlignment().isZero()) alignment = std::min(alignment, base.getAlignment()); bool mayAlias = rec->hasAttr(); llvm::Value *addr = base.getAddress(); unsigned cvr = base.getVRQualifiers(); bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; if (rec->isUnion()) { // For unions, there is no pointer adjustment. assert(!type->isReferenceType() && "union has reference member"); // TODO: handle path-aware TBAA for union. TBAAPath = false; } else { // For structs, we GEP to the field that the record layout suggests. unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); addr = Builder.CreateStructGEP(addr, idx, field->getName()); // If this is a reference field, load the reference right now. if (const ReferenceType *refType = type->getAs()) { llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); if (cvr & Qualifiers::Volatile) load->setVolatile(true); load->setAlignment(alignment.getQuantity()); // Loading the reference will disable path-aware TBAA. TBAAPath = false; if (CGM.shouldUseTBAA()) { llvm::MDNode *tbaa; if (mayAlias) tbaa = CGM.getTBAAInfo(getContext().CharTy); else tbaa = CGM.getTBAAInfo(type); if (tbaa) CGM.DecorateInstruction(load, tbaa); } addr = load; mayAlias = false; type = refType->getPointeeType(); if (type->isIncompleteType()) alignment = CharUnits(); else alignment = getContext().getTypeAlignInChars(type); cvr = 0; // qualifiers don't recursively apply to referencee } } // Make sure that the address is pointing to the right type. This is critical // for both unions and structs. A union needs a bitcast, a struct element // will need a bitcast if the LLVM type laid out doesn't match the desired // type. addr = EmitBitCastOfLValueToProperType(*this, addr, CGM.getTypes().ConvertTypeForMem(type), field->getName()); if (field->hasAttr()) addr = EmitFieldAnnotations(field, addr); LValue LV = MakeAddrLValue(addr, type, alignment); LV.getQuals().addCVRQualifiers(cvr); if (TBAAPath) { const ASTRecordLayout &Layout = getContext().getASTRecordLayout(field->getParent()); // Set the base type to be the base type of the base LValue and // update offset to be relative to the base type. LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + Layout.getFieldOffset(field->getFieldIndex()) / getContext().getCharWidth()); } // __weak attribute on a field is ignored. if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) LV.getQuals().removeObjCGCAttr(); // Fields of may_alias structs act like 'char' for TBAA purposes. // FIXME: this should get propagated down through anonymous structs // and unions. if (mayAlias && LV.getTBAAInfo()) LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); return LV; } LValue CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, const FieldDecl *Field) { QualType FieldType = Field->getType(); if (!FieldType->isReferenceType()) return EmitLValueForField(Base, Field); const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(Field->getParent()); unsigned idx = RL.getLLVMFieldNo(Field); llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); // Make sure that the address is pointing to the right type. This is critical // for both unions and structs. A union needs a bitcast, a struct element // will need a bitcast if the LLVM type laid out doesn't match the desired // type. llvm::Type *llvmType = ConvertTypeForMem(FieldType); V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); CharUnits Alignment = getContext().getDeclAlign(Field); // FIXME: It should be impossible to have an LValue without alignment for a // complete type. if (!Base.getAlignment().isZero()) Alignment = std::min(Alignment, Base.getAlignment()); return MakeAddrLValue(V, FieldType, Alignment); } LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ if (E->isFileScope()) { llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); return MakeAddrLValue(GlobalPtr, E->getType()); } if (E->getType()->isVariablyModifiedType()) // make sure to emit the VLA size. EmitVariablyModifiedType(E->getType()); llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); const Expr *InitExpr = E->getInitializer(); LValue Result = MakeAddrLValue(DeclPtr, E->getType()); EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), /*Init*/ true); return Result; } LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { if (!E->isGLValue()) // Initializing an aggregate temporary in C++11: T{...