/* This file handles signals, which are asynchronous events and are generally * a messy and unpleasant business. Signals can be generated by the KILL * system call, or from the keyboard (SIGINT) or from the clock (SIGALRM). * In all cases control eventually passes to check_sig() to see which processes * can be signaled. The actual signaling is done by sig_proc(). * * The entry points into this file are: * do_sigaction: perform the SIGACTION system call * do_sigpending: perform the SIGPENDING system call * do_sigprocmask: perform the SIGPROCMASK system call * do_sigreturn: perform the SIGRETURN system call * do_sigsuspend: perform the SIGSUSPEND system call * do_kill: perform the KILL system call * process_ksig: process a signal an behalf of the kernel * sig_proc: interrupt or terminate a signaled process * check_sig: check which processes to signal with sig_proc() * check_pending: check if a pending signal can now be delivered * restart_sigs: restart signal work after finishing a VFS call */ #include "pm.h" #include #include #include #include #include #include #include #include #include #include "mproc.h" static int unpause(struct mproc *rmp); static int sig_send(struct mproc *rmp, int signo); static void sig_proc_exit(struct mproc *rmp, int signo); /*===========================================================================* * do_sigaction * *===========================================================================*/ int do_sigaction(void) { int r, sig_nr; struct sigaction svec; struct sigaction *svp; assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED))); sig_nr = m_in.m_lc_pm_sig.nr; if (sig_nr == SIGKILL) return(OK); if (sig_nr < 1 || sig_nr >= _NSIG) return(EINVAL); svp = &mp->mp_sigact[sig_nr]; if (m_in.m_lc_pm_sig.oact != 0) { r = sys_datacopy(PM_PROC_NR,(vir_bytes) svp, who_e, m_in.m_lc_pm_sig.oact, (phys_bytes) sizeof(svec)); if (r != OK) return(r); } if (m_in.m_lc_pm_sig.act == 0) return(OK); /* Read in the sigaction structure. */ r = sys_datacopy(who_e, m_in.m_lc_pm_sig.act, PM_PROC_NR, (vir_bytes) &svec, (phys_bytes) sizeof(svec)); if (r != OK) return(r); if (svec.sa_handler == SIG_IGN) { sigaddset(&mp->mp_ignore, sig_nr); sigdelset(&mp->mp_sigpending, sig_nr); sigdelset(&mp->mp_ksigpending, sig_nr); sigdelset(&mp->mp_catch, sig_nr); } else if (svec.sa_handler == SIG_DFL) { sigdelset(&mp->mp_ignore, sig_nr); sigdelset(&mp->mp_catch, sig_nr); } else { sigdelset(&mp->mp_ignore, sig_nr); sigaddset(&mp->mp_catch, sig_nr); } mp->mp_sigact[sig_nr].sa_handler = svec.sa_handler; sigdelset(&svec.sa_mask, SIGKILL); sigdelset(&svec.sa_mask, SIGSTOP); mp->mp_sigact[sig_nr].sa_mask = svec.sa_mask; mp->mp_sigact[sig_nr].sa_flags = svec.sa_flags; mp->mp_sigreturn = m_in.m_lc_pm_sig.ret; return(OK); } /*===========================================================================* * do_sigpending * *===========================================================================*/ int do_sigpending(void) { assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED))); mp->mp_reply.m_pm_lc_sigset.set = mp->mp_sigpending; return OK; } /*===========================================================================* * do_sigprocmask * *===========================================================================*/ int do_sigprocmask(void) { /* Note that the library interface passes the actual mask in sigmask_set, * not a pointer to the mask, in order to save a copy. Similarly, * the old mask is placed in the return message which the library * interface copies (if requested) to the user specified address. * * The library interface must set SIG_INQUIRE if the 'act' argument * is NULL. * * KILL and STOP can't be masked. */ sigset_t set; int i; assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED))); set = m_in.m_lc_pm_sigset.set; mp->mp_reply.m_pm_lc_sigset.set = mp->mp_sigmask; switch (m_in.m_lc_pm_sigset.how) { case SIG_BLOCK: sigdelset(&set, SIGKILL); sigdelset(&set, SIGSTOP); for (i = 1; i < _NSIG; i++) { if (sigismember(&set, i)) sigaddset(&mp->mp_sigmask, i); } break; case SIG_UNBLOCK: for (i = 1; i < _NSIG; i++) { if (sigismember(&set, i)) sigdelset(&mp->mp_sigmask, i); } check_pending(mp); break; case SIG_SETMASK: sigdelset(&set, SIGKILL); sigdelset(&set, SIGSTOP); mp->mp_sigmask = set; check_pending(mp); break; case SIG_INQUIRE: break; default: return(EINVAL); break; } return OK; } /*===========================================================================* * do_sigsuspend * *===========================================================================*/ int do_sigsuspend(void) { assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED))); mp->mp_sigmask2 = mp->mp_sigmask; /* save the old mask */ mp->mp_sigmask = m_in.m_lc_pm_sigset.set; sigdelset(&mp->mp_sigmask, SIGKILL); sigdelset(&mp->mp_sigmask, SIGSTOP); mp->mp_flags |= SIGSUSPENDED; check_pending(mp); return(SUSPEND); } /*===========================================================================* * do_sigreturn * *===========================================================================*/ int do_sigreturn(void) { /* A user signal handler is done. Restore context and check for * pending unblocked signals. */ int r; assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED))); mp->mp_sigmask = m_in.m_lc_pm_sigset.set; sigdelset(&mp->mp_sigmask, SIGKILL); sigdelset(&mp->mp_sigmask, SIGSTOP); r = sys_sigreturn(who_e, (struct sigmsg *)m_in.m_lc_pm_sigset.ctx); check_pending(mp); return(r); } /*===========================================================================* * do_kill * *===========================================================================*/ int do_kill(void) { /* Perform the kill(pid, signo) system call. */ return check_sig(m_in.m_lc_pm_sig.pid, m_in.m_lc_pm_sig.nr, FALSE /* ksig */); } /*===========================================================================* * do_srv_kill * *===========================================================================*/ int do_srv_kill(void) { /* Perform the srv_kill(pid, signo) system call. */ /* Only RS is allowed to use srv_kill. */ if (mp->mp_endpoint != RS_PROC_NR) return EPERM; /* Pretend the signal comes from the kernel when RS wants to deliver a signal * to a system process. RS sends a SIGKILL when it wants to perform cleanup. * In that case, ksig == TRUE forces PM to exit the process immediately. */ return check_sig(m_in.m_rs_pm_srv_kill.pid, m_in.m_rs_pm_srv_kill.nr, TRUE /* ksig */); } /*===========================================================================* * stop_proc * *===========================================================================*/ static int stop_proc(struct mproc *rmp, int may_delay) { /* Try to stop the given process in the kernel. If successful, mark the process * as stopped and return TRUE. If the process is still busy sending a message, * the behavior depends on the 'may_delay' parameter. If set, the process will * be marked as having a delay call pending, and the function returns FALSE. If * not set, the caller already knows that the process has no delay call, and PM * will panic. */ int r; assert(!