#define _SYSTEM 1 #define VERBOSE 0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../proto.h" #include "../glo.h" #include "../util.h" #include "../vm.h" #include "../sanitycheck.h" #include "memory.h" int global_bit_ok = 0; int bigpage_ok = 0; /* Location in our virtual address space where we can map in * any physical page we want. */ static unsigned char *varmap = NULL; /* Our address space. */ static u32_t varmap_loc; /* Our page table. */ /* Our process table entry. */ struct vmproc *vmp = &vmproc[VM_PROC_NR]; /* Spare memory, ready to go after initialization, to avoid a * circular dependency on allocating memory and writing it into VM's * page table. */ #define SPAREPAGES 5 int missing_spares = SPAREPAGES; static struct { void *page; u32_t phys; } sparepages[SPAREPAGES]; /* Clicks must be pages, as * - they must be page aligned to map them * - they must be a multiple of the page size * - it's inconvenient to have them bigger than pages, because we often want * just one page * May as well require them to be equal then. */ #if CLICK_SIZE != I386_PAGE_SIZE #error CLICK_SIZE must be page size. #endif /* Bytes of virtual address space one pde controls. */ #define BYTESPERPDE (I386_VM_PT_ENTRIES * I386_PAGE_SIZE) /* Nevertheless, introduce these macros to make the code readable. */ #define CLICK2PAGE(c) ((c) / CLICKSPERPAGE) /* Page table that contains pointers to all page directories. */ u32_t page_directories_phys, *page_directories = NULL; #if SANITYCHECKS #define PT_SANE(p) { pt_sanitycheck((p), __FILE__, __LINE__); SANITYCHECK(SCL_DETAIL); } /*===========================================================================* * pt_sanitycheck * *===========================================================================*/ PUBLIC void pt_sanitycheck(pt_t *pt, char *file, int line) { /* Basic pt sanity check. */ int i; MYASSERT(pt); MYASSERT(pt->pt_dir); MYASSERT(pt->pt_dir_phys); for(i = 0; i < I386_VM_DIR_ENTRIES; i++) { if(pt->pt_pt[i]) { MYASSERT(pt->pt_dir[i] & I386_VM_PRESENT); } else { MYASSERT(!(pt->pt_dir[i] & I386_VM_PRESENT)); } } } #else #define PT_SANE(p) #endif /*===========================================================================* * aalloc * *===========================================================================*/ PRIVATE void *aalloc(size_t bytes) { /* Page-aligned malloc(). only used if vm_allocpages can't be used. */ u32_t b; b = (u32_t) malloc(I386_PAGE_SIZE + bytes); if(!b) vm_panic("aalloc: out of memory", bytes); b += I386_PAGE_SIZE - (b % I386_PAGE_SIZE); return (void *) b; } /*===========================================================================* * findhole * *===========================================================================*/ PRIVATE u32_t findhole(pt_t *pt, u32_t virbytes, u32_t vmin, u32_t vmax) { /* Find a space in the virtual address space of pageteble 'pt', * between page-aligned BYTE offsets vmin and vmax, to fit * 'virbytes' in. Return byte offset. * * As a simple way to speed up the search a bit, we start searching * after the location we found the previous hole, if that's in range. * If that's not in range (or if that doesn't work), search the entire * range (as well). try_restart controls whether we have to restart * the search if it fails. (Just once of course.) */ u32_t