}. return EmitAggExprToLValue(E); // An lvalue initializer list must be initializing a reference. assert(E->getNumInits() == 1 && "reference init with multiple values"); return EmitLValue(E->getInit(0)); } LValue CodeGenFunction:: EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { if (!expr->isGLValue()) { // ?: here should be an aggregate. assert(hasAggregateEvaluationKind(expr->getType()) && "Unexpected conditional operator!"); return EmitAggExprToLValue(expr); } OpaqueValueMapping binding(*this, expr); const Expr *condExpr = expr->getCond(); bool CondExprBool; if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); if (!CondExprBool) std::swap(live, dead); if (!ContainsLabel(dead)) return EmitLValue(live); } llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); ConditionalEvaluation eval(*this); EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); // Any temporaries created here are conditional. EmitBlock(lhsBlock); eval.begin(*this); LValue lhs = EmitLValue(expr->getTrueExpr()); eval.end(*this); if (!lhs.isSimple()) return EmitUnsupportedLValue(expr, "conditional operator"); lhsBlock = Builder.GetInsertBlock(); Builder.CreateBr(contBlock); // Any temporaries created here are conditional. EmitBlock(rhsBlock); eval.begin(*this); LValue rhs = EmitLValue(expr->getFalseExpr()); eval.end(*this); if (!rhs.isSimple()) return EmitUnsupportedLValue(expr, "conditional operator"); rhsBlock = Builder.GetInsertBlock(); EmitBlock(contBlock); llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, "cond-lvalue"); phi->addIncoming(lhs.getAddress(), lhsBlock); phi->addIncoming(rhs.getAddress(), rhsBlock); return MakeAddrLValue(phi, expr->getType()); } /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference /// type. If the cast is to a reference, we can have the usual lvalue result, /// otherwise if a cast is needed by the code generator in an lvalue context, /// then it must mean that we need the address of an aggregate in order to /// access one of its members. This can happen for all the reasons that casts /// are permitted with aggregate result, including noop aggregate casts, and /// cast from scalar to union. LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { switch (E->getCastKind()) { case CK_ToVoid: case CK_BitCast: case CK_ArrayToPointerDecay: case CK_FunctionToPointerDecay: case CK_NullToMemberPointer: case CK_NullToPointer: case CK_IntegralToPointer: case CK_PointerToIntegral: case CK_PointerToBoolean: case CK_VectorSplat: case CK_IntegralCast: case CK_IntegralToBoolean: case CK_IntegralToFloating: case CK_FloatingToIntegral: case CK_FloatingToBoolean: case CK_FloatingCast: case CK_FloatingRealToComplex: case CK_FloatingComplexToReal: case CK_FloatingComplexToBoolean: case CK_FloatingComplexCast: case CK_FloatingComplexToIntegralComplex: case CK_IntegralRealToComplex: case CK_IntegralComplexToReal: case CK_IntegralComplexToBoolean: case CK_IntegralComplexCast: case CK_IntegralComplexToFloatingComplex: case CK_DerivedToBaseMemberPointer: case CK_BaseToDerivedMemberPointer: case CK_MemberPointerToBoolean: case CK_ReinterpretMemberPointer: case CK_AnyPointerToBlockPointerCast: case CK_ARCProduceObject: case CK_ARCConsumeObject: case CK_ARCReclaimReturnedObject: case CK_ARCExtendBlockObject: case CK_CopyAndAutoreleaseBlockObject: return EmitUnsupportedLValue(E, "unexpected cast lvalue"); case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); case CK_BuiltinFnToFnPtr: llvm_unreachable("builtin functions are handled elsewhere"); // These are never l-values; just use the aggregate emission code. case CK_NonAtomicToAtomic: case CK_AtomicToNonAtomic: return EmitAggExprToLValue(E); case CK_Dynamic: { LValue LV = EmitLValue(E->getSubExpr()); llvm::Value *V = LV.getAddress(); const CXXDynamicCastExpr *DCE = cast(E); return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); } case CK_ConstructorConversion: case CK_UserDefinedConversion: case CK_CPointerToObjCPointerCast: case CK_BlockPointerToObjCPointerCast: case CK_NoOp: case CK_LValueToRValue: return