(rmp->mp_flags & (PROC_STOPPED | DELAY_CALL | UNPAUSED))); r = sys_delay_stop(rmp->mp_endpoint); /* If the process is still busy sending a message, the kernel will give us * EBUSY now and send a SIGSNDELAY to the process as soon as sending is done. */ switch (r) { case OK: rmp->mp_flags |= PROC_STOPPED; return TRUE; case EBUSY: if (!may_delay) panic("stop_proc: unexpected delay call"); rmp->mp_flags |= DELAY_CALL; return FALSE; default: panic("sys_delay_stop failed: %d", r); } } /*===========================================================================* * try_resume_proc * *===========================================================================*/ static void try_resume_proc(struct mproc *rmp) { /* Resume the given process if possible. */ int r; assert(rmp->mp_flags & PROC_STOPPED); /* If the process is blocked on a VFS call, do not resume it now. Most likely * it will be unpausing, in which case the process must remain stopped. * Otherwise, it will still be resumed once the VFS call returns. If the * process has died, do not resume it either. */ if (rmp->mp_flags & (VFS_CALL | EXITING)) return; if ((r = sys_resume(rmp->mp_endpoint)) != OK) panic("sys_resume failed: %d", r); /* Also unset the unpaused flag. We can safely assume that a stopped process * need only be unpaused once, but once it is resumed, all bets are off. */ rmp->mp_flags &= ~(PROC_STOPPED | UNPAUSED); } /*===========================================================================* * process_ksig * *===========================================================================*/ int process_ksig(endpoint_t proc_nr_e, int signo) { register struct mproc *rmp; int proc_nr; pid_t proc_id, id; if(pm_isokendpt(proc_nr_e, &proc_nr) != OK) { printf("PM: process_ksig: %d?? not ok\n", proc_nr_e); return EDEADEPT; /* process is gone. */ } rmp = &mproc[proc_nr]; if ((rmp->mp_flags & (IN_USE | EXITING)) != IN_USE) { #if 0 printf("PM: process_ksig: %d?? exiting / not in use\n", proc_nr_e); #endif return EDEADEPT; /* process is gone. */ } proc_id = rmp->mp_pid; mp = &mproc[0]; /* pretend signals are from PM */ mp->mp_procgrp = rmp->mp_procgrp; /* get process group right */ /* For SIGVTALRM and SIGPROF, see if we need to restart a * virtual timer. For SIGINT, SIGINFO, SIGWINCH and SIGQUIT, use proc_id 0 * to indicate a broadcast to the recipient's process group. For * SIGKILL, use proc_id -1 to indicate a systemwide broadcast. */ switch (signo) { case SIGINT: case SIGQUIT: case SIGWINCH: case SIGINFO: id = 0; break; /* broadcast to process group */ case SIGVTALRM: case SIGPROF: check_vtimer(proc_nr, signo); /* fall-through */ default: id = proc_id; break; } check_sig(id, signo, TRUE /* ksig */); /* If SIGSNDELAY is set, an earlier sys_stop() failed because the process was * still sending, and the kernel hereby tells us that the process is now done * with that. We can now try to resume what we planned to do in the first * place: set up a signal handler. However, the process's message may have * been a call to PM, in which case the process may have changed any of its * signal settings. The process may also have forked, exited etcetera. */ if (signo == SIGSNDELAY && (rmp->mp_flags & DELAY_CALL)) { /* When getting SIGSNDELAY, the process is stopped at least until the * receipt of the SIGSNDELAY signal is acknowledged to the kernel. The * process is not stopped on PROC_STOP in the kernel. However, now that * there is no longer a delay call, stop_proc() is guaranteed to * succeed immediately. */ rmp->mp_flags &= ~DELAY_CALL; assert(!(rmp->mp_flags & PROC_STOPPED)); /* If the delay call was to PM, it may have resulted in a VFS call. In * that case, we must wait with further signal processing until VFS has * replied. Stop the process. */ if (rmp->mp_flags & VFS_CALL) { stop_proc(rmp, FALSE /*may_delay*/); return OK; } /* Process as many normal signals as possible. */ check_pending(rmp); assert(!