/* This file contains the main program of the process manager and some related * procedures. When MINIX starts up, the kernel runs for a little while, * initializing itself and its tasks, and then it runs PM and FS. Both PM * and FS initialize themselves as far as they can. PM asks the kernel for * all free memory and starts serving requests. * * The entry points into this file are: * main: starts PM running * setreply: set the reply to be sent to process making an PM system call */ #include "pm.h" #include #include #include #include #include #include #include #include #include #include "mproc.h" #include "param.h" #include "../../kernel/const.h" #include "../../kernel/type.h" FORWARD _PROTOTYPE( void get_work, (void) ); FORWARD _PROTOTYPE( void pm_init, (void) ); FORWARD _PROTOTYPE( void get_mem_chunks, (struct memory *mem_chunks) ); FORWARD _PROTOTYPE( void patch_mem_chunks, (struct memory *mem_chunks, struct mem_map *map_ptr) ); #define click_to_round_k(n) \ ((unsigned) ((((unsigned long) (n) << CLICK_SHIFT) + 512) / 1024)) /*===========================================================================* * main * *===========================================================================*/ PUBLIC void main() { /* Main routine of the process manager. */ int result, s, proc_nr; struct mproc *rmp; pm_init(); /* initialize process manager tables */ /* This is PM's main loop- get work and do it, forever and forever. */ while (TRUE) { get_work(); /* wait for an PM system call */ /* Check for system notifications first. Special cases. */ if (call_nr == HARD_STOP) { /* MINIX is shutting down */ check_sig(-1, SIGKILL); /* kill all processes */ sys_exit(0); /* never reached */ } else if (call_nr == KSIG_PENDING) { /* signals pending */ (void) ksig_pending(); result = SUSPEND; /* don't reply */ } /* Else, if the system call number is valid, perform the call. */ else if ((unsigned) call_nr >= NCALLS) { result = ENOSYS; } else { result = (*call_vec[call_nr])(); } /* Send the results back to the user to indicate completion. */ if (result != SUSPEND) setreply(who, result); swap_in(); /* maybe a process can be swapped in? */ /* Send out all pending reply messages, including the answer to * the call just made above. The processes must not be swapped out. */ for (proc_nr=0, rmp=mproc; proc_nr < NR_PROCS; proc_nr++, rmp++) { if ((rmp->mp_flags & (REPLY | ONSWAP)) == REPLY) { if ((s=send(proc_nr, &rmp->mp_reply)) != OK) { panic(__FILE__,"PM can't reply to", proc_nr); } rmp->mp_flags &= ~REPLY; } } } } /*===========================================================================* * get_work * *===========================================================================*/ PRIVATE void get_work() { /* Wait for the next message and extract useful information from it. */ if (receive(ANY, &m_in) != OK) panic(__FILE__,"PM receive error", NO_NUM); who = m_in.m_source; /* who sent the message */ call_nr = m_in.m_type; /* system call number */ /* Process slot of caller. Misuse PM's own process slot if the kernel is * calling. The can happen in case of pending kernel signals. */ mp = &mproc[who < 0 ? PM_PROC_NR : who]; } /*===========================================================================* * setreply * *===========================================================================*/ PUBLIC void setreply(proc_nr, result) int proc_nr; /* process to reply to */ int result; /* result of call (usually OK or error #) */ { /* Fill in a reply message to be sent later to a user process. System calls * may occasionally fill in other fields, this is only for the main return * value, and for setting the "must send reply" flag. */ register struct mproc *rmp = &mproc[proc_nr]; rmp->mp_reply.reply_res = result; rmp->mp_flags |= REPLY; /* reply pending */ if (rmp->mp_flags & ONSWAP) swap_inqueue(rmp); /* must swap this process back in */ } /*===========================================================================* * pm_init * *===========================================================================*/ PRIVATE void pm_init() { /* Initialize the process manager. */ int key, i, s; static struct system_image image[IMAGE_SIZE]; register struct system_image *ip; static char core_sigs[] = { SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGEMT, SIGFPE, SIGUSR1, SIGSEGV, SIGUSR2 }; static char ign_sigs[] = { SIGCHLD }; register int proc_nr; register struct mproc *rmp; register char *sig_ptr; phys_clicks ram_clicks, total_clicks, minix_clicks, free_clicks; message mess; struct mem_map mem_map[NR_LOCAL_SEGS]; struct memory mem_chunks[NR_MEMS]; /* Build the set of signals which cause core dumps, and the set of signals * that are by default ignored. */ sigemptyset(&core_sset); for (sig_ptr = core_sigs; sig_ptr < core_sigs+sizeof(core_sigs); sig_ptr++) sigaddset(&core_sset, *sig_ptr); sigemptyset(&ign_sset); for (sig_ptr = ign_sigs; sig_ptr < ign_sigs+sizeof(ign_sigs); sig_ptr++) sigaddset(&ign_sset, *sig_ptr); /* Obtain a copy of the boot monitor parameters and the kernel info struct. * Parse the list of free memory chunks. This list is what the boot monitor * reported, but it must be corrected for the kernel and system processes. */ if ((s=sys_getmonparams(monitor_params, sizeof(monitor_params))) != OK) panic(__FILE__,"get monitor params failed",s); if ((s=sys_getkinfo(&kinfo)) != OK) panic(__FILE__,"get kernel info failed",s); get_mem_chunks(mem_chunks); /* Get the memory map of the kernel to see how much memory it uses. */ if ((s=get_mem_map(SYSTASK, mem_map)) != OK) panic(__FILE__,"PM couldn't get memory map of SYSTASK",s); minix_clicks = (mem_map[S].mem_phys+mem_map[S].mem_len)-mem_map[T].mem_phys; patch_mem_chunks(mem_chunks, mem_map); /* Initialize PM's process table. Request a copy of the system image table * that is defined at the kernel level to see which slots to fill in. */ if (OK != (s=sys_getimage(&image))) panic(__FILE__,"PM: warning, couldn't get image table: %d\n", s); procs_in_use = 0; /* start populating table */ for (ip = &image[0]; ip < &image[IMAGE_SIZE]; ip++) { if (ip->proc_nr >= 0) { /* task have negative nrs */ procs_in_use += 1; /* found user process */ /* Set process details found in the image table. */ rmp = &mproc[ip->proc_nr]; rmp->mp_flags |= IN_USE | DONT_SWAP; rmp->mp_pid = (ip->proc_nr == INIT_PROC_NR) ? INIT_PID : get_free_pid(); strncpy(rmp->mp_name, ip->proc_name, PROC_NAME_LEN); /* Change local signal handling behaviour. */ sigfillset(&rmp->mp_ignore); sigfillset(&rmp->mp_sigmask); sigemptyset(&rmp->mp_catch); /* Get memory map for this process from the kernel. */ if ((s=get_mem_map(ip->proc_nr, rmp->mp_seg)) != OK) panic(__FILE__,"couldn't get process entry",s); if (rmp->mp_seg[T].mem_len != 0) rmp->mp_flags |= SEPARATE; minix_clicks += rmp->mp_seg[S].mem_phys + rmp->mp_seg[S].mem_len - rmp->mp_seg[T].mem_phys; patch_mem_chunks(mem_chunks, rmp->mp_seg); /* Tell FS about this system process. */ mess.PR_PROC_NR = ip->proc_nr; mess.PR_PID = rmp->mp_pid; if (OK != (s=send(FS_PROC_NR, &mess))) panic(__FILE__,"PM can't sync up with FS", s); } } /* Tell FS that no more system processes follow and synchronize. */ mess.PR_PROC_NR = NONE; if (sendrec(FS_PROC_NR, &mess) != OK || mess.m_type != OK) panic(__FILE__,"PM can't sync up with FS", NO_NUM); /* INIT process is somewhat special. */ sigemptyset(&mproc[INIT_PROC_NR].mp_ignore); sigemptyset(&mproc[INIT_PROC_NR].mp_sigmask); sigemptyset(&mproc[INIT_PROC_NR].mp_catch); /* Possibly we must correct the memory chunks for the boot device. */ if (kinfo.bootdev_size > 0) { mem_map[T].mem_phys = kinfo.bootdev_base >> CLICK_SHIFT; mem_map[T].mem_len = 0; mem_map[D].mem_len = (kinfo.bootdev_size+CLICK_SIZE-1) >> CLICK_SHIFT; patch_mem_chunks(mem_chunks, mem_map); } /* Initialize tables