EmitLValue(E->getSubExpr()); case CK_UncheckedDerivedToBase: case CK_DerivedToBase: { const RecordType *DerivedClassTy = E->getSubExpr()->getType()->getAs(); CXXRecordDecl *DerivedClassDecl = cast(DerivedClassTy->getDecl()); LValue LV = EmitLValue(E->getSubExpr()); llvm::Value *This = LV.getAddress(); // Perform the derived-to-base conversion llvm::Value *Base = GetAddressOfBaseClass(This, DerivedClassDecl, E->path_begin(), E->path_end(), /*NullCheckValue=*/false); return MakeAddrLValue(Base, E->getType()); } case CK_ToUnion: return EmitAggExprToLValue(E); case CK_BaseToDerived: { const RecordType *DerivedClassTy = E->getType()->getAs(); CXXRecordDecl *DerivedClassDecl = cast(DerivedClassTy->getDecl()); LValue LV = EmitLValue(E->getSubExpr()); // Perform the base-to-derived conversion llvm::Value *Derived = GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, E->path_begin(), E->path_end(), /*NullCheckValue=*/false); // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is // performed and the object is not of the derived type. if (SanitizePerformTypeCheck) EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), Derived, E->getType()); return MakeAddrLValue(Derived, E->getType()); } case CK_LValueBitCast: { // This must be a reinterpret_cast (or c-style equivalent). const ExplicitCastExpr *CE = cast(E); LValue LV = EmitLValue(E->getSubExpr()); llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), ConvertType(CE->getTypeAsWritten())); return MakeAddrLValue(V, E->getType()); } case CK_ObjCObjectLValueCast: { LValue LV = EmitLValue(E->getSubExpr()); QualType ToType = getContext().getLValueReferenceType(E->getType()); llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), ConvertType(ToType)); return MakeAddrLValue(V, E->getType()); } case CK_ZeroToOCLEvent: llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); } llvm_unreachable("Unhandled lvalue cast kind?"); } LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { assert(OpaqueValueMappingData::shouldBindAsLValue(e)); return getOpaqueLValueMapping(e); } RValue CodeGenFunction::EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc) { QualType FT = FD->getType(); LValue FieldLV = EmitLValueForField(LV, FD); switch (getEvaluationKind(FT)) { case TEK_Complex: return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); case TEK_Aggregate: return FieldLV.asAggregateRValue(); case TEK_Scalar: return EmitLoadOfLValue(FieldLV, Loc); } llvm_unreachable("bad evaluation kind"); } //===--------------------------------------------------------------------===// // Expression Emission //===--------------------------------------------------------------------===// RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue) { if (CGDebugInfo *DI = getDebugInfo()) { SourceLocation Loc = E->getLocStart(); // Force column info to be generated so we can differentiate // multiple call sites on the same line in the debug info. const FunctionDecl* Callee = E->getDirectCallee(); bool ForceColumnInfo = Callee && Callee->isInlineSpecified(); DI->EmitLocation(Builder, Loc, ForceColumnInfo); } // Builtins never have block type. if (E->getCallee()->getType()->isBlockPointerType()) return EmitBlockCallExpr(E, ReturnValue); if (const CXXMemberCallExpr *CE = dyn_cast(E)) return EmitCXXMemberCallExpr(CE, ReturnValue); if (const CUDAKernelCallExpr *CE = dyn_cast(E)) return EmitCUDAKernelCallExpr(CE, ReturnValue); const Decl *TargetDecl = E->getCalleeDecl(); if (const FunctionDecl *FD = dyn_cast_or_null(TargetDecl)) { if (unsigned builtinID = FD->getBuiltinID()) return EmitBuiltinExpr(FD, builtinID, E); } if (const CXXOperatorCallExpr *CE = dyn_cast(E)) if (const CXXMethodDecl *MD = dyn_cast_or_null(TargetDecl)) return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); if (const CXXPseudoDestructorExpr *PseudoDtor = dyn_cast(E->getCallee()->IgnoreParens())) { QualType DestroyedType = PseudoDtor->getDestroyedType(); if (getLangOpts().ObjCAutoRefCount && DestroyedType->isObjCLifetimeType() && (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { // Automatic Reference Counting: // If the pseudo-expression names a retainable object with weak or // strong lifetime, the object shall be