(rmp->mp_flags & DELAY_CALL)); } /* See if the process is still alive */ if ((mproc[proc_nr].mp_flags & (IN_USE | EXITING)) == IN_USE) { return OK; /* signal has been delivered */ } else { return EDEADEPT; /* process is gone */ } } /*===========================================================================* * sig_proc * *===========================================================================*/ void sig_proc(rmp, signo, trace, ksig) register struct mproc *rmp; /* pointer to the process to be signaled */ int signo; /* signal to send to process (1 to _NSIG-1) */ int trace; /* pass signal to tracer first? */ int ksig; /* non-zero means signal comes from kernel */ { /* Send a signal to a process. Check to see if the signal is to be caught, * ignored, tranformed into a message (for system processes) or blocked. * - If the signal is to be transformed into a message, request the KERNEL to * send the target process a system notification with the pending signal as an * argument. * - If the signal is to be caught, request the KERNEL to push a sigcontext * structure and a sigframe structure onto the catcher's stack. Also, KERNEL * will reset the program counter and stack pointer, so that when the process * next runs, it will be executing the signal handler. When the signal handler * returns, sigreturn(2) will be called. Then KERNEL will restore the signal * context from the sigcontext structure. * If there is insufficient stack space, kill the process. */ int slot, badignore; slot = (int) (rmp - mproc); if ((rmp->mp_flags & (IN_USE | EXITING)) != IN_USE) { panic("PM: signal %d sent to exiting process %d\n", signo, slot); } if (trace == TRUE && rmp->mp_tracer != NO_TRACER && signo != SIGKILL) { /* Signal should be passed to the debugger first. * This happens before any checks on block/ignore masks; otherwise, * the process itself could block/ignore debugger signals. */ sigaddset(&rmp->mp_sigtrace, signo); if (!(rmp->mp_flags & TRACE_STOPPED)) trace_stop(rmp, signo); /* a signal causes it to stop */ return; } if (rmp->mp_flags & VFS_CALL) { sigaddset(&rmp->mp_sigpending, signo); if(ksig) sigaddset(&rmp->mp_ksigpending, signo); /* Process the signal once VFS replies. Stop the process in the * meantime, so that it cannot make another call after the VFS reply * comes in but before we look at its signals again. Since we always * stop the process to deliver signals during a VFS call, the * PROC_STOPPED flag doubles as an indicator in restart_sigs() that * signals must be rechecked after a VFS reply comes in. */ if (!(rmp->mp_flags & (PROC_STOPPED | DELAY_CALL))) { /* If a VFS call is ongoing and the process is not yet stopped, * the process must have made a call to PM. Therefore, there * can be no delay calls in this case. */ stop_proc(rmp, FALSE /*delay_call*/); } return; } /* Handle system signals for system processes first. */ if(rmp->mp_flags & PRIV_PROC) { /* Always skip signals for PM (only necessary when broadcasting). */ if(rmp->mp_endpoint == PM_PROC_NR) { return; } /* System signals have always to go through the kernel first to let it * pick the right signal manager. If PM is the assigned signal manager, * the signal will come back and will actually be processed. */ if(!ksig) { sys_kill(rmp->mp_endpoint, signo); return; } /* Print stacktrace if necessary. */ if(SIGS_IS_STACKTRACE(signo)) { sys_diagctl_stacktrace(rmp->mp_endpoint); } if(!SIGS_IS_TERMINATION(signo)) { /* Translate every non-termination sys signal into a message. */ message m; m.m_type = SIGS_SIGNAL_RECEIVED; m.m_pm_lsys_sigs_signal.num = signo; asynsend3(rmp->mp_endpoint, &m, AMF_NOREPLY); } else { /* Exit the process in case of termination system signal. */ sig_proc_exit(rmp, signo); } return; } /* Handle user processes now. See if the signal cannot be safely ignored. */ badignore = ksig && sigismember(&noign_sset, signo) && ( sigismember(&rmp->mp_ignore, signo) || sigismember(&rmp->mp_sigmask, signo)); if (!badignore && sigismember(&rmp->mp_ignore, signo)) { /* Signal should be ignored. */ return; } if (!badignore && sigismember(&rmp->mp_sigmask, signo)) { /* Signal should be blocked. */ sigaddset(&rmp->mp_sigpending, signo); if(ksig) sigaddset(&rmp->mp_ksigpending, signo); return; } if ((rmp->mp_flags & TRACE_STOPPED) && signo != SIGKILL) { /* If