to all physical memory and print memory information. */ mem_init(mem_chunks, &free_clicks); total_clicks = minix_clicks + free_clicks; printf("Memory size=%uK ", click_to_round_k(total_clicks)); printf("System services=%uK ", click_to_round_k(minix_clicks)); printf("Available=%uK\n\n", click_to_round_k(free_clicks)); } /* In real mode only 1M can be addressed, and in 16-bit protected we can go * no further than we can count in clicks. (The 286 is further limited by * its 24 bit address bus, but we can assume in that case that no more than * 16M memory is reported by the BIOS.) */ #define MAX_REAL 0x00100000L #define MAX_16BIT (0xFFF0L << CLICK_SHIFT) /*=========================================================================* * get_mem_chunks * *=========================================================================*/ PRIVATE void get_mem_chunks(mem_chunks) struct memory *mem_chunks; /* store mem chunks here */ { /* Initialize the free memory list from the 'memory' boot variable. Translate * the byte offsets and sizes in this list to clicks, properly truncated. Also * make sure that we don't exceed the maximum address space of the 286 or the * 8086, i.e. when running in 16-bit protected mode or real mode. */ long base, size, limit; char *s, *end; /* use to parse boot variable */ int i, done = 0; struct memory *memp; #if _WORD_SIZE == 2 unsigned long max_address; struct machine machine; if (OK != (i=sys_getmachine(&machine))) panic(__FILE__, "sys_getmachine failed", i); #endif /* Initialize everything to zero. */ for (i = 0; i < NR_MEMS; i++) { memp = &mem_chunks[i]; /* next mem chunk is stored here */ memp->base = memp->size = 0; } /* The available memory is determined by MINIX' boot loader as a list of * (base:size)-pairs in boothead.s. The 'memory' boot variable is set in * in boot.s. The format is "b0:s0,b1:s1,b2:s2", where b0:s0 is low mem, * b1:s1 is mem between 1M and 16M, b2:s2 is mem above 16M. Pairs b1:s1 * and b2:s2 are combined if the memory is adjacent. */ s = find_param("memory"); /* get memory boot variable */ for (i = 0; i < NR_MEMS && !done; i++) { memp = &mem_chunks[i]; /* next mem chunk is stored here */ base = size = 0; /* initialize next base:size pair */ if (*s != 0) { /* get fresh data, unless at end */ /* Read fresh base and expect colon as next char. */ base = strtoul(s, &end, 0x10); /* get number */ if (end != s && *end == ':') s = ++end; /* skip ':' */ else *s=0; /* terminate, should not happen */ /* Read fresh size and expect comma or assume end. */ size = strtoul(s, &end, 0x10); /* get number */ if (end != s && *end == ',') s = ++end; /* skip ',' */ else done = 1; } limit = base + size; #if _WORD_SIZE == 2 max_address = machine.protected ? MAX_16BIT : MAX_REAL; if (limit > max_address) limit = max_address; #endif base = (base + CLICK_SIZE-1) & ~(long)(CLICK_SIZE-1); limit &= ~(long)(CLICK_SIZE-1); if (limit <= base) continue; memp->base = base >> CLICK_SHIFT; memp->size = (limit - base) >> CLICK_SHIFT; } } /*=========================================================================* * patch_mem_chunks * *=========================================================================*/ PRIVATE void patch_mem_chunks(mem_chunks, map_ptr) struct memory *mem_chunks; /* store mem chunks here */ struct mem_map *map_ptr; /* memory to remove */ { /* Remove server memory from the free memory list. The boot monitor * promises to put processes at the start of memory chunks. The * tasks all use same base address, so only the first task changes * the memory lists. The servers and init have their own memory * spaces and their memory will be removed from the list. */ struct memory *memp; for (memp = mem_chunks; memp < &mem_chunks[NR_MEMS]; memp++) { if (memp->base == map_ptr[T].mem_phys) { memp->base += map_ptr[T].mem_len + map_ptr[D].mem_len; memp->size -= map_ptr[T].mem_len + map_ptr[D].mem_len; } } }