released. Expr *BaseExpr = PseudoDtor->getBase(); llvm::Value *BaseValue = NULL; Qualifiers BaseQuals; // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. if (PseudoDtor->isArrow()) { BaseValue = EmitScalarExpr(BaseExpr); const PointerType *PTy = BaseExpr->getType()->getAs(); BaseQuals = PTy->getPointeeType().getQualifiers(); } else { LValue BaseLV = EmitLValue(BaseExpr); BaseValue = BaseLV.getAddress(); QualType BaseTy = BaseExpr->getType(); BaseQuals = BaseTy.getQualifiers(); } switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { case Qualifiers::OCL_None: case Qualifiers::OCL_ExplicitNone: case Qualifiers::OCL_Autoreleasing: break; case Qualifiers::OCL_Strong: EmitARCRelease(Builder.CreateLoad(BaseValue, PseudoDtor->getDestroyedType().isVolatileQualified()), ARCPreciseLifetime); break; case Qualifiers::OCL_Weak: EmitARCDestroyWeak(BaseValue); break; } } else { // C++ [expr.pseudo]p1: // The result shall only be used as the operand for the function call // operator (), and the result of such a call has type void. The only // effect is the evaluation of the postfix-expression before the dot or // arrow. EmitScalarExpr(E->getCallee()); } return RValue::get(0); } llvm::Value *Callee = EmitScalarExpr(E->getCallee()); return EmitCall(E->getCallee()->getType(), Callee, E->getLocStart(), ReturnValue, E->arg_begin(), E->arg_end(), TargetDecl); } LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { // Comma expressions just emit their LHS then their RHS as an l-value. if (E->getOpcode() == BO_Comma) { EmitIgnoredExpr(E->getLHS()); EnsureInsertPoint(); return EmitLValue(E->getRHS()); } if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) return EmitPointerToDataMemberBinaryExpr(E); assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); // Note that in all of these cases, __block variables need the RHS // evaluated first just in case the variable gets moved by the RHS. switch (getEvaluationKind(E->getType())) { case TEK_Scalar: { switch (E->getLHS()->getType().getObjCLifetime()) { case Qualifiers::OCL_Strong: return EmitARCStoreStrong(E, /*ignored*/ false).first; case Qualifiers::OCL_Autoreleasing: return EmitARCStoreAutoreleasing(E).first; // No reason to do any of these differently. case Qualifiers::OCL_None: case Qualifiers::OCL_ExplicitNone: case Qualifiers::OCL_Weak: break; } RValue RV = EmitAnyExpr(E->getRHS()); LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); EmitStoreThroughLValue(RV, LV); return LV; } case TEK_Complex: return EmitComplexAssignmentLValue(E); case TEK_Aggregate: return EmitAggExprToLValue(E); } llvm_unreachable("bad evaluation kind"); } LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { RValue RV = EmitCallExpr(E); if (!RV.isScalar()) return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); assert(E->getCallReturnType()->isReferenceType() && "Can't have a scalar return unless the return type is a " "reference type!"); return MakeAddrLValue(RV.getScalarVal(), E->getType()); } LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { // FIXME: This shouldn't require another copy. return EmitAggExprToLValue(E); } LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() && "binding l-value to type which needs a temporary"); AggValueSlot Slot = CreateAggTemp(E->getType()); EmitCXXConstructExpr(E, Slot); return MakeAddrLValue(Slot.getAddr(), E->getType()); } LValue CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); } llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E), ConvertType(E->getType())->getPointerTo()); } LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); } LValue CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); Slot.setExternallyDestructed(); EmitAggExpr(E->getSubExpr(), Slot); EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); return MakeAddrLValue(Slot.getAddr(), E->getType()); } LValue CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); EmitLambdaExpr(E, Slot); return MakeAddrLValue(Slot.getAddr(), E->getType()); } LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { RValue RV = EmitObjCMessageExpr(E); if (!RV.isScalar()) return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); assert(E->getMethodDecl()->getResultType()->isReferenceType() && "Can't