#include "../../kernel.h" #include "../../proc.h" #include "../../vm.h" #include #include #include #include #include #include #include "proto.h" #include "../../proto.h" #include "../../debug.h" /* VM functions and data. */ PRIVATE u32_t vm_cr3; PUBLIC u32_t kernel_cr3; extern u32_t cswitch; u32_t last_cr3 = 0; FORWARD _PROTOTYPE( void phys_put32, (phys_bytes addr, u32_t value) ); FORWARD _PROTOTYPE( u32_t phys_get32, (phys_bytes addr) ); FORWARD _PROTOTYPE( void vm_set_cr3, (u32_t value) ); FORWARD _PROTOTYPE( void set_cr3, (void) ); FORWARD _PROTOTYPE( void vm_enable_paging, (void) ); #if DEBUG_VMASSERT #define vmassert(t) { \ if(!(t)) { minix_panic("vm: assert " #t " failed\n", __LINE__); } } #else #define vmassert(t) { } #endif /* *** Internal VM Functions *** */ PUBLIC void vm_init(void) { int o; phys_bytes p, pt_size; phys_bytes vm_dir_base, vm_pt_base, phys_mem; u32_t entry; unsigned pages; struct proc* rp; struct proc *sys = proc_addr(SYSTEM); if (!vm_size) minix_panic("i386_vm_init: no space for page tables", NO_NUM); if(vm_running) return; /* Align page directory */ o= (vm_base % I386_PAGE_SIZE); if (o != 0) o= I386_PAGE_SIZE-o; vm_dir_base= vm_base+o; /* Page tables start after the page directory */ vm_pt_base= vm_dir_base+I386_PAGE_SIZE; pt_size= (vm_base+vm_size)-vm_pt_base; pt_size -= (pt_size % I386_PAGE_SIZE); /* Compute the number of pages based on vm_mem_high */ pages= (vm_mem_high-1)/I386_PAGE_SIZE + 1; if (pages * I386_VM_PT_ENT_SIZE > pt_size) minix_panic("i386_vm_init: page table too small", NO_NUM); for (p= 0; p*I386_VM_PT_ENT_SIZE < pt_size; p++) { phys_mem= p*I386_PAGE_SIZE; entry= phys_mem | I386_VM_USER | I386_VM_WRITE | I386_VM_PRESENT; if (phys_mem >= vm_mem_high) entry= 0; #if VM_KERN_NOPAGEZERO if (phys_mem == (sys->p_memmap[T].mem_phys << CLICK_SHIFT) || phys_mem == (sys->p_memmap[D].mem_phys << CLICK_SHIFT)) { entry = 0; } #endif phys_put32(vm_pt_base + p*I386_VM_PT_ENT_SIZE, entry); } for (p= 0; p < I386_VM_DIR_ENTRIES; p++) { phys_mem= vm_pt_base + p*I386_PAGE_SIZE; entry= phys_mem | I386_VM_USER | I386_VM_WRITE | I386_VM_PRESENT; if (phys_mem >= vm_pt_base + pt_size) entry= 0; phys_put32(vm_dir_base + p*I386_VM_PT_ENT_SIZE, entry); } /* Set this cr3 in all currently running processes for * future context switches. */ for (rp=BEG_PROC_ADDR; rpp_seg.p_cr3 = vm_dir_base; } kernel_cr3 = vm_dir_base; /* Set this cr3 now (not active until paging enabled). */ vm_set_cr3(vm_dir_base); /* Actually enable paging (activating cr3 load above). */ level0(vm_enable_paging); /* Don't do this init in the future. */ vm_running = 1; } PRIVATE void phys_put32(addr, value) phys_bytes addr; u32_t value; { phys_copy(vir2phys((vir_bytes)&value), addr, sizeof(value)); } PRIVATE u32_t phys_get32(addr) phys_bytes addr; { u32_t value; phys_copy(addr, vir2phys((vir_bytes)&value), sizeof(value)); return value; } PRIVATE void vm_set_cr3(value) u32_t value; { vm_cr3= value; level0(set_cr3); } PRIVATE void set_cr3() { write_cr3(vm_cr3); } PRIVATE void vm_enable_paging(void) { u32_t cr0, cr4; cr0= read_cr0(); cr4= read_cr4(); /* First clear PG and PGE flag, as PGE must be enabled after PG. */ write_cr0(cr0 & ~I386_CR0_PG); write_cr4(cr4 & ~I386_CR4_PGE); cr0= read_cr0(); cr4= read_cr4(); /* First enable paging, then enable global page flag. */ write_cr0(cr0 | I386_CR0_PG); write_cr4(cr4 | I386_CR4_PGE); } PUBLIC vir_bytes alloc_remote_segment(u32_t *selector, segframe_t *segments, int index, phys_bytes phys, vir_bytes