freeneeded, freefound = 0, freestart = 0, curv; int pde = 0, try_restart; /* Input sanity check. */ vm_assert(vmin + virbytes >= vmin); vm_assert(vmax >= vmin + virbytes); vm_assert((virbytes % I386_PAGE_SIZE) == 0); vm_assert((vmin % I386_PAGE_SIZE) == 0); vm_assert((vmax % I386_PAGE_SIZE) == 0); /* How many pages do we need? */ freeneeded = virbytes / I386_PAGE_SIZE; if(pt->pt_virtop >= vmin && pt->pt_virtop <= vmax - virbytes) { curv = pt->pt_virtop; try_restart = 1; } else { curv = vmin; try_restart = 0; } /* Start looking for a consecutive block of free pages * starting at vmin. */ for(freestart = curv; curv < vmax; ) { int pte; pde = I386_VM_PDE(curv); pte = I386_VM_PTE(curv); if(!(pt->pt_dir[pde] & I386_VM_PRESENT)) { int rempte; rempte = I386_VM_PT_ENTRIES - pte; freefound += rempte; curv += rempte * I386_PAGE_SIZE; } else { if(pt->pt_pt[pde][pte] & I386_VM_PRESENT) { freefound = 0; freestart = curv + I386_PAGE_SIZE; } else { freefound++; } curv+=I386_PAGE_SIZE; } if(freefound >= freeneeded) { u32_t v; v = freestart; vm_assert(v != NO_MEM); vm_assert(v >= vmin); vm_assert(v < vmax); /* Next time, start looking here. */ pt->pt_virtop = v + virbytes; return v; } if(curv >= vmax && try_restart) { curv = vmin; try_restart = 0; } } printf("VM: out of virtual address space in a process\n"); return NO_MEM; } /*===========================================================================* * vm_freepages * *===========================================================================*/ PRIVATE void vm_freepages(vir_bytes vir, vir_bytes phys, int pages, int reason) { vm_assert(reason >= 0 && reason < VMP_CATEGORIES); if(vir >= vmp->vm_stacktop) { vm_assert(!(vir % I386_PAGE_SIZE)); vm_assert(!(phys % I386_PAGE_SIZE)); FREE_MEM(ABS2CLICK(phys), pages); if(pt_writemap(&vmp->vm_pt, arch_vir2map(vmp, vir), MAP_NONE, pages*I386_PAGE_SIZE, 0, WMF_OVERWRITE) != OK) vm_panic("vm_freepages: pt_writemap failed", NO_NUM); } else { printf("VM: vm_freepages not freeing VM heap pages (%d)\n", pages); } } /*===========================================================================* * vm_getsparepage * *===========================================================================*/ PRIVATE void *vm_getsparepage(u32_t *phys) { int s; vm_assert(missing_spares >= 0 && missing_spares <= SPAREPAGES); for(s = 0; s < SPAREPAGES; s++) { if(sparepages[s].page) { void *sp; sp = sparepages[s].page; *phys = sparepages[s].phys; sparepages[s].page = NULL; missing_spares++; vm_assert(missing_spares >= 0 && missing_spares <= SPAREPAGES); return sp; } } vm_panic("VM: out of spare pages", NO_NUM); return NULL; } /*===========================================================================* * vm_checkspares * *===========================================================================*/ PRIVATE void *vm_checkspares(void) { int s, n = 0; static int total = 0, worst = 0; vm_assert(missing_spares >= 0 && missing_spares <= SPAREPAGES); for(s = 0; s < SPAREPAGES && missing_spares > 0; s++) if(!sparepages[s].page) { n++; sparepages[s].page = vm_allocpages(&sparepages[s].phys, 1, VMP_SPARE); missing_spares--; vm_assert(missing_spares >= 0 && missing_spares <= SPAREPAGES); } if(worst < n) worst = n; total += n; #if 0 if(n > 0) printf("VM: made %d spares, total %d, worst %d\n", n, total, worst); #endif