the process is stopped for a debugger, do not deliver any signals * (except SIGKILL) in order not to confuse the debugger. The signals * will be delivered using the check_pending() calls in do_trace(). */ sigaddset(&rmp->mp_sigpending, signo); if(ksig) sigaddset(&rmp->mp_ksigpending, signo); return; } if (!badignore && sigismember(&rmp->mp_catch, signo)) { /* Signal is caught. First interrupt the process's current call, if * applicable. This may involve a roundtrip to VFS, in which case we'll * have to check back later. */ if (!unpause(rmp)) { /* not yet unpaused; continue later */ sigaddset(&rmp->mp_sigpending, signo); if(ksig) sigaddset(&rmp->mp_ksigpending, signo); return; } /* Then send the actual signal to the process, by setting up a signal * handler. */ if (sig_send(rmp, signo)) return; /* We were unable to spawn a signal handler. Kill the process. */ printf("PM: %d can't catch signal %d - killing\n", rmp->mp_pid, signo); } else if (!badignore && sigismember(&ign_sset, signo)) { /* Signal defaults to being ignored. */ return; } /* Terminate process */ sig_proc_exit(rmp, signo); } /*===========================================================================* * sig_proc_exit * *===========================================================================*/ static void sig_proc_exit(rmp, signo) struct mproc *rmp; /* process that must exit */ int signo; /* signal that caused termination */ { rmp->mp_sigstatus = (char) signo; if (sigismember(&core_sset, signo)) { if(!(rmp->mp_flags & PRIV_PROC)) { printf("PM: coredump signal %d for %d / %s\n", signo, rmp->mp_pid, rmp->mp_name); sys_diagctl_stacktrace(rmp->mp_endpoint); } exit_proc(rmp, 0, TRUE /*dump_core*/); } else { exit_proc(rmp, 0, FALSE /*dump_core*/); } } /*===========================================================================* * check_sig * *===========================================================================*/ int check_sig(proc_id, signo, ksig) pid_t proc_id; /* pid of proc to sig, or 0 or -1, or -pgrp */ int signo; /* signal to send to process (0 to _NSIG-1) */ int ksig; /* non-zero means signal comes from kernel */ { /* Check to see if it is possible to send a signal. The signal may have to be * sent to a group of processes. This routine is invoked by the KILL system * call, and also when the kernel catches a DEL or other signal. */ register struct mproc *rmp; int count; /* count # of signals sent */ int error_code; if (signo < 0 || signo >= _NSIG) return(EINVAL); /* Return EINVAL for attempts to send SIGKILL to INIT alone. */ if (proc_id == INIT_PID && signo == SIGKILL) return(EINVAL); /* Signal RS first when broadcasting SIGTERM. */ if (proc_id == -1 && signo == SIGTERM) sys_kill(RS_PROC_NR, signo); /* Search the proc table for processes to signal. Start from the end of the * table to analyze core system processes at the end when broadcasting. * (See forkexit.c about pid magic.) */ count = 0; error_code = ESRCH; for (rmp = &mproc[NR_PROCS-1]; rmp >= &mproc[0]; rmp--) { if (!(rmp->mp_flags & IN_USE)) continue; /* Check for selection. */ if (proc_id > 0 && proc_id != rmp->mp_pid) continue; if (proc_id == 0 && mp->mp_procgrp != rmp->mp_procgrp) continue; if (proc_id == -1 && rmp->mp_pid <= INIT_PID) continue; if (proc_id < -1 && rmp->mp_procgrp != -proc_id) continue; /* Do not kill servers and drivers when broadcasting SIGKILL. */ if (proc_id == -1 && signo == SIGKILL && (rmp->mp_flags & PRIV_PROC)) continue; /* Skip VM entirely as it might lead to a deadlock with its signal * manager if the manager page faults at the same time. */ if (rmp->mp_endpoint == VM_PROC_NR) continue; /* Disallow lethal signals sent by user processes to sys processes. */ if (!ksig && SIGS_IS_LETHAL(signo) && (rmp->mp_flags & PRIV_PROC)) { error_code = EPERM; continue; } /* Check for permission. */ if (mp->mp_effuid != SUPER_USER && mp->mp_realuid != rmp->mp_realuid && mp->mp_effuid != rmp->mp_realuid && mp->mp_realuid != rmp->mp_effuid && mp->mp_effuid != rmp->mp_effuid) { error_code = EPERM; continue; } count++; if (signo == 0 || (rmp->mp_flags & EXITING)) continue; /* 'sig_proc' will handle the disposition of the signal. The * signal may be caught, blocked, ignored, or cause process * termination, possibly with core dump. */ sig_proc(rmp, signo, TRUE /*trace*/, ksig); if (proc_id > 0) break; /* only one process being signaled */ } /* If the calling process has killed itself, don't reply. */ if ((mp->mp_flags & (IN_USE | EXITING)) != IN_USE) return(SUSPEND); return(count > 0 ? OK : error_code); } /*===========================================================================* * check_pending * *===========================================================================*/ void check_pending(rmp) register struct mproc *rmp; { /* Check to see if any pending signals have been unblocked. Deliver as many * of them as we can, until we have to wait for a reply from VFS first. * * There are several places in this file where the signal mask is * changed. At each such place, check_pending() should be called to * check for newly unblocked signals. */ int i; int ksig; for (i = 1; i < _NSIG; i++) { if (sigismember(&rmp->mp_sigpending, i) && !sigismember(&rmp->mp_sigmask, i)) { ksig = sigismember(&rmp->mp_ksigpending, i); sigdelset(&rmp->mp_sigpending, i); sigdelset(&rmp->mp_ksigpending, i); sig_proc(rmp, i, FALSE /*trace*/, ksig); if (rmp->mp_flags & VFS_CALL) { /* Signals must be rechecked upon return from the new * VFS call, unless the process was killed. In both * cases, the process is stopped. */ assert(rmp->mp_flags & PROC_STOPPED); break; } } } } /*===========================================================================* * restart_sigs * *===========================================================================*/ void restart_sigs(rmp) struct mproc *rmp; { /* VFS has replied to a request from us; do signal-related work. */ if (rmp->mp_flags & (VFS_CALL | EXITING)) return; if (rmp->mp_flags & TRACE_EXIT) { /* Tracer requested exit with specific exit value */ exit_proc(rmp, rmp->mp_exitstatus, FALSE /*dump_core*/); } else if (rmp->mp_flags & PROC_STOPPED) { /* If a signal arrives while we are performing a VFS call, the process * will always be stopped immediately. Thus, if the process is stopped * once the reply from VFS arrives, we might have to check signals. */ assert(!(rmp->mp_flags & DELAY_CALL)); /* We saved signal(s) for after finishing a VFS call. Deal with this. * PROC_STOPPED remains set to indicate the process is still stopped. */ check_pending(rmp); /* Resume the process now, unless there is a reason not to. */ try_resume_proc(rmp); } } /*===========================================================================* * unpause * *===========================================================================*/ static int unpause(rmp) struct mproc *rmp; /* which process */ { /* A signal is to be sent to a process. If that process is hanging on a * system call, the system call must be terminated with EINTR. First check if * the process is hanging on an PM call. If not, tell VFS, so it can check for * interruptible calls such as READs and WRITEs from pipes, ttys and the like. */ message m; assert(!(rmp->mp_flags & VFS_CALL)); /* If the UNPAUSED flag is set, VFS replied to an earlier unpause request. */ if (rmp->mp_flags & UNPAUSED) { assert((rmp->mp_flags & (DELAY_CALL | PROC_STOPPED)) == PROC_STOPPED); return TRUE; } /* If the process is already stopping, don't do anything now. */ if (rmp->mp_flags & DELAY_CALL) return FALSE; /* Check to see if process is hanging on a WAIT or SIGSUSPEND call. */ if (rmp->mp_flags & (WAITING | SIGSUSPENDED)) { /* Stop the process from running. Do not interrupt the actual call yet. * sig_send() will interrupt the call and resume the process afterward. * No delay calls: we know for a fact that the process called us. */ stop_proc(rmp, FALSE /*may_delay*/); return TRUE; } /* Not paused in PM. Let VFS try to unpause the process. The process needs to * be stopped for this. If it is not already stopped, try to stop it now. If * that does not succeed immediately, postpone signal delivery. */ if (!