size, int priv) { phys_bytes offset = 0; /* Check if the segment size can be recorded in bytes, that is, check * if descriptor's limit field can delimited the allowed memory region * precisely. This works up to 1MB. If the size is larger, 4K pages * instead of bytes are used. */ if (size < BYTE_GRAN_MAX) { init_dataseg(&segments->p_ldt[EXTRA_LDT_INDEX+index], phys, size, priv); *selector = ((EXTRA_LDT_INDEX+index)*0x08) | (1*0x04) | priv; offset = 0; } else { init_dataseg(&segments->p_ldt[EXTRA_LDT_INDEX+index], phys & ~0xFFFF, 0, priv); *selector = ((EXTRA_LDT_INDEX+index)*0x08) | (1*0x04) | priv; offset = phys & 0xFFFF; } return offset; } PUBLIC phys_bytes umap_remote(struct proc* rp, int seg, vir_bytes vir_addr, vir_bytes bytes) { /* Calculate the physical memory address for a given virtual address. */ struct far_mem *fm; #if 0 if(rp->p_misc_flags & MF_FULLVM) return 0; #endif if (bytes <= 0) return( (phys_bytes) 0); if (seg < 0 || seg >= NR_REMOTE_SEGS) return( (phys_bytes) 0); fm = &rp->p_priv->s_farmem[seg]; if (! fm->in_use) return( (phys_bytes) 0); if (vir_addr + bytes > fm->mem_len) return( (phys_bytes) 0); return(fm->mem_phys + (phys_bytes) vir_addr); } /*===========================================================================* * umap_local * *===========================================================================*/ PUBLIC phys_bytes umap_local(rp, seg, vir_addr, bytes) register struct proc *rp; /* pointer to proc table entry for process */ int seg; /* T, D, or S segment */ vir_bytes vir_addr; /* virtual address in bytes within the seg */ vir_bytes bytes; /* # of bytes to be copied */ { /* Calculate the physical memory address for a given virtual address. */ vir_clicks vc; /* the virtual address in clicks */ phys_bytes pa; /* intermediate variables as phys_bytes */ phys_bytes seg_base; if(seg != T && seg != D && seg != S) minix_panic("umap_local: wrong seg", seg); if (bytes <= 0) return( (phys_bytes) 0); if (vir_addr + bytes <= vir_addr) return 0; /* overflow */ vc = (vir_addr + bytes - 1) >> CLICK_SHIFT; /* last click of data */ if (seg != T) seg = (vc < rp->p_memmap[D].mem_vir + rp->p_memmap[D].mem_len ? D : S); if ((vir_addr>>CLICK_SHIFT) >= rp->p_memmap[seg].mem_vir + rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 ); if (vc >= rp->p_memmap[seg].mem_vir + rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 ); seg_base = (phys_bytes) rp->p_memmap[seg].mem_phys; seg_base = seg_base << CLICK_SHIFT; /* segment origin in bytes */ pa = (phys_bytes) vir_addr; pa -= rp->p_memmap[seg].mem_vir << CLICK_SHIFT; return(seg_base + pa); } /*===========================================================================* * umap_virtual * *===========================================================================*/ PUBLIC phys_bytes umap_virtual(rp, seg, vir_addr, bytes) register struct proc *rp; /* pointer to proc table entry for process */ int seg; /* T, D, or S segment */ vir_bytes vir_addr; /* virtual address in bytes within the seg */ vir_bytes bytes; /* # of bytes to be copied */ { vir_bytes linear; u32_t phys = 0; if(seg == MEM_GRANT) { phys = umap_grant(rp, vir_addr, bytes); } else { if(!