return NULL; } /*===========================================================================* * vm_allocpages * *===========================================================================*/ PUBLIC void *vm_allocpages(phys_bytes *phys, int pages, int reason) { /* Allocate a number of pages for use by VM itself. */ phys_bytes newpage; vir_bytes loc; pt_t *pt; int r; vir_bytes bytes = pages * I386_PAGE_SIZE; static int level = 0; #define MAXDEPTH 10 static int reasons[MAXDEPTH]; pt = &vmp->vm_pt; vm_assert(reason >= 0 && reason < VMP_CATEGORIES); vm_assert(pages > 0); reasons[level++] = reason; vm_assert(level >= 1); vm_assert(level <= 2); if(level > 1 || !(vmp->vm_flags & VMF_HASPT)) { int r; void *s; vm_assert(pages == 1); s=vm_getsparepage(phys); level--; return s; } /* VM does have a pagetable, so get a page and map it in there. * Where in our virtual address space can we put it? */ loc = findhole(pt, I386_PAGE_SIZE * pages, arch_vir2map(vmp, vmp->vm_stacktop), vmp->vm_arch.vm_data_top); if(loc == NO_MEM) { level--; return NULL; } /* Allocate 'pages' pages of memory for use by VM. As VM * is trusted, we don't have to pre-clear it. */ if((newpage = ALLOC_MEM(CLICKSPERPAGE * pages, 0)) == NO_MEM) { level--; return NULL; } *phys = CLICK2ABS(newpage); /* Map this page into our address space. */ if((r=pt_writemap(pt, loc, *phys, bytes, I386_VM_PRESENT | I386_VM_USER | I386_VM_WRITE, 0)) != OK) { FREE_MEM(newpage, CLICKSPERPAGE * pages / I386_PAGE_SIZE); return NULL; } level--; /* Return user-space-ready pointer to it. */ return (void *) arch_map2vir(vmp, loc); } /*===========================================================================* * pt_ptalloc * *===========================================================================*/ PRIVATE int pt_ptalloc(pt_t *pt, int pde, u32_t flags) { /* Allocate a page table and write its address into the page directory. */ int i; u32_t pt_phys; /* Argument must make sense. */ vm_assert(pde >= 0 && pde < I386_VM_DIR_ENTRIES); vm_assert(!(flags & ~(PTF_ALLFLAGS | PTF_MAPALLOC))); /* We don't expect to overwrite page directory entry, nor * storage for the page table. */ vm_assert(!(pt->pt_dir[pde] & I386_VM_PRESENT)); vm_assert(!pt->pt_pt[pde]); PT_SANE(pt); /* Get storage for the page table. */ if(!(pt->pt_pt[pde] = vm_allocpages(&pt_phys, 1, VMP_PAGETABLE))) return ENOMEM; for(i = 0; i < I386_VM_PT_ENTRIES; i++) pt->pt_pt[pde][i] = 0; /* Empty entry. */ /* Make page directory entry. * The PDE is always 'present,' 'writable,' and 'user accessible,' * relying on the PTE for protection. */ pt->pt_dir[pde] = (pt_phys & I386_VM_ADDR_MASK) | flags | I386_VM_PRESENT | I386_VM_USER | I386_VM_WRITE; vm_assert(flags & I386_VM_PRESENT); PT_SANE(pt); return OK; } /*===========================================================================* * pt_writemap * *===========================================================================*/ PUBLIC int pt_writemap(pt_t *pt, vir_bytes v, phys_bytes physaddr, size_t bytes, u32_t flags, u32_t writemapflags) { /* Write mapping into page table. Allocate a new page table if necessary. */ /* Page directory and table entries for this virtual address. */ int p, pages, pde; int finalpde; SANITYCHECK(SCL_FUNCTIONS); vm_assert(!(bytes % I386_PAGE_SIZE)); vm_assert(!