/* This file contains the main program of the process manager and some related * procedures. When MINIX starts up, the kernel runs for a little while, * initializing itself and its tasks, and then it runs PM and FS. Both PM * and FS initialize themselves as far as they can. FS then makes a call to * PM, because PM has to wait for FS to acquire a RAM disk. PM asks the * kernel for all free memory and starts serving requests. * * The entry points into this file are: * main: starts PM running * setreply: set the reply to be sent to process making an PM system call */ #include "pm.h" #include #include #include #include #include #include #include #include #include "mproc.h" #include "param.h" #include "../../kernel/type.h" FORWARD _PROTOTYPE( void get_work, (void) ); FORWARD _PROTOTYPE( void pm_init, (void) ); #define click_to_round_k(n) \ ((unsigned) ((((unsigned long) (n) << CLICK_SHIFT) + 512) / 1024)) /*===========================================================================* * main * *===========================================================================*/ PUBLIC void main() { /* Main routine of the process manager. */ int result, s, proc_nr; struct mproc *rmp; pm_init(); /* initialize process manager tables */ /* This is PM's main loop- get work and do it, forever and forever. */ while (TRUE) { get_work(); /* wait for an PM system call */ /* Check for system notifications first. Special cases. */ if (call_nr == HARD_STOP) { /* MINIX is shutting down */ check_sig(-1, SIGKILL); /* kill all processes */ sys_exit(0); /* never reached */ } else if (call_nr == FKEY_PRESSED) { /* create debug dump */ (void) do_fkey_pressed(); result = SUSPEND; /* don't reply */ } else if (call_nr == KSIG_PENDING) { /* signals pending */ (void) ksig_pending(); result = SUSPEND; /* don't reply */ } /* Else, if the system call number is valid, perform the call. */ else if ((unsigned) call_nr >= NCALLS) { result = ENOSYS; } else { result = (*call_vec[call_nr])(); } /* Send the results back to the user to indicate completion. */ if (result != SUSPEND) setreply(who, result); swap_in(); /* maybe a process can be swapped in? */ /* Send out all pending reply messages, including the answer to * the call just made above. The processes must not be swapped out. */ for (proc_nr=0, rmp=mproc; proc_nr < NR_PROCS; proc_nr++, rmp++) { if ((rmp->mp_flags & (REPLY | ONSWAP)) == REPLY) { if ((s=send(proc_nr, &rmp->mp_reply)) != OK) { panic("PM can't reply to", proc_nr); } rmp->mp_flags &= ~REPLY; } } } } /*===========================================================================* * get_work * *===========================================================================*/ PRIVATE void get_work() { /* Wait for the next message and extract useful information from it. */ if (receive(ANY, &m_in) != OK) panic("PM receive error", NO_NUM); who = m_in.m_source; /* who sent the message */ call_nr = m_in.m_type; /* system call number */ /* Process slot of caller. Misuse PM's own process slot if the kernel is * calling. The can happen in case of pending kernel signals. */ mp = &mproc[who < 0 ? PM_PROC_NR : who]; } /*===========================================================================* * setreply * *===========================================================================*/ PUBLIC void setreply(proc_nr, result) int proc_nr; /* process to reply to */ int result; /* result of call (usually OK or error #) */ { /* Fill in a reply message to be sent later to a user process. System calls * may occasionally fill in other fields, this is only for the main return * value, and for setting the "must send reply" flag. */ register struct mproc *rmp = &mproc[proc_nr]; rmp->mp_reply.reply_res = result; rmp->mp_flags |= REPLY; /* reply pending */ if (rmp->mp_flags & ONSWAP) swap_inqueue(rmp); /* must swap this process back in */ } /*===========================================================================* * pm_init * *===========================================================================*/ PRIVATE void pm_init() { /* Initialize the process manager. */ int key, i, s; static struct system_image image[IMAGE_SIZE]; register struct system_image *ip; static char core_sigs[] = { SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGEMT, SIGFPE, SIGUSR1, SIGSEGV, SIGUSR2 }; static char ign_sigs[] = { SIGCHLD }; register int proc_nr; register struct mproc *rmp; register char *sig_ptr; phys_clicks ram_clicks, total_clicks, minix_clicks, free_clicks; message mess; struct mem_map kernel_map[NR_LOCAL_SEGS]; int mem; /* Build the set of signals which cause core dumps, and the set of signals * that are by default ignored. */ sigemptyset(&core_sset); for (sig_ptr = core_sigs; sig_ptr < core_sigs+sizeof(core_sigs); sig_ptr++) sigaddset(&core_sset, *sig_ptr); sigemptyset(&ign_sset); for (sig_ptr = ign_sigs; sig_ptr < ign_sigs+sizeof(ign_sigs); sig_ptr++) sigaddset(&ign_sset, *sig_ptr); /* Get the memory map of the kernel to see how much memory it uses. */ if ((s=get_mem_map(SYSTASK, kernel_map)) != OK) panic("PM couldn't get proc entry of SYSTASK",s); minix_clicks = (kernel_map[S].mem_phys + kernel_map[S].mem_len) - kernel_map[T].mem_phys; /* Initialize PM's tables. Request a copy of the system image table that * is defined at the kernel level to see which slots to fill in. */ if (OK != (s=sys_getimage(&image))) { printf("PM: warning, couldn't get system image table: %d\n", s); } procs_in_use = 0; /* start populating table */ for (ip = &image[0]; ip < &image[IMAGE_SIZE]; ip++) { if (ip->proc_nr >= 0) { /* task have negative nrs */ procs_in_use += 1; /* found user process */ /* Set process details. */ rmp = &mproc[ip->proc_nr]; rmp->mp_flags |= IN_USE | DONT_SWAP; rmp->mp_pid = (ip->proc_nr == INIT_PROC_NR) ? INIT_PID : get_free_pid(); strncpy(rmp->mp_name, ip->proc_name, PROC_NAME_LEN); /* Change signal handling behaviour. */ sigfillset(&rmp->mp_ignore); sigfillset(&rmp->mp_sigmask); sigemptyset(&rmp->mp_catch); /* Get memory map for this process from the kernel. */ if ((s=get_mem_map(ip->proc_nr, rmp->mp_seg)) != OK) panic("couldn't get process entry",s); if (rmp->mp_seg[T].mem_len != 0) rmp->mp_flags |= SEPARATE; minix_clicks += rmp->mp_seg[S].mem_phys + rmp->mp_seg[S].mem_len - rmp->mp_seg[T].mem_phys; /* Tell FS about this system process. */ mess.PR_PROC_NR = ip->proc_nr; mess.PR_PID = rmp->mp_pid; if (OK != (s=send(FS_PROC_NR, &mess))) panic("PM can't sync up with FS", s); } } /* Tell FS no more SYSTEM processes follow and synchronize. */ mess.PR_PROC_NR = NONE; if (sendrec(FS_PROC_NR, &mess) != OK || mess.m_type != OK) panic("PM can't sync up with FS", NO_NUM); /* INIT process is somewhat special. */ sigemptyset(&mproc[INIT_PROC_NR].mp_ignore); sigemptyset(&mproc[INIT_PROC_NR].mp_sigmask); sigemptyset(&mproc[INIT_PROC_NR].mp_catch); /* Initialize tables to all physical memory. */ mem_init(&free_clicks); total_clicks = minix_clicks + free_clicks; /* Print memory information. */ printf("Memory size=%uK ", click_to_round_k(total_clicks)); printf("System services=%uK ", click_to_round_k(minix_clicks)); printf("Available=%uK\n\n", click_to_round_k(free_clicks)); /* Register function keys with TTY for debug dumps. */ for (key=SF7; key<=SF8; key++) { if ((i=fkey_enable(key))!=OK) { printf("Warning: PM couldn't register Shift+F%d key: %d\n", key-SF1+1, i); } } }