(linear = umap_local(rp, seg, vir_addr, bytes))) { kprintf("SYSTEM:umap_virtual: umap_local failed\n"); phys = 0; } else { if(vm_lookup(rp, linear, &phys, NULL) != OK) { kprintf("SYSTEM:umap_virtual: vm_lookup of %s: seg 0x%lx: 0x%lx failed\n", rp->p_name, seg, vir_addr); phys = 0; } if(phys == 0) minix_panic("vm_lookup returned phys", phys); } } if(phys == 0) { kprintf("SYSTEM:umap_virtual: lookup failed\n"); return 0; } /* Now make sure addresses are contiguous in physical memory * so that the umap makes sense. */ if(bytes > 0 && !vm_contiguous(rp, linear, bytes)) { kprintf("umap_virtual: %s: %d at 0x%lx (vir 0x%lx) not contiguous\n", rp->p_name, bytes, linear, vir_addr); return 0; } /* phys must be larger than 0 (or the caller will think the call * failed), and address must not cross a page boundary. */ vmassert(phys); return phys; } /*===========================================================================* * vm_lookup * *===========================================================================*/ PUBLIC int vm_lookup(struct proc *proc, vir_bytes virtual, vir_bytes *physical, u32_t *ptent) { u32_t *root, *pt; int pde, pte; u32_t pde_v, pte_v; vmassert(proc); vmassert(physical); vmassert(!(proc->p_rts_flags & SLOT_FREE)); /* Retrieve page directory entry. */ root = (u32_t *) proc->p_seg.p_cr3; vmassert(!((u32_t) root % I386_PAGE_SIZE)); pde = I386_VM_PDE(virtual); vmassert(pde >= 0 && pde < I386_VM_DIR_ENTRIES); pde_v = phys_get32((u32_t) (root + pde)); if(!(pde_v & I386_VM_PRESENT)) { #if 0 kprintf("vm_lookup: %d:%s:0x%lx: cr3 0x%lx: pde %d not present\n", proc->p_endpoint, proc->p_name, virtual, root, pde); kprintf("kernel stack: "); util_stacktrace(); #endif return EFAULT; } /* Retrieve page table entry. */ pt = (u32_t *) I386_VM_PFA(pde_v); vmassert(!((u32_t) pt % I386_PAGE_SIZE)); pte = I386_VM_PTE(virtual); vmassert(pte >= 0 && pte < I386_VM_PT_ENTRIES); pte_v = phys_get32((u32_t) (pt + pte)); if(!(pte_v & I386_VM_PRESENT)) { #if 0 kprintf("vm_lookup: %d:%s:0x%lx: cr3 %lx: pde %d: pte %d not present\n", proc->p_endpoint, proc->p_name, virtual, root, pde, pte); kprintf("kernel stack: "); util_stacktrace(); #endif return EFAULT; } if(ptent) *ptent = pte_v; /* Actual address now known; retrieve it and add page offset. */ *physical = I386_VM_PFA(pte_v); *physical += virtual % I386_PAGE_SIZE; return OK; } /* From virtual address v in process p, * lookup physical address and assign it to d. * If p is NULL, assume it's already a physical address. */ #define LOOKUP(d, p, v, flagsp) { \ int r; \ if(!(p)) { (d) = (v); } \ else { \ if((r=vm_lookup((p), (v), &(d), flagsp)) != OK) { \ kprintf("vm_copy: lookup failed of 0x%lx in %d (%s)\n"\ "kernel stacktrace: ", (v), (p)->p_endpoint, \ (p)->p_name); \ util_stacktrace(); \ return r; \ } } } /*===========================================================================* * vm_copy * *===========================================================================*/ int vm_copy(vir_bytes src, struct proc *srcproc, vir_bytes dst, struct proc *dstproc, phys_bytes bytes) { #define WRAPS(v) (ULONG_MAX - (v) <= bytes) if(WRAPS(src) || WRAPS(dst)) minix_panic("vm_copy: linear address wraps", NO_NUM); while(bytes > 0) { u32_t n, flags; phys_bytes p_src, p_dst; #define PAGEREMAIN(v) (I386_PAGE_SIZE - ((v) % I386_PAGE_SIZE)) /* We can copy this number of bytes without * crossing a page boundary, but don't copy more * than asked. */ n = MIN(PAGEREMAIN(src), PAGEREMAIN(dst)); n = MIN(n, bytes); vmassert(n > 0); vmassert(n <= I386_PAGE_SIZE); /* Convert both virtual addresses to physical and do * copy. */ LOOKUP(p_src, srcproc, src, NULL); LOOKUP(p_dst, dstproc, dst, &flags); if(!