have a scalar return unless the return type is a " "reference type!"); return MakeAddrLValue(RV.getScalarVal(), E->getType()); } LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { llvm::Value *V = CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true); return MakeAddrLValue(V, E->getType()); } llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, const ObjCIvarDecl *Ivar) { return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); } LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, unsigned CVRQualifiers) { return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, Ivar, CVRQualifiers); } LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { // FIXME: A lot of the code below could be shared with EmitMemberExpr. llvm::Value *BaseValue = 0; const Expr *BaseExpr = E->getBase(); Qualifiers BaseQuals; QualType ObjectTy; if (E->isArrow()) { BaseValue = EmitScalarExpr(BaseExpr); ObjectTy = BaseExpr->getType()->getPointeeType(); BaseQuals = ObjectTy.getQualifiers(); } else { LValue BaseLV = EmitLValue(BaseExpr); // FIXME: this isn't right for bitfields. BaseValue = BaseLV.getAddress(); ObjectTy = BaseExpr->getType(); BaseQuals = ObjectTy.getQualifiers(); } LValue LV = EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), BaseQuals.getCVRQualifiers()); setObjCGCLValueClass(getContext(), E, LV); return LV; } LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { // Can only get l-value for message expression returning aggregate type RValue RV = EmitAnyExprToTemp(E); return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); } RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, SourceLocation CallLoc, ReturnValueSlot ReturnValue, CallExpr::const_arg_iterator ArgBeg, CallExpr::const_arg_iterator ArgEnd, const Decl *TargetDecl) { // Get the actual function type. The callee type will always be a pointer to // function type or a block pointer type. assert(CalleeType->isFunctionPointerType() && "Call must have function pointer type!"); CalleeType = getContext().getCanonicalType(CalleeType); const FunctionType *FnType = cast(cast(CalleeType)->getPointeeType()); // Force column info to differentiate multiple inlined call sites on // the same line, analoguous to EmitCallExpr. bool ForceColumnInfo = false; if (const FunctionDecl* FD = dyn_cast_or_null(TargetDecl)) ForceColumnInfo = FD->isInlineSpecified(); if (getLangOpts().CPlusPlus && SanOpts->Function && (!TargetDecl || !isa(TargetDecl))) { if (llvm::Constant *PrefixSig = CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { llvm::Constant *FTRTTIConst = CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); llvm::Type *PrefixStructTyElems[] = { PrefixSig->getType(), FTRTTIConst->getType() }; llvm::StructType *PrefixStructTy = llvm::StructType::get( CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( Callee, llvm::PointerType::getUnqual(PrefixStructTy)); llvm::Value *CalleeSigPtr = Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0); llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr); llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); llvm::BasicBlock *Cont = createBasicBlock("cont"); llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); EmitBlock(TypeCheck); llvm::Value *CalleeRTTIPtr = Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1); llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr); llvm::Value *CalleeRTTIMatch = Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); llvm::Constant *StaticData[] = { EmitCheckSourceLocation(CallLoc), EmitCheckTypeDescriptor(CalleeType) }; EmitCheck(CalleeRTTIMatch, "function_type_mismatch", StaticData, Callee, CRK_Recoverable); Builder.CreateBr(Cont); EmitBlock(Cont); } } CallArgList Args; EmitCallArgs(Args, dyn_cast(FnType), ArgBeg, ArgEnd, ForceColumnInfo); const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(Args, FnType); // C99 6.5.2.2p6: // If the expression that denotes the called function has a type // that does not include a prototype, [the default argument // promotions are performed]. If the number of arguments does not // equal the number of parameters, the behavior is undefined. If // the function is defined with a type that includes