(flags & ~(PTF_ALLFLAGS | PTF_MAPALLOC))); pages = bytes / I386_PAGE_SIZE; /* MAP_NONE means to clear the mapping. It doesn't matter * what's actually written into the PTE if I386_VM_PRESENT * isn't on, so we can just write MAP_NONE into it. */ #if SANITYCHECKS if(physaddr != MAP_NONE && !(flags & I386_VM_PRESENT)) { vm_panic("pt_writemap: writing dir with !P\n", NO_NUM); } if(physaddr == MAP_NONE && flags) { vm_panic("pt_writemap: writing 0 with flags\n", NO_NUM); } #endif PT_SANE(pt); finalpde = I386_VM_PDE(v + I386_PAGE_SIZE * pages); /* First make sure all the necessary page tables are allocated, * before we start writing in any of them, because it's a pain * to undo our work properly. Walk the range in page-directory-entry * sized leaps. */ for(pde = I386_VM_PDE(v); pde <= finalpde; pde++) { vm_assert(pde >= 0 && pde < I386_VM_DIR_ENTRIES); if(pt->pt_dir[pde] & I386_VM_BIGPAGE) { vm_panic("pt_writemap: BIGPAGE found", NO_NUM); } if(!(pt->pt_dir[pde] & I386_VM_PRESENT)) { int r; vm_assert(!pt->pt_dir[pde]); if((r=pt_ptalloc(pt, pde, flags)) != OK) { /* Couldn't do (complete) mapping. * Don't bother freeing any previously * allocated page tables, they're * still writable, don't point to nonsense, * and pt_ptalloc leaves the directory * and other data in a consistent state. */ return r; } } vm_assert(pt->pt_dir[pde] & I386_VM_PRESENT); } PT_SANE(pt); /* Now write in them. */ for(p = 0; p < pages; p++) { int pde = I386_VM_PDE(v); int pte = I386_VM_PTE(v); PT_SANE(pt); vm_assert(!(v % I386_PAGE_SIZE)); vm_assert(pte >= 0 && pte < I386_VM_PT_ENTRIES); vm_assert(pde >= 0 && pde < I386_VM_DIR_ENTRIES); /* Page table has to be there. */ vm_assert(pt->pt_dir[pde] & I386_VM_PRESENT); /* Make sure page directory entry for this page table * is marked present and page table entry is available. */ vm_assert((pt->pt_dir[pde] & I386_VM_PRESENT) && pt->pt_pt[pde]); PT_SANE(pt); #if SANITYCHECKS /* We don't expect to overwrite a page. */ if(!(writemapflags & WMF_OVERWRITE)) vm_assert(!(pt->pt_pt[pde][pte] & I386_VM_PRESENT)); #endif /* Write pagetable entry. */ pt->pt_pt[pde][pte] = (physaddr & I386_VM_ADDR_MASK) | flags; physaddr += I386_PAGE_SIZE; v += I386_PAGE_SIZE; PT_SANE(pt); } SANITYCHECK(SCL_FUNCTIONS); PT_SANE(pt); return OK; } /*===========================================================================* * pt_new * *===========================================================================*/ PUBLIC int pt_new(pt_t *pt) { /* Allocate a pagetable root. On i386, allocate a page-aligned page directory * and set them to 0 (indicating no page tables are allocated). Lookup * its physical address as we'll need that in the future. Verify it's * page-aligned. */ int i; if(!(pt->pt_dir = vm_allocpages(&pt->pt_dir_phys, 1, VMP_PAGEDIR))) { return ENOMEM; } for(i = 0; i < I386_VM_DIR_ENTRIES; i++) { pt->pt_dir[i] = 0; /* invalid entry (I386_VM_PRESENT bit = 0) */ pt->pt_pt[i] = NULL; } /* Where to start looking for free virtual address space? */ pt->pt_virtop = 0; /* Map in kernel. */ if(pt_mapkernel(pt) != OK) vm_panic("pt_new: pt_mapkernel failed", NO_NUM); return OK; } /*===========================================================================* * pt_init * *===========================================================================*/ PUBLIC void pt_init(void) { /* By