(flags & I386_VM_WRITE)) { kprintf("vm_copy: copying to nonwritable page\n"); kprintf("kernel stack: "); util_stacktrace(); return EFAULT; } phys_copy(p_src, p_dst, n); /* Book number of bytes copied. */ vmassert(bytes >= n); bytes -= n; src += n; dst += n; } return OK; } /*===========================================================================* * vm_contiguous * *===========================================================================*/ PUBLIC int vm_contiguous(struct proc *targetproc, u32_t vir_buf, size_t bytes) { int first = 1, r, boundaries = 0; u32_t prev_phys, po; u32_t prev_vir; vmassert(targetproc); vmassert(bytes > 0); vmassert(vm_running); /* Start and end at page boundary to make logic simpler. */ po = vir_buf % I386_PAGE_SIZE; if(po > 0) { bytes += po; vir_buf -= po; } po = (vir_buf + bytes) % I386_PAGE_SIZE; if(po > 0) bytes += I386_PAGE_SIZE - po; /* Keep going as long as we cross a page boundary. */ while(bytes > 0) { u32_t phys; if((r=vm_lookup(targetproc, vir_buf, &phys, NULL)) != OK) { kprintf("vm_contiguous: vm_lookup failed, %d\n", r); kprintf("kernel stack: "); util_stacktrace(); return 0; } if(!first) { if(prev_phys+I386_PAGE_SIZE != phys) { kprintf("vm_contiguous: no (0x%lx, 0x%lx)\n", prev_phys, phys); kprintf("kernel stack: "); util_stacktrace(); return 0; } } first = 0; prev_phys = phys; prev_vir = vir_buf; vir_buf += I386_PAGE_SIZE; bytes -= I386_PAGE_SIZE; boundaries++; } if(verbose_vm) kprintf("vm_contiguous: yes (%d boundaries tested)\n", boundaries); return 1; } int vm_checkrange_verbose = 0; /*===========================================================================* * vm_checkrange * *===========================================================================*/ PUBLIC int vm_checkrange(struct proc *caller, struct proc *target, vir_bytes vir, vir_bytes bytes, int wrfl, int checkonly) { u32_t flags, po, v; int r; vmassert(vm_running); /* If caller has had a reply to this request, return it. */ if(RTS_ISSET(caller, VMREQUEST)) { if(caller->p_vmrequest.who == target->p_endpoint) { if(caller->p_vmrequest.vmresult == VMSUSPEND) minix_panic("check sees VMSUSPEND?", NO_NUM); RTS_LOCK_UNSET(caller, VMREQUEST); #if 0 kprintf("SYSTEM: vm_checkrange: returning vmresult %d\n", caller->p_vmrequest.vmresult); #endif return caller->p_vmrequest.vmresult; } else { #if 0 kprintf("SYSTEM: vm_checkrange: caller has a request for %d, " "but our target is %d\n", caller->p_vmrequest.who, target->p_endpoint); #endif } } po = vir % I386_PAGE_SIZE; if(po > 0) { vir -= po; bytes += po; } vmassert(target); vmassert(bytes > 0); for(v = vir; v < vir + bytes; v+= I386_PAGE_SIZE) { u32_t phys; /* If page exists and it's writable if desired, we're OK * for this page. */ if(vm_lookup(target, v, &phys, &flags) == OK && !(wrfl && !(flags & I386_VM_WRITE))) { if(vm_checkrange_verbose) { #if 0 kprintf("SYSTEM: checkrange:%s:%d: 0x%lx: write 0x%lx, flags 0x%lx, phys 0x%lx, OK\n", target->p_name, target->p_endpoint, v, wrfl, flags, phys); #endif } continue; } if(vm_checkrange_verbose) { kprintf("SYSTEM: checkrange:%s:%d: 0x%lx: write 0x%lx, flags 0x%lx, phys 0x%lx, NOT OK\n", target->p_name, target->p_endpoint, v, wrfl, flags, phys); } if(checkonly) { return VMSUSPEND; } /* This range is not OK for this process. Set parameters * of the request and notify VM about the pending request. */ if(RTS_ISSET(caller, VMREQUEST)) minix_panic("VMREQUEST already set", caller->p_endpoint); RTS_LOCK_SET(caller, VMREQUEST); /* Set parameters in caller. */ caller->p_vmrequest.writeflag = wrfl; caller->p_vmrequest.start = vir; caller->p_vmrequest.length = bytes; caller->p_vmrequest.who = target->p_endpoint; /* Set caller in target. */ target->p_vmrequest.requestor = caller; /* Connect caller on vmrequest wait queue. */ caller->p_vmrequest.nextrequestor = vmrequest; vmrequest = caller; if(!caller->p_vmrequest.nextrequestor) { int n = 0; struct proc *vmr; for(vmr = vmrequest; vmr; vmr = vmr->p_vmrequest.nextrequestor) n++; soft_notify(VM_PROC_NR); #if 0 kprintf("(%d) ", n); kprintf("%d/%d ", caller->p_endpoint, target->p_endpoint); util_stacktrace(); #endif } #if 0 kprintf("SYSTEM: vm_checkrange: range bad for " "target %s:0x%lx-0x%lx, caller %s\n", target->p_name, vir, vir+bytes, caller->p_name); kprintf("vm_checkrange kernel trace: "); util_stacktrace(); kprintf("target trace: "); proc_stacktrace(target); #endif if(target->p_endpoint == VM_PROC_NR) { kprintf("caller trace: "); proc_stacktrace(caller); kprintf("target trace: "); proc_stacktrace(target); minix_panic("VM ranges should be OK", NO_NUM); } return VMSUSPEND; } return OK; } char *flagstr(u32_t e, int dir) { static char str[80]; strcpy(str, ""); #define FLAG(v) do { if(e & (v)) { strcat(str, #v " "); } } while(0) FLAG(I386_VM_PRESENT); FLAG(I386_VM_WRITE); FLAG(I386_VM_USER); FLAG(I386_VM_PWT); FLAG(I386_VM_PCD); if(dir) FLAG(I386_VM_BIGPAGE); /* Page directory entry only */ else FLAG(I386_VM_DIRTY); /* Page table entry only */ return str; } void vm_pt_print(u32_t *pagetable, u32_t v) { int pte, l = 0; int col = 0; vmassert(!((u32_t) pagetable % I386_PAGE_SIZE)); for(pte = 0; pte < I386_VM_PT_ENTRIES; pte++) { u32_t pte_v, pfa; pte_v = phys_get32((u32_t) (pagetable + pte)); if(!(pte_v & I386_VM_PRESENT)) continue; pfa = I386_VM_PFA(pte_v); kprintf("%4d:%08lx:%08lx ", pte, v + I386_PAGE_SIZE*pte, pfa); col++; if(col == 3) { kprintf("\n"); col = 0; } } if(col > 0) kprintf("\n"); return; } /*===========================================================================* * vm_print * *===========================================================================*/ void vm_print(u32_t *root) { int pde; vmassert(!((u32_t) root % I386_PAGE_SIZE)); for(pde = 0; pde < I386_VM_DIR_ENTRIES; pde++) { u32_t pde_v; u32_t *pte_a; pde_v = phys_get32((u32_t) (root + pde)); if(!(pde_v & I386_VM_PRESENT)) continue; pte_a = (u32_t *) I386_VM_PFA(pde_v); kprintf("%4d: pt %08lx %s\n", pde, pte_a, flagstr(pde_v, 1)); vm_pt_print(pte_a, pde * I386_VM_PT_ENTRIES * I386_PAGE_SIZE); } return; } /*===========================================================================* * virtual_copy_f * *===========================================================================*/ PUBLIC int virtual_copy_f(src_addr, dst_addr, bytes, vmcheck) struct vir_addr *src_addr; /* source virtual address */ struct vir_addr *dst_addr; /* destination virtual address */ vir_bytes bytes; /* # of bytes to copy */ int vmcheck; /* if nonzero, can return VMSUSPEND */ { /* Copy bytes from virtual address src_addr to virtual address dst_addr. * Virtual addresses can be in ABS, LOCAL_SEG, REMOTE_SEG, or BIOS_SEG. */ struct vir_addr *vir_addr[2]; /* virtual source and destination address */ phys_bytes phys_addr[2]; /* absolute source and destination */ int seg_index; int i, r; struct proc *procs[2]; /* Check copy count. */ if (bytes <= 0) return(EDOM); /* Do some more checks and map virtual addresses to physical addresses. */ vir_addr[_SRC_] = src_addr; vir_addr[_DST_] = dst_addr; for (i=_SRC_; i<=_DST_; i++) { int proc_nr, type; struct proc *p; type = vir_addr[i]->segment & SEGMENT_TYPE; if((type != PHYS_SEG && type != BIOS_SEG) && isokendpt(vir_addr[i]->proc_nr_e, &proc_nr)) p = proc_addr(proc_nr); else p = NULL; procs[i] = p; /* Get physical address. */ switch(type) { case LOCAL_SEG: case LOCAL_VM_SEG: if(!p) return EDEADSRCDST; seg_index = vir_addr[i]->segment & SEGMENT_INDEX; if(type == LOCAL_SEG) phys_addr[i] = umap_local(p, seg_index, vir_addr[i]->offset, bytes); else phys_addr[i] = umap_virtual(p, seg_index, vir_addr[i]->offset, bytes); if(phys_addr[i] == 0) { kprintf("virtual_copy: map 0x%x failed for %s seg %d, " "offset %lx, len %d, i %d\n", type, p->p_name, seg_index, vir_addr[i]->offset, bytes, i); } break; case REMOTE_SEG: if(!p) return EDEADSRCDST; seg_index = vir_addr[i]->segment & SEGMENT_INDEX; phys_addr[i] = umap_remote(p, seg_index, vir_addr[i]->offset, bytes); break; #if _MINIX_CHIP == _CHIP_INTEL case BIOS_SEG: phys_addr[i] = umap_bios(vir_addr[i]->offset, bytes ); break; #endif case PHYS_SEG: phys_addr[i] = vir_addr[i]->offset; break; case GRANT_SEG: phys_addr[i] = umap_grant(p, vir_addr[i]->offset, bytes); break; default: kprintf("virtual_copy: strange type 0x%x\n", type); return(EINVAL); } /* Check if mapping succeeded. */ if (phys_addr[i] <= 0 && vir_addr[i]->segment != PHYS_SEG) { kprintf("virtual_copy EFAULT\n"); return(EFAULT); } } if(vmcheck && procs[_SRC_]) CHECKRANGE_OR_SUSPEND(procs[_SRC_], phys_addr[_SRC_], bytes, 0); if(vmcheck && procs[_DST_]) CHECKRANGE_OR_SUSPEND(procs[_DST_], phys_addr[_DST_], bytes, 1); /* Now copy bytes between physical addresseses. */ if(!vm_running || (procs[_SRC_] == NULL && procs[_DST_] == NULL)) { /* Without vm, address ranges actually are physical. */ phys_copy(phys_addr[_SRC_], phys_addr[_DST_], (phys_bytes) bytes); r = OK; } else { /* With vm, addresses need further interpretation. */ r = vm_copy(phys_addr[_SRC_], procs[_SRC_], phys_addr[_DST_], procs[_DST_], (phys_bytes) bytes); if(r != OK) { kprintf("vm_copy: %lx to %lx failed\n", phys_addr[_SRC_],phys_addr[_DST_]); } } return(r); } /*===========================================================================* * data_copy * *===========================================================================*/ PUBLIC int data_copy( endpoint_t from_proc, vir_bytes from_addr, endpoint_t to_proc, vir_bytes to_addr, size_t bytes) { struct vir_addr src, dst; src.segment = dst.segment = D; src.offset = from_addr; dst.offset = to_addr; src.proc_nr_e = from_proc; dst.proc_nr_e = to_proc; return virtual_copy(&src, &dst, bytes); } /*===========================================================================* * arch_pre_exec * *===========================================================================*/ PUBLIC int arch_pre_exec(struct proc *pr, u32_t ip, u32_t sp) { /* wipe extra LDT entries, set program counter, and stack pointer. */ memset(pr->p_seg.p_ldt + EXTRA_LDT_INDEX, 0, sizeof(pr->p_seg.p_ldt[0]) * (LDT_SIZE - EXTRA_LDT_INDEX)); pr->p_reg.pc = ip; pr->p_reg.sp = sp; } /*===========================================================================* * arch_umap * *===========================================================================*/ PUBLIC int arch_umap(struct proc *pr, vir_bytes offset, vir_bytes count, int seg, phys_bytes *addr) { switch(seg) { case BIOS_SEG: *addr = umap_bios(offset, count); return OK; } /* This must be EINVAL; the umap fallback function in * lib/syslib/alloc_util.c depends on it to detect an * older kernel (as opposed to mapping error). */ return EINVAL; }