/* This file contains code for initialization of protected mode, to initialize * code and data segment descriptors, and to initialize global descriptors * for local descriptors in the process table. */ #include "../../kernel.h" #include "../../proc.h" #include #include "proto.h" #define INT_GATE_TYPE (INT_286_GATE | DESC_386_BIT) #define TSS_TYPE (AVL_286_TSS | DESC_386_BIT) struct desctableptr_s { char limit[sizeof(u16_t)]; char base[sizeof(u32_t)]; /* really u24_t + pad for 286 */ }; struct gatedesc_s { u16_t offset_low; u16_t selector; u8_t pad; /* |000|XXXXX| ig & trpg, |XXXXXXXX| task g */ u8_t p_dpl_type; /* |P|DL|0|TYPE| */ u16_t offset_high; }; PUBLIC struct segdesc_s gdt[GDT_SIZE]; /* used in klib.s and mpx.s */ PRIVATE struct gatedesc_s idt[IDT_SIZE]; /* zero-init so none present */ PUBLIC struct tss_s tss; /* zero init */ FORWARD _PROTOTYPE( void sdesc, (struct segdesc_s *segdp, phys_bytes base, vir_bytes size) ); /*===========================================================================* * enable_iop * *===========================================================================*/ PUBLIC void enable_iop(struct proc *pp) { /* Allow a user process to use I/O instructions. Change the I/O Permission * Level bits in the psw. These specify least-privileged Current Permission * Level allowed to execute I/O instructions. Users and servers have CPL 3. * You can't have less privilege than that. Kernel has CPL 0, tasks CPL 1. */ pp->p_reg.psw |= 0x3000; } /*===========================================================================* * seg2phys * *===========================================================================*/ PUBLIC phys_bytes seg2phys(U16_t seg) { /* Return the base address of a segment, with seg being a * register, or a 286/386 segment selector. */ phys_bytes base; struct segdesc_s *segdp; segdp = &gdt[seg >> 3]; base = ((u32_t) segdp->base_low << 0) | ((u32_t) segdp->base_middle << 16) | ((u32_t) segdp->base_high << 24); return base; } /*===========================================================================* * phys2seg * *===========================================================================*/ PUBLIC void phys2seg(u16_t *seg, vir_bytes *off, phys_bytes phys) { /* Return a segment selector and offset that can be used to reach a physical * address, for use by a driver doing memory I/O in the A0000 - DFFFF range. */ *seg = FLAT_DS_SELECTOR; *off = phys; } /*===========================================================================* * init_dataseg * *===========================================================================*/ PUBLIC void init_dataseg(register struct segdesc_s *segdp, phys_bytes base, vir_bytes size, int privilege) { /* Build descriptor for a data segment. */ sdesc(segdp, base, size); segdp->access = (privilege << DPL_SHIFT) | (PRESENT | SEGMENT | WRITEABLE); /* EXECUTABLE = 0, EXPAND_DOWN = 0, ACCESSED = 0 */ } /*===========================================================================* * init_codeseg * *===========================================================================*/ PUBLIC void init_codeseg(register struct segdesc_s *segdp, phys_bytes base, vir_bytes size, int privilege) { /* Build descriptor for a code segment. */ sdesc(segdp, base, size); segdp->access = (privilege << DPL_SHIFT) | (PRESENT | SEGMENT | EXECUTABLE | READABLE); /* CONFORMING = 0, ACCESSED = 0 */ } PUBLIC struct gate_table_s gate_table_pic[] = { { hwint00, VECTOR( 0), INTR_PRIVILEGE }, { hwint01, VECTOR( 1), INTR_PRIVILEGE }, { hwint02, VECTOR( 2), INTR_PRIVILEGE }, { hwint03, VECTOR( 3), INTR_PRIVILEGE }, { hwint04, VECTOR( 4), INTR_PRIVILEGE }, { hwint05, VECTOR( 5), INTR_PRIVILEGE }, { hwint06, VECTOR( 6), INTR_PRIVILEGE }, { hwint07, VECTOR( 7), INTR_PRIVILEGE }, { hwint08, VECTOR( 8), INTR_PRIVILEGE }, { hwint09, VECTOR( 9), INTR_PRIVILEGE }, { hwint10, VECTOR(10), INTR_PRIVILEGE }, { hwint11, VECTOR(11), INTR_PRIVILEGE }, { hwint12, VECTOR(12), INTR_PRIVILEGE }, { hwint13, VECTOR(13), INTR_PRIVILEGE }, { hwint14, VECTOR(14), INTR_PRIVILEGE }, { hwint15, VECTOR(15), INTR_PRIVILEGE }, { NULL, 0, 0} }; /*===========================================================================* * prot_init * *===========================================================================*/ PUBLIC void prot_init(void) { /* Set up tables for protected mode. * All GDT slots are allocated at compile time. */ struct desctableptr_s *dtp; unsigned ldt_index; register struct proc *rp; /* Click-round kernel. */ if(kinfo.data_base % CLICK_SIZE) minix_panic("kinfo.data_base not aligned", NO_NUM); kinfo.data_size = (phys_bytes) (CLICK_CEIL(kinfo.data_size)); /* Build gdt and idt pointers in GDT where the BIOS expects them. */ dtp= (struct desctableptr_s *) &gdt[GDT_INDEX]; * (u16_t *) dtp->limit = (sizeof gdt) - 1; * (u32_t *) dtp->base = vir2phys(gdt); dtp= (struct desctableptr_s *) &gdt[IDT_INDEX]; * (u16_t *) dtp->limit = (sizeof idt) - 1; * (u32_t *) dtp->base = vir2phys(idt); /* Build segment descriptors for tasks and interrupt handlers. */ init_codeseg(&gdt[CS_INDEX], kinfo.code_base, kinfo.code_size, INTR_PRIVILEGE); init_dataseg(&gdt[DS_INDEX], kinfo.data_base, kinfo.data_size, INTR_PRIVILEGE); init_dataseg(&gdt[ES_INDEX], 0L, 0, TASK_PRIVILEGE); /* Build scratch descriptors for functions in klib88. */ init_dataseg(&gdt[DS_286_INDEX], 0L, 0, TASK_PRIVILEGE); init_dataseg(&gdt[ES_286_INDEX], 0L, 0, TASK_PRIVILEGE); /* Build local descriptors in GDT for LDT's in process table. * The LDT's are allocated at compile time in the process table, and * initialized whenever a process' map is initialized or changed. */ for (rp = BEG_PROC_ADDR, ldt_index = FIRST_LDT_INDEX; rp < END_PROC_ADDR; ++rp, ldt_index++) { init_dataseg(&gdt[ldt_index], vir2phys(rp->p_seg.p_ldt), sizeof(rp->p_seg.p_ldt), INTR_PRIVILEGE); gdt[ldt_index].access = PRESENT | LDT; rp->p_seg.p_ldt_sel = ldt_index * DESC_SIZE; } /* Build main TSS */ tss.ss0 = DS_SELECTOR; init_dataseg(&gdt[TSS_INDEX], vir2phys(&tss), sizeof(tss), INTR_PRIVILEGE); gdt[TSS_INDEX].access = PRESENT | (INTR_PRIVILEGE << DPL_SHIFT) | TSS_TYPE; /* Complete building of main TSS. */ tss.iobase = sizeof tss; /* empty i/o permissions map */ } PUBLIC void idt_copy_vectors(struct gate_table_s * first) { struct gate_table_s *gtp; for (gtp = first; gtp->gate; gtp++) { int_gate(gtp->vec_nr, (vir_bytes) gtp->gate, PRESENT | INT_GATE_TYPE | (gtp->privilege << DPL_SHIFT)); } } /* Build descriptors for interrupt gates in IDT. */ PUBLIC void idt_init(void) { struct gate_table_s gate_table[] = { { divide_error, DIVIDE_VECTOR, INTR_PRIVILEGE }, { single_step_exception, DEBUG_VECTOR, INTR_PRIVILEGE }, { nmi, NMI_VECTOR, INTR_PRIVILEGE }, { breakpoint_exception, BREAKPOINT_VECTOR, USER_PRIVILEGE }, { overflow, OVERFLOW_VECTOR, USER_PRIVILEGE }, { bounds_check, BOUNDS_VECTOR, INTR_PRIVILEGE }, { inval_opcode, INVAL_OP_VECTOR, INTR_PRIVILEGE }, { copr_not_available, COPROC_NOT_VECTOR, INTR_PRIVILEGE }, { double_fault, DOUBLE_FAULT_VECTOR, INTR_PRIVILEGE }, { copr_seg_overrun, COPROC_SEG_VECTOR, INTR_PRIVILEGE }, { inval_tss, INVAL_TSS_VECTOR, INTR_PRIVILEGE }, { segment_not_present, SEG_NOT_VECTOR, INTR_PRIVILEGE }, { stack_exception, STACK_FAULT_VECTOR, INTR_PRIVILEGE }, { general_protection, PROTECTION_VECTOR, INTR_PRIVILEGE }, { page_fault, PAGE_FAULT_VECTOR, INTR_PRIVILEGE }, { copr_error, COPROC_ERR_VECTOR, INTR_PRIVILEGE }, { alignment_check, ALIGNMENT_CHECK_VECTOR, INTR_PRIVILEGE }, { machine_check, MACHINE_CHECK_VECTOR, INTR_PRIVILEGE }, { simd_exception, SIMD_EXCEPTION_VECTOR, INTR_PRIVILEGE }, { syscall_entry, SYS386_VECTOR, USER_PRIVILEGE },/* 386 system call */ { level0_call, LEVEL0_VECTOR, TASK_PRIVILEGE }, { NULL, 0, 0} }; idt_copy_vectors(gate_table); idt_copy_vectors(gate_table_pic); } /*===========================================================================* * sdesc * *===========================================================================*/ PRIVATE void sdesc(segdp, base, size) register struct segdesc_s *segdp; phys_bytes base; vir_bytes size; { /* Fill in the size fields (base, limit and granularity) of a descriptor. */ segdp->base_low = base; segdp->base_middle = base >> BASE_MIDDLE_SHIFT; segdp->base_high = base >> BASE_HIGH_SHIFT; --size; /* convert to a limit, 0 size means 4G */ if (size > BYTE_GRAN_MAX) { segdp->limit_low = size >> PAGE_GRAN_SHIFT; segdp->granularity = GRANULAR | (size >> (PAGE_GRAN_SHIFT + GRANULARITY_SHIFT)); } else { segdp->limit_low = size; segdp->granularity = size >> GRANULARITY_SHIFT; } segdp->granularity |= DEFAULT; /* means BIG for data seg */ } /*===========================================================================* * int_gate * *===========================================================================*/ PUBLIC void int_gate(vec_nr, offset, dpl_type) unsigned vec_nr; vir_bytes offset; unsigned dpl_type; { /* Build descriptor for an interrupt gate. */ register struct gatedesc_s *idp; idp = &idt[vec_nr]; idp->offset_low = offset; idp->selector = CS_SELECTOR; idp->p_dpl_type = dpl_type; idp->offset_high = offset >> OFFSET_HIGH_SHIFT; } /*===========================================================================* * alloc_segments * *===========================================================================*/ PUBLIC void alloc_segments(register struct proc *rp) { /* This is called at system initialization from main() and by do_newmap(). * The code has a separate function because of all hardware-dependencies. * Note that IDLE is part of the kernel and gets TASK_PRIVILEGE here. */ phys_bytes code_bytes; phys_bytes data_bytes; int privilege; data_bytes = (phys_bytes) (rp->p_memmap[S].mem_vir + rp->p_memmap[S].mem_len) << CLICK_SHIFT; if (rp->p_memmap[T].mem_len == 0) code_bytes = data_bytes; /* common I&D, poor protect */ else code_bytes = (phys_bytes) rp->p_memmap[T].mem_len << CLICK_SHIFT; if( (iskernelp(rp))) privilege = TASK_PRIVILEGE; else privilege = USER_PRIVILEGE; init_codeseg(&rp->p_seg.p_ldt[CS_LDT_INDEX], (phys_bytes) rp->p_memmap[T].mem_phys << CLICK_SHIFT, code_bytes, privilege); init_dataseg(&rp->p_seg.p_ldt[DS_LDT_INDEX], (phys_bytes) rp->p_memmap[D].mem_phys << CLICK_SHIFT, data_bytes, privilege); rp->p_reg.cs = (CS_LDT_INDEX * DESC_SIZE) | TI | privilege; rp->p_reg.gs = rp->p_reg.fs = rp->p_reg.ss = rp->p_reg.es = rp->p_reg.ds = (DS_LDT_INDEX*DESC_SIZE) | TI | privilege; } /*===========================================================================* * check_segments * *===========================================================================*/ PUBLIC void check_segments(char *File, int line) { int checked = 0; int fail = 0; struct proc *rp; for (rp = BEG_PROC_ADDR; rp < END_PROC_ADDR; ++rp) { int privilege; int cs, ds; if (isemptyp(rp)) continue; if( (iskernelp(rp))) privilege = TASK_PRIVILEGE; else privilege = USER_PRIVILEGE; cs = (CS_LDT_INDEX*DESC_SIZE) | TI | privilege; ds = (DS_LDT_INDEX*DESC_SIZE) | TI | privilege; #define CHECK(s1, s2) if(s1 != s2) { \ printf("%s:%d: " #s1 " != " #s2 " for ep %d\n", \ File, line, rp->p_endpoint); fail++; } checked++; CHECK(rp->p_reg.cs, cs); CHECK(rp->p_reg.gs, ds); CHECK(rp->p_reg.fs, ds); CHECK(rp->p_reg.ss, ds); if(rp->p_endpoint != -2) { CHECK(rp->p_reg.es, ds); } CHECK(rp->p_reg.ds, ds); } if(fail) { printf("%d/%d checks failed\n", fail, checked); minix_panic("wrong", fail); } } /*===========================================================================* * printseg * *===========================================================================*/ PUBLIC void printseg(char *banner, int iscs, struct proc *pr, u32_t selector) { u32_t base, limit, index, dpl; struct segdesc_s *desc; if(banner) { kprintf("%s", banner); } index = selector >> 3; kprintf("RPL %d, ind %d of ", (selector & RPL_MASK), index); if(selector & TI) { kprintf("LDT"); if(index >= LDT_SIZE) { kprintf("invalid index in ldt\n"); return; } if(!pr) { kprintf("local selector but unknown process\n"); return; } desc = &pr->p_seg.p_ldt[index]; } else { kprintf("GDT"); if(index >= GDT_SIZE) { kprintf("invalid index in gdt\n"); return; } desc = &gdt[index]; } limit = desc->limit_low | (((u32_t) desc->granularity & LIMIT_HIGH) << GRANULARITY_SHIFT); if(desc->granularity & GRANULAR) { limit = (limit << PAGE_GRAN_SHIFT) + 0xfff; } base = desc->base_low | ((u32_t) desc->base_middle << BASE_MIDDLE_SHIFT) | ((u32_t) desc->base_high << BASE_HIGH_SHIFT); kprintf(" -> base 0x%08lx size 0x%08lx ", base, limit+1); if(iscs) { if(!(desc->granularity & BIG)) kprintf("16bit "); } else { if(!(desc->granularity & BIG)) kprintf("not big "); } if(desc->granularity & 0x20) { /* reserved */ minix_panic("granularity reserved field set", NO_NUM); } if(!(desc->access & PRESENT)) kprintf("notpresent "); if(!(desc->access & SEGMENT)) kprintf("system "); if(desc->access & EXECUTABLE) { kprintf(" exec "); if(desc->access & CONFORMING) kprintf("conforming "); if(!(desc->access & READABLE)) kprintf("non-readable "); } else { kprintf("nonexec "); if(desc->access & EXPAND_DOWN) kprintf("non-expand-down "); if(!(desc->access & WRITEABLE)) kprintf("non-writable "); } if(!(desc->access & ACCESSED)) { kprintf("nonacc "); } dpl = ((u32_t) desc->access & DPL) >> DPL_SHIFT; kprintf("DPL %d\n", dpl); return; } /*===========================================================================* * prot_set_kern_seg_limit * *===========================================================================*/ PUBLIC int prot_set_kern_seg_limit(vir_bytes limit) { struct proc *rp; int orig_click; int incr_clicks; if(limit <= kinfo.data_base) { kprintf("prot_set_kern_seg_limit: limit bogus\n"); return EINVAL; } /* Do actual increase. */ orig_click = kinfo.data_size / CLICK_SIZE; kinfo.data_size = limit - kinfo.data_base; incr_clicks = kinfo.data_size / CLICK_SIZE - orig_click; prot_init(); /* Increase kernel processes too. */ for (rp = BEG_PROC_ADDR; rp < END_PROC_ADDR; ++rp) { if (isemptyp(rp) || !iskernelp(rp)) continue; rp->p_memmap[S].mem_len += incr_clicks; alloc_segments(rp); rp->p_memmap[S].mem_len -= incr_clicks; } return OK; }