default, the kernel gives us a data segment with pre-allocated * memory that then can't grow. We want to be able to allocate memory * dynamically, however. So here we copy the part of the page table * that's ours, so we get a private page table. Then we increase the * hardware segment size so we can allocate memory above our stack. */ pt_t *newpt; int s, r; vir_bytes v; phys_bytes lo, hi; vir_bytes extra_clicks; u32_t moveup = 0; global_bit_ok = _cpufeature(_CPUF_I386_PGE); bigpage_ok = _cpufeature(_CPUF_I386_PSE); /* Shorthand. */ newpt = &vmp->vm_pt; /* Get ourselves a spare page. */ for(s = 0; s < SPAREPAGES; s++) { if(!(sparepages[s].page = aalloc(I386_PAGE_SIZE))) vm_panic("pt_init: aalloc for spare failed", NO_NUM); if((r=sys_umap(SELF, VM_D, (vir_bytes) sparepages[s].page, I386_PAGE_SIZE, &sparepages[s].phys)) != OK) vm_panic("pt_init: sys_umap failed", r); } missing_spares = 0; /* Make new page table for ourselves, partly copied * from the current one. */ if(pt_new(newpt) != OK) vm_panic("pt_init: pt_new failed", NO_NUM); /* Initial (current) range of our virtual address space. */ lo = CLICK2ABS(vmp->vm_arch.vm_seg[T].mem_phys); hi = CLICK2ABS(vmp->vm_arch.vm_seg[S].mem_phys + vmp->vm_arch.vm_seg[S].mem_len); vm_assert(!(lo % I386_PAGE_SIZE)); vm_assert(!(hi % I386_PAGE_SIZE)); if(lo < VM_PROCSTART) { moveup = VM_PROCSTART - lo; vm_assert(!(VM_PROCSTART % I386_PAGE_SIZE)); vm_assert(!(lo % I386_PAGE_SIZE)); vm_assert(!(moveup % I386_PAGE_SIZE)); } /* Set up mappings for VM process. */ for(v = lo; v < hi; v += I386_PAGE_SIZE) { phys_bytes addr; u32_t flags; /* We have to write the old and new position in the PT, * so we can move our segments. */ if(pt_writemap(newpt, v+moveup, v, I386_PAGE_SIZE, I386_VM_PRESENT|I386_VM_WRITE|I386_VM_USER, 0) != OK) vm_panic("pt_init: pt_writemap failed", NO_NUM); if(pt_writemap(newpt, v, v, I386_PAGE_SIZE, I386_VM_PRESENT|I386_VM_WRITE|I386_VM_USER, 0) != OK) vm_panic("pt_init: pt_writemap failed", NO_NUM); } /* Move segments up too. */ vmp->vm_arch.vm_seg[T].mem_phys += ABS2CLICK(moveup); vmp->vm_arch.vm_seg[D].mem_phys += ABS2CLICK(moveup); vmp->vm_arch.vm_seg[S].mem_phys += ABS2CLICK(moveup); #if 0 /* Map in kernel. */ if(pt_mapkernel(newpt) != OK) vm_panic("pt_init: pt_mapkernel failed", NO_NUM); /* Allocate us a page table in which to remember page directory * pointers. */ if(!(page_directories = vm_allocpages(&page_directories_phys, 1, VMP_PAGETABLE))) vm_panic("no virt addr for vm mappings", NO_NUM); #endif /* Give our process the new, copied, private page table. */ pt_bind(newpt, vmp); /* Increase our hardware data segment to create virtual address * space above our stack. We want to increase it to VM_DATATOP, * like regular processes have. */ extra_clicks = ABS2CLICK(VM_DATATOP - hi); vmp->vm_arch.vm_seg[S].mem_len += extra_clicks; /* We pretend to the kernel we have a huge stack segment to * increase our data segment. */ vmp->vm_arch.vm_data_top = (vmp->vm_arch.vm_seg[S].mem_vir + vmp->vm_arch.vm_seg[S].mem_len) << CLICK_SHIFT; if((s=sys_newmap(VM_PROC_NR, vmp->vm_arch.vm_seg)) != OK) vm_panic("VM: pt_init: sys_newmap failed", s); /* Back to reality - this is where the stack actually is. */ vmp->vm_arch.vm_seg[S].mem_len -= extra_clicks; /* Wipe old mappings from VM. */ for(v = lo; v < hi; v += I386_PAGE_SIZE) { if(pt_writemap(newpt, v, MAP_NONE, I386_PAGE_SIZE, 0, WMF_OVERWRITE) != OK) vm_panic("pt_init: pt_writemap failed", NO_NUM); } /* Where our free virtual address space starts. * This is only a hint to the VM system. */ newpt->pt_virtop = 0; /* Let other functions know VM now has a private page table. */ vmp->vm_flags |= VMF_HASPT; /* Reserve a page in our virtual address space that we * can use to map in arbitrary physical pages. */ varmap_loc = findhole(newpt, I386_PAGE_SIZE, arch_vir2map(vmp, vmp->vm_stacktop), vmp->vm_arch.vm_data_top); if(varmap_loc == NO_MEM) { vm_panic("no virt addr for vm mappings", NO_NUM); } varmap = (unsigned char *) arch_map2vir(vmp, varmap_loc); /* All OK. */ return; } /*===========================================================================* * pt_bind * *===========================================================================*/ PUBLIC int pt_bind(pt_t *pt, struct vmproc *who) { int slot; /* Basic sanity checks. */ vm_assert(who); vm_assert(who->vm_flags & VMF_INUSE); if(pt) PT_SANE(pt); vm_assert(pt); #if 0 slot = who->vm_slot; vm_assert(slot >= 0); vm_assert(slot < ELEMENTS(vmproc)); vm_assert(!(pt->pt_dir_phys & ~I386_VM_ADDR_MASK)); page_directories[slot] = (pt->pt_dir_phys & I386_VM_ADDR_MASK) | (I386_VM_PRESENT|I386_VM_WRITE); #endif /* Tell kernel about new page table root. */ return sys_vmctl(who->vm_endpoint, VMCTL_I386_SETCR3, pt ? pt->pt_dir_phys : 0); } /*===========================================================================* * pt_free * *===========================================================================*/ PUBLIC void pt_free(pt_t *pt) { /* Free memory associated with this pagetable. */ int i; PT_SANE(pt); for(i = 0; i < I386_VM_DIR_ENTRIES; i++) { int p; if(pt->pt_pt[i]) { for(p = 0; p < I386_VM_PT_ENTRIES; p++) { if((pt->pt_pt[i][p] & (PTF_MAPALLOC | I386_VM_PRESENT)) == (PTF_MAPALLOC | I386_VM_PRESENT)) { u32_t pa = I386_VM_PFA(pt->pt_pt[i][p]); FREE_MEM(ABS2CLICK(pa), CLICKSPERPAGE); } } vm_freepages((vir_bytes) pt->pt_pt[i], I386_VM_PFA(pt->pt_dir[i]), 1, VMP_PAGETABLE); } } vm_freepages((vir_bytes) pt->pt_dir, pt->pt_dir_phys, 1, VMP_PAGEDIR); return; } /*===========================================================================* * pt_mapkernel * *===========================================================================*/ PUBLIC int pt_mapkernel(pt_t *pt) { int r; static int pde = -1, do_bigpage = 0; u32_t global = 0; static u32_t kern_phys; static int printed = 0; if(global_bit_ok) global = I386_VM_GLOBAL; /* Any i386 page table needs to map in the kernel address space. */ vm_assert(vmproc[VMP_SYSTEM].vm_flags & VMF_INUSE); if(pde == -1 && bigpage_ok) { int pde1, pde2; pde1 = I386_VM_PDE(KERNEL_TEXT); pde2 = I386_VM_PDE(KERNEL_DATA+KERNEL_DATA_LEN); if(pde1 != pde2) { printf("VM: pt_mapkernel: kernel too big?"); bigpage_ok = 0; } else { kern_phys = KERNEL_TEXT & I386_VM_ADDR_MASK_4MB; pde = pde1; do_bigpage = 1; vm_assert(pde >= 0); } } if(do_bigpage) { pt->pt_dir[pde] = kern_phys | I386_VM_BIGPAGE|I386_VM_PRESENT|I386_VM_WRITE|global; } else { /* Map in text. flags: don't write, supervisor only */ if((r=pt_writemap(pt, KERNEL_TEXT, KERNEL_TEXT, KERNEL_TEXT_LEN, I386_VM_PRESENT|global, 0)) != OK) return r; /* Map in data. flags: read-write, supervisor