/* i386-specific clock functions. */ #include #include #include "kernel/kernel.h" #include "kernel/clock.h" #include "kernel/proc.h" #include "kernel/interrupt.h" #include #include "glo.h" #include "profile.h" #ifdef CONFIG_APIC #include "apic.h" #endif #include "spinlock.h" #define CLOCK_ACK_BIT 0x80 /* PS/2 clock interrupt acknowledge bit */ /* Clock parameters. */ #define COUNTER_FREQ (2*TIMER_FREQ) /* counter frequency using square wave */ #define LATCH_COUNT 0x00 /* cc00xxxx, c = channel, x = any */ #define SQUARE_WAVE 0x36 /* ccaammmb, a = access, m = mode, b = BCD */ /* 11x11, 11 = LSB then MSB, x11 = sq wave */ #define TIMER_FREQ 1193182 /* clock frequency for timer in PC and AT */ #define TIMER_COUNT(freq) (TIMER_FREQ/(freq)) /* initial value for counter*/ PRIVATE irq_hook_t pic_timer_hook; /* interrupt handler hook */ PRIVATE unsigned probe_ticks; PRIVATE u64_t tsc0, tsc1; #define PROBE_TICKS (system_hz / 10) PRIVATE unsigned tsc_per_ms[CONFIG_MAX_CPUS]; /*===========================================================================* * init_8235A_timer * *===========================================================================*/ PUBLIC int init_8253A_timer(const unsigned freq) { /* Initialize channel 0 of the 8253A timer to, e.g., 60 Hz, * and register the CLOCK task's interrupt handler to be run * on every clock tick. */ outb(TIMER_MODE, SQUARE_WAVE); /* run continuously */ outb(TIMER0, (TIMER_COUNT(freq) & 0xff)); /* timer low byte */ outb(TIMER0, TIMER_COUNT(freq) >> 8); /* timer high byte */ return OK; } /*===========================================================================* * stop_8235A_timer * *===========================================================================*/ PUBLIC void stop_8253A_timer(void) { /* Reset the clock to the BIOS rate. (For rebooting.) */ outb(TIMER_MODE, 0x36); outb(TIMER0, 0); outb(TIMER0, 0); } PRIVATE int calib_cpu_handler(irq_hook_t * UNUSED(hook)) { u64_t tsc; probe_ticks++; read_tsc_64(&tsc); if (probe_ticks == 1) { tsc0 = tsc; } else if (probe_ticks == PROBE_TICKS) { tsc1 = tsc; } /* just in case we are in an SMP single cpu fallback mode */ BKL_UNLOCK(); return 1; } PRIVATE void estimate_cpu_freq(void) { u64_t tsc_delta; u64_t cpu_freq; irq_hook_t calib_cpu; /* set the probe, we use the legacy timer, IRQ 0 */ put_irq_handler(&calib_cpu, CLOCK_IRQ, calib_cpu_handler); /* just in case we are in an SMP single cpu fallback mode */ BKL_UNLOCK(); /* set the PIC timer to get some time */ intr_enable(); /* loop for some time to get a sample */ while(probe_ticks < PROBE_TICKS) { intr_enable(); } intr_disable(); /* just in case we are in an SMP single cpu fallback mode */ BKL_LOCK(); /* remove the probe */ rm_irq_handler(&calib_cpu); tsc_delta = sub64(tsc1, tsc0); cpu_freq = mul64(div64u64(tsc_delta, PROBE_TICKS - 1), make64(system_hz, 0)); cpu_set_freq(cpuid, cpu_freq); cpu_info[cpuid].freq = div64u(cpu_freq, 1000000); BOOT_VERBOSE(cpu_print_freq(cpuid)); } PUBLIC int init_local_timer(unsigned freq) { #ifdef CONFIG_APIC /* if we know the address, lapic is enabled and we should use it */ if (lapic_addr) { unsigned cpu = cpuid; tsc_per_ms[cpu] = div64u(cpu_get_freq(cpu), 1000); lapic_set_timer_one_shot(1000000/system_hz); } else { BOOT_VERBOSE(printf("Initiating legacy i8253 timer\n")); #else { #endif init_8253A_timer(freq); estimate_cpu_freq(); /* always only 1 cpu in the system */ tsc_per_ms[0] = div64u(cpu_get_freq(0), 1000); } return 0; } PUBLIC void stop_local_timer(void) { #ifdef CONFIG_APIC if (lapic_addr) { lapic_stop_timer(); apic_eoi(); } else #endif { stop_8253A_timer(); } } PUBLIC void restart_local_timer(void) { #ifdef CONFIG_APIC if (lapic_addr) { lapic_restart_timer(); } #endif } PUBLIC int register_local_timer_handler(const irq_handler_t handler) { #ifdef CONFIG_APIC if (lapic_addr) { /* Using APIC, it is configured in apic_idt_init() */ BOOT_VERBOSE(printf("Using LAPIC timer as tick source\n")); } else #endif { /* Using PIC, Initialize the CLOCK's interrupt hook. */ pic_timer_hook.proc_nr_e = NONE; pic_timer_hook.irq = CLOCK_IRQ; put_irq_handler(&pic_timer_hook, CLOCK_IRQ, handler); } return 0; } PUBLIC void cycles_accounting_init(void) { read_tsc_64(get_cpu_var_ptr(cpu, tsc_ctr_switch)); make_zero64(get_cpu_var(cpu, cpu_last_tsc)); make_zero64(get_cpu_var(cpu, cpu_last_idle)); } PUBLIC void context_stop(struct proc * p) { u64_t tsc, tsc_delta; u64_t * __tsc_ctr_switch = get_cpulocal_var_ptr(tsc_ctr_switch); #ifdef CONFIG_SMP unsigned cpu = cpuid; /* * This function is called only if we switch from kernel to user or idle * or back. Therefore this is a perfect location to place the big kernel * lock which will hopefully disappear soon. * * If we stop accounting for KERNEL we must unlock the BKL. If account * for IDLE we must not hold the lock */ if (p == proc_addr(KERNEL)) { u64_t tmp; read_tsc_64(&tsc); tmp = sub64(tsc, *__tsc_ctr_switch); kernel_ticks[cpu] = add64(kernel_ticks[cpu], tmp); p->p_cycles = add64(p->p_cycles, tmp); BKL_UNLOCK(); } else { u64_t bkl_tsc; atomic_t succ; read_tsc_64(&bkl_tsc); /* this only gives a good estimate */ succ = big_kernel_lock.val; BKL_LOCK(); read_tsc_64(&tsc); bkl_ticks[cpu] = add64(bkl_ticks[cpu], sub64(tsc, bkl_tsc)); bkl_tries[cpu]++; bkl_succ[cpu] += !(!(succ == 0)); p->p_cycles = add64(p->p_cycles, sub64(tsc, *__tsc_ctr_switch)); } #else read_tsc_64(&tsc); p->p_cycles = add64(p->p_cycles, sub64(tsc, *__tsc_ctr_switch)); #endif tsc_delta = sub64(tsc, *__tsc_ctr_switch); if(kbill_ipc) { kbill_ipc->p_kipc_cycles = add64(kbill_ipc->p_kipc_cycles, tsc_delta); kbill_ipc = NULL; } if(kbill_kcall) { kbill_kcall->p_kcall_cycles = add64(kbill_kcall->p_kcall_cycles, tsc_delta); kbill_kcall = NULL; } /* * deduct the just consumed cpu cycles from the cpu time left for this * process during its current quantum. Skip IDLE and other pseudo kernel * tasks */ if (p->p_endpoint >= 0) { #if DEBUG_RACE make_zero64(p->p_cpu_time_left); #else /* if (tsc_delta < p->p_cpu_time_left) in 64bit */ if (ex64hi(tsc_delta) < ex64hi(p->p_cpu_time_left) || (ex64hi(tsc_delta) == ex64hi(p->p_cpu_time_left) && ex64lo(tsc_delta) < ex64lo(p->p_cpu_time_left))) p->p_cpu_time_left = sub64(p->p_cpu_time_left, tsc_delta); else { make_zero64(p->p_cpu_time_left); } #endif } *__tsc_ctr_switch = tsc; } PUBLIC void context_stop_idle(void) { int is_idle; #ifdef CONFIG_SMP unsigned cpu = cpuid; #endif is_idle = get_cpu_var(cpu, cpu_is_idle); get_cpu_var(cpu, cpu_is_idle) = 0; context_stop(get_cpulocal_var_ptr(idle_proc)); if (is_idle) restart_local_timer(); #if SPROFILE if (sprofiling) get_cpulocal_var(idle_interrupted) = 1; #endif } PUBLIC u64_t ms_2_cpu_time(unsigned ms) { return mul64u(tsc_per_ms[cpuid], ms); } PUBLIC unsigned cpu_time_2_ms(u64_t cpu_time) { return div64u(cpu_time, tsc_per_ms[cpuid]); } PUBLIC short cpu_load(void) { u64_t current_tsc, *current_idle; u64_t tsc_delta, idle_delta, busy; struct proc *idle; short load; #ifdef CONFIG_SMP unsigned cpu = cpuid; #endif u64_t *last_tsc, *last_idle; last_tsc = get_cpu_var_ptr(cpu, cpu_last_tsc); last_idle = get_cpu_var_ptr(cpu, cpu_last_idle); idle = get_cpu_var_ptr(cpu, idle_proc);; read_tsc_64(¤t_tsc); current_idle = &idle->p_cycles; /* ptr to idle proc */ /* calculate load since last cpu_load invocation */ if (!is_zero64(*last_tsc)) { tsc_delta = sub64(current_tsc, *last_tsc); idle_delta = sub64(*current_idle, *last_idle); busy = sub64(tsc_delta, idle_delta); busy = mul64(busy, make64(100, 0)); load = ex64lo(div64(busy, tsc_delta)); if (load > 100) load = 100; } else load = 0; *last_tsc = current_tsc; *last_idle = *current_idle; return load; }