(rmp->mp_flags & PROC_STOPPED) && !stop_proc(rmp, TRUE /*may_delay*/)) return FALSE; memset(&m, 0, sizeof(m)); m.m_type = VFS_PM_UNPAUSE; m.VFS_PM_ENDPT = rmp->mp_endpoint; tell_vfs(rmp, &m); /* Also tell VM. */ vm_notify_sig_wrapper(rmp->mp_endpoint); return FALSE; } /*===========================================================================* * sig_send * *===========================================================================*/ static int sig_send(rmp, signo) struct mproc *rmp; /* what process to spawn a signal handler in */ int signo; /* signal to send to process (1 to _NSIG-1) */ { /* The process is supposed to catch this signal. Spawn a signal handler. * Return TRUE if this succeeded, FALSE otherwise. */ struct sigmsg sigmsg; int i, r, sigflags, slot; assert(rmp->mp_flags & PROC_STOPPED); sigflags = rmp->mp_sigact[signo].sa_flags; slot = (int) (rmp - mproc); if (rmp->mp_flags & SIGSUSPENDED) sigmsg.sm_mask = rmp->mp_sigmask2; else sigmsg.sm_mask = rmp->mp_sigmask; sigmsg.sm_signo = signo; sigmsg.sm_sighandler = (vir_bytes) rmp->mp_sigact[signo].sa_handler; sigmsg.sm_sigreturn = rmp->mp_sigreturn; for (i = 1; i < _NSIG; i++) { if (sigismember(&rmp->mp_sigact[signo].sa_mask, i)) sigaddset(&rmp->mp_sigmask, i); } if (sigflags & SA_NODEFER) sigdelset(&rmp->mp_sigmask, signo); else sigaddset(&rmp->mp_sigmask, signo); if (sigflags & SA_RESETHAND) { sigdelset(&rmp->mp_catch, signo); rmp->mp_sigact[signo].sa_handler = SIG_DFL; } sigdelset(&rmp->mp_sigpending, signo); sigdelset(&rmp->mp_ksigpending, signo); /* Ask the kernel to deliver the signal */ r = sys_sigsend(rmp->mp_endpoint, &sigmsg); /* sys_sigsend can fail legitimately with EFAULT or ENOMEM if the process * memory can't accommodate the signal handler. The target process will be * killed in that case, so do not bother interrupting or resuming it. */ if(r == EFAULT || r == ENOMEM) { return(FALSE); } /* Other errors are unexpected pm/kernel discrepancies. */ if (r != OK) { panic("sys_sigsend failed: %d", r); } /* Was the process suspended in PM? Then interrupt the blocking call. */ if (rmp->mp_flags & (WAITING | SIGSUSPENDED)) { rmp->mp_flags &= ~(WAITING | SIGSUSPENDED); reply(slot, EINTR); /* The process must just have been stopped by unpause(), which means * that the UNPAUSE flag is not set. */ assert(!(rmp->mp_flags & UNPAUSED)); try_resume_proc(rmp); assert(!(rmp->mp_flags & PROC_STOPPED)); } else { /* If the process was not suspended in PM, VFS must first have * confirmed that it has tried to unsuspend any blocking call. Thus, we * got here from restart_sigs() as part of handling PM_UNPAUSE_REPLY, * and restart_sigs() will resume the process later. */ assert(rmp->mp_flags & UNPAUSED); } return(TRUE); } /*===========================================================================* * vm_notify_sig_wrapper * *===========================================================================*/ void vm_notify_sig_wrapper(endpoint_t ep) { /* get IPC's endpoint, * the reason that we directly get the endpoint * instead of from DS server is that otherwise * it will cause deadlock between PM, VM and DS. */ struct mproc *rmp; endpoint_t ipc_ep = 0; for (rmp = &mproc[0]; rmp < &mproc[NR_PROCS]; rmp++) { if (!(rmp->mp_flags & IN_USE)) continue; if (!strcmp(rmp->mp_name, "ipc")) { ipc_ep = rmp->mp_endpoint; vm_notify_sig(ep, ipc_ep); return; } } }