a prototype, // and either the prototype ends with an ellipsis (, ...) or the // types of the arguments after promotion are not compatible with // the types of the parameters, the behavior is undefined. If the // function is defined with a type that does not include a // prototype, and the types of the arguments after promotion are // not compatible with those of the parameters after promotion, // the behavior is undefined [except in some trivial cases]. // That is, in the general case, we should assume that a call // through an unprototyped function type works like a *non-variadic* // call. The way we make this work is to cast to the exact type // of the promoted arguments. if (isa(FnType)) { llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); CalleeTy = CalleeTy->getPointerTo(); Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); } return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); } LValue CodeGenFunction:: EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { llvm::Value *BaseV; if (E->getOpcode() == BO_PtrMemI) BaseV = EmitScalarExpr(E->getLHS()); else BaseV = EmitLValue(E->getLHS()).getAddress(); llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); const MemberPointerType *MPT = E->getRHS()->getType()->getAs(); llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); return MakeAddrLValue(AddV, MPT->getPointeeType()); } /// Given the address of a temporary variable, produce an r-value of /// its type. RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr, QualType type, SourceLocation loc) { LValue lvalue = MakeNaturalAlignAddrLValue(addr, type); switch (getEvaluationKind(type)) { case TEK_Complex: return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); case TEK_Aggregate: return lvalue.asAggregateRValue(); case TEK_Scalar: return RValue::get(EmitLoadOfScalar(lvalue, loc)); } llvm_unreachable("bad evaluation kind"); } void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { assert(Val->getType()->isFPOrFPVectorTy()); if (Accuracy == 0.0 || !isa(Val)) return; llvm::MDBuilder MDHelper(getLLVMContext()); llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); cast(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); } namespace { struct LValueOrRValue { LValue LV; RValue RV; }; } static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, const PseudoObjectExpr *E, bool forLValue, AggValueSlot slot) { SmallVector opaques; // Find the result expression, if any. const Expr *resultExpr = E->getResultExpr(); LValueOrRValue result; for (PseudoObjectExpr::const_semantics_iterator i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { const Expr *semantic = *i; // If this semantic expression is an opaque value, bind it // to the result of its source expression. if (const OpaqueValueExpr *ov = dyn_cast(semantic)) { // If this is the result expression, we may need to evaluate // directly into the slot. typedef CodeGenFunction::OpaqueValueMappingData OVMA; OVMA opaqueData; if (ov == resultExpr && ov->isRValue() && !forLValue && CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { CGF.EmitAggExpr(ov->getSourceExpr(), slot); LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); opaqueData = OVMA::bind(CGF, ov, LV); result.RV = slot.asRValue(); // Otherwise, emit as normal. } else { opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); // If this is the result, also evaluate the result now. if (ov == resultExpr) { if (forLValue) result.LV = CGF.EmitLValue(ov); else result.RV = CGF.EmitAnyExpr(ov, slot); } } opaques.push_back(opaqueData); // Otherwise, if the expression is the result, evaluate it // and remember the result. } else if (semantic == resultExpr) { if (forLValue) result.LV = CGF.EmitLValue(semantic); else result.RV = CGF.EmitAnyExpr(semantic, slot); // Otherwise, evaluate the expression in an ignored context. } else { CGF.EmitIgnoredExpr(semantic); } } // Unbind all the opaques now. for (unsigned i = 0, e = opaques.size(); i != e; ++i) opaques[i].unbind(CGF); return result; } RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, AggValueSlot slot) { return emitPseudoObjectExpr(*this, E, false, slot).RV; } LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; }