only */ if((r=pt_writemap(pt, KERNEL_DATA, KERNEL_DATA, KERNEL_DATA_LEN, I386_VM_PRESENT|I386_VM_WRITE|global, 0)) != OK) return r; } return OK; } /*===========================================================================* * pt_freerange * *===========================================================================*/ PUBLIC void pt_freerange(pt_t *pt, vir_bytes low, vir_bytes high) { /* Free memory allocated by pagetable functions in this range. */ int pde; u32_t v; PT_SANE(pt); for(v = low; v < high; v += I386_PAGE_SIZE) { int pte; pde = I386_VM_PDE(v); pte = I386_VM_PTE(v); if(!(pt->pt_dir[pde] & I386_VM_PRESENT)) continue; if((pt->pt_pt[pde][pte] & (PTF_MAPALLOC | I386_VM_PRESENT)) == (PTF_MAPALLOC | I386_VM_PRESENT)) { u32_t pa = I386_VM_PFA(pt->pt_pt[pde][pte]); FREE_MEM(ABS2CLICK(pa), CLICKSPERPAGE); pt->pt_pt[pde][pte] = 0; } } PT_SANE(pt); return; } /*===========================================================================* * pt_cycle * *===========================================================================*/ PUBLIC void pt_cycle(void) { vm_checkspares(); } /* In sanity check mode, pages are mapped and unmapped explicitly, so * unexpected double mappings (overwriting a page table entry) are caught. * If not sanity checking, simply keep the page mapped in and overwrite * the mapping entry; we need WMF_OVERWRITE for that in PHYS_MAP though. */ #if SANITYCHECKS #define MAPFLAGS 0 #else #define MAPFLAGS WMF_OVERWRITE #endif static u32_t ismapped = MAP_NONE; #define PHYS_MAP(a, o) \ { int r; \ u32_t wantmapped; \ vm_assert(varmap); \ (o) = (a) % I386_PAGE_SIZE; \ wantmapped = (a) - (o); \ if(wantmapped != ismapped || ismapped == MAP_NONE) { \ r = pt_writemap(&vmp->vm_pt, (vir_bytes) varmap_loc, \ wantmapped, I386_PAGE_SIZE, \ I386_VM_PRESENT | I386_VM_USER | I386_VM_WRITE, \ MAPFLAGS); \ if(r != OK) \ vm_panic("PHYS_MAP: pt_writemap", NO_NUM); \ ismapped = wantmapped; \ /* pt_bind() flushes TLB. */ \ pt_bind(&vmp->vm_pt, vmp); \ } \ } #define PHYSMAGIC 0x7b9a0590 #if SANITYCHECKS #define PHYS_UNMAP if(OK != pt_writemap(&vmp->vm_pt, varmap_loc, MAP_NONE,\ I386_PAGE_SIZE, 0, WMF_OVERWRITE)) { \ vm_panic("PHYS_UNMAP: pt_writemap failed", NO_NUM); } ismapped = MAP_NONE; #endif #define PHYS_VAL(o) (* (phys_bytes *) (varmap + (o))) /*===========================================================================* * phys_writeaddr * *===========================================================================*/ PUBLIC void phys_writeaddr(phys_bytes addr, phys_bytes v1, phys_bytes v2) { phys_bytes offset; SANITYCHECK(SCL_DETAIL); PHYS_MAP(addr, offset); PHYS_VAL(offset) = v1; PHYS_VAL(offset + sizeof(phys_bytes)) = v2; #if SANITYCHECKS PHYS_VAL(offset + 2*sizeof(phys_bytes)) = PHYSMAGIC; PHYS_UNMAP; #endif SANITYCHECK(SCL_DETAIL); } /*===========================================================================* * phys_readaddr * *===========================================================================*/ PUBLIC void phys_readaddr(phys_bytes addr, phys_bytes *v1, phys_bytes *v2) { phys_bytes offset; SANITYCHECK(SCL_DETAIL); PHYS_MAP(addr, offset); *v1 = PHYS_VAL(offset); *v2 = PHYS_VAL(offset + sizeof(phys_bytes)); #if SANITYCHECKS vm_assert(PHYS_VAL(offset + 2*sizeof(phys_bytes)) == PHYSMAGIC); PHYS_UNMAP; #endif SANITYCHECK(SCL_DETAIL); }