/* This file handles signals, which are asynchronous events and are generally * a messy and unpleasant business. Signals can be generated by the KILL * system call, or from the keyboard (SIGINT) or from the clock (SIGALRM). * In all cases control eventually passes to check_sig() to see which processes * can be signaled. The actual signaling is done by sig_proc(). * * The entry points into this file are: * do_sigaction: perform the SIGACTION system call * do_sigpending: perform the SIGPENDING system call * do_sigprocmask: perform the SIGPROCMASK system call * do_sigreturn: perform the SIGRETURN system call * do_sigsuspend: perform the SIGSUSPEND system call * do_kill: perform the KILL system call * do_pause: perform the PAUSE system call * process_ksig: process a signal an behalf of the kernel * sig_proc: interrupt or terminate a signaled process * check_sig: check which processes to signal with sig_proc() * check_pending: check if a pending signal can now be delivered * restart_sigs: restart signal work after finishing a VFS call */ #include "pm.h" #include #include #include #include #include #include #include #include #include #include #include "mproc.h" #include "param.h" FORWARD _PROTOTYPE( void unpause, (struct mproc *rmp) ); FORWARD _PROTOTYPE( int sig_send, (struct mproc *rmp, int signo) ); FORWARD _PROTOTYPE( void sig_proc_exit, (struct mproc *rmp, int signo) ); /*===========================================================================* * do_sigaction * *===========================================================================*/ PUBLIC int do_sigaction() { int r; struct sigaction svec; struct sigaction *svp; if (m_in.sig_nr == SIGKILL) return(OK); if (m_in.sig_nr < 1 || m_in.sig_nr >= _NSIG) return(EINVAL); svp = &mp->mp_sigact[m_in.sig_nr]; if ((struct sigaction *) m_in.sig_osa != (struct sigaction *) NULL) { r = sys_datacopy(PM_PROC_NR,(vir_bytes) svp, who_e, (vir_bytes) m_in.sig_osa, (phys_bytes) sizeof(svec)); if (r != OK) return(r); } if ((struct sigaction *) m_in.sig_nsa == (struct sigaction *) NULL) return(OK); /* Read in the sigaction structure. */ r = sys_datacopy(who_e, (vir_bytes) m_in.sig_nsa, PM_PROC_NR, (vir_bytes) &svec, (phys_bytes) sizeof(svec)); if (r != OK) return(r); if (svec.sa_handler == SIG_IGN) { (void) sigaddset(&mp->mp_ignore, m_in.sig_nr); (void) sigdelset(&mp->mp_sigpending, m_in.sig_nr); (void) sigdelset(&mp->mp_ksigpending, m_in.sig_nr); (void) sigdelset(&mp->mp_catch, m_in.sig_nr); } else if (svec.sa_handler == SIG_DFL) { (void) sigdelset(&mp->mp_ignore, m_in.sig_nr); (void) sigdelset(&mp->mp_catch, m_in.sig_nr); } else { (void) sigdelset(&mp->mp_ignore, m_in.sig_nr); (void) sigaddset(&mp->mp_catch, m_in.sig_nr); } mp->mp_sigact[m_in.sig_nr].sa_handler = svec.sa_handler; (void) sigdelset(&svec.sa_mask, SIGKILL); (void) sigdelset(&svec.sa_mask, SIGSTOP); mp->mp_sigact[m_in.sig_nr].sa_mask = svec.sa_mask; mp->mp_sigact[m_in.sig_nr].sa_flags = svec.sa_flags; mp->mp_sigreturn = (vir_bytes) m_in.sig_ret; return(OK); } /*===========================================================================* * do_sigpending * *===========================================================================*/ PUBLIC int do_sigpending() { mp->mp_reply.reply_mask = (long) mp->mp_sigpending; return OK; } /*===========================================================================* * do_sigprocmask * *===========================================================================*/ PUBLIC int do_sigprocmask() { /* Note that the library interface passes the actual mask in sigmask_set, * not a pointer to the mask, in order to save a copy. Similarly, * the old mask is placed in the return message which the library * interface copies (if requested) to the user specified address. * * The library interface must set SIG_INQUIRE if the 'act' argument * is NULL. * * KILL and STOP can't be masked. */ int i; mp->mp_reply.reply_mask = (long) mp->mp_sigmask; switch (m_in.sig_how) { case SIG_BLOCK: (void) sigdelset((sigset_t *)&m_in.sig_set, SIGKILL); (void) sigdelset((sigset_t *)&m_in.sig_set, SIGSTOP); for (i = 1; i < _NSIG; i++) { if (sigismember((sigset_t *)&m_in.sig_set, i)) (void) sigaddset(&mp->mp_sigmask, i); } break; case SIG_UNBLOCK: for (i = 1; i < _NSIG; i++) { if (sigismember((sigset_t *)&m_in.sig_set, i)) (void) sigdelset(&mp->mp_sigmask, i); } check_pending(mp); break; case SIG_SETMASK: (void) sigdelset((sigset_t *) &m_in.sig_set, SIGKILL); (void) sigdelset((sigset_t *) &m_in.sig_set, SIGSTOP); mp->mp_sigmask = (sigset_t) m_in.sig_set; check_pending(mp); break; case SIG_INQUIRE: break; default: return(EINVAL); break; } return OK; } /*===========================================================================* * do_sigsuspend * *===========================================================================*/ PUBLIC int do_sigsuspend() { mp->mp_sigmask2 = mp->mp_sigmask; /* save the old mask */ mp->mp_sigmask = (sigset_t) m_in.sig_set; (void) sigdelset(&mp->mp_sigmask, SIGKILL); (void) sigdelset(&mp->mp_sigmask, SIGSTOP); mp->mp_flags |= SIGSUSPENDED; check_pending(mp); return(SUSPEND); } /*===========================================================================* * do_sigreturn * *===========================================================================*/ PUBLIC int do_sigreturn() { /* A user signal handler is done. Restore context and check for * pending unblocked signals. */ int r; mp->mp_sigmask = (sigset_t) m_in.sig_set; (void) sigdelset(&mp->mp_sigmask, SIGKILL); (void) sigdelset(&mp->mp_sigmask, SIGSTOP); r = sys_sigreturn(who_e, (struct sigmsg *) m_in.sig_context); check_pending(mp); return(r); } /*===========================================================================* * do_kill * *===========================================================================*/ PUBLIC int do_kill() { /* Perform the kill(pid, signo) system call. */ return check_sig(m_in.pid, m_in.sig_nr, FALSE /* ksig */); } /*===========================================================================* * do_srv_kill * *===========================================================================*/ PUBLIC int do_srv_kill() { /* Perform the srv_kill(pid, signo) system call. */ /* Only RS is allowed to use srv_kill. */ if (mp->mp_endpoint != RS_PROC_NR) return EPERM; /* Pretend the signal comes from the kernel when RS wants to deliver a signal * to a system process. RS sends a SIGKILL when it wants to perform cleanup. * In that case, ksig == TRUE forces PM to exit the process immediately. */ return check_sig(m_in.pid, m_in.sig_nr, TRUE /* ksig */); } /*===========================================================================* * process_ksig * *===========================================================================*/ PUBLIC int process_ksig(endpoint_t proc_nr_e, int signo) { register struct mproc *rmp; int proc_nr; pid_t proc_id, id; if(pm_isokendpt(proc_nr_e, &proc_nr) != OK || proc_nr < 0) { printf("PM: process_ksig: %d?? not ok\n", proc_nr_e); return EDEADEPT; /* process is gone. */ } rmp = &mproc[proc_nr]; if ((rmp->mp_flags & (IN_USE | EXITING)) != IN_USE) { #if 0 printf("PM: process_ksig: %d?? exiting / not in use\n", proc_nr_e); #endif return EDEADEPT; /* process is gone. */ } proc_id = rmp->mp_pid; mp = &mproc[0]; /* pretend signals are from PM */ mp->mp_procgrp = rmp->mp_procgrp; /* get process group right */ /* For SIGVTALRM and SIGPROF, see if we need to restart a * virtual timer. For SIGINT, SIGWINCH and SIGQUIT, use proc_id 0 * to indicate a broadcast to the recipient's process group. For * SIGKILL, use proc_id -1 to indicate a systemwide broadcast. */ switch (signo) { case SIGINT: case SIGQUIT: case SIGWINCH: id = 0; break; /* broadcast to process group */ case SIGVTALRM: case SIGPROF: check_vtimer(proc_nr, signo); /* fall-through */ default: id = proc_id; break; } check_sig(id, signo, TRUE /* ksig */); /* If SIGSNDELAY is set, an earlier sys_stop() failed because the process was * still sending, and the kernel hereby tells us that the process is now done * with that. We can now try to resume what we planned to do in the first * place: set up a signal handler. However, the process's message may have * been a call to PM, in which case the process may have changed any of its * signal settings. The process may also have forked, exited etcetera. */ if (signo == SIGSNDELAY && (rmp->mp_flags & DELAY_CALL)) { rmp->mp_flags &= ~DELAY_CALL; /* * If the VFS_CALL flag is still set we have a process which is stopped * and we only need to wait for a reply from VFS. We are going to check * the pending signal then */ if (rmp->mp_flags & VFS_CALL) return OK; if (rmp->mp_flags & PM_SIG_PENDING) panic("process_ksig: bad process state"); /* Process as many normal signals as possible. */ check_pending(rmp); if (rmp->mp_flags & DELAY_CALL) panic("process_ksig: multiple delay calls?"); } /* See if the process is still alive */ if ((mproc[proc_nr].mp_flags & (IN_USE | EXITING)) == IN_USE) { return OK; /* signal has been delivered */ } else { return EDEADEPT; /* process is gone */ } } /*===========================================================================* * do_pause * *===========================================================================*/ PUBLIC int do_pause() { /* Perform the pause() system call. */ mp->mp_flags |= PAUSED; return(SUSPEND); } /*===========================================================================* * sig_proc * *===========================================================================*/ PUBLIC void sig_proc(rmp, signo, trace, ksig) register struct mproc *rmp; /* pointer to the process to be signaled */ int signo; /* signal to send to process (1 to _NSIG-1) */ int trace; /* pass signal to tracer first? */ int ksig; /* non-zero means signal comes from kernel */ { /* Send a signal to a process. Check to see if the signal is to be caught, * ignored, tranformed into a message (for system processes) or blocked. * - If the signal is to be transformed into a message, request the KERNEL to * send the target process a system notification with the pending signal as an * argument. * - If the signal is to be caught, request the KERNEL to push a sigcontext * structure and a sigframe structure onto the catcher's stack. Also, KERNEL * will reset the program counter and stack pointer, so that when the process * next runs, it will be executing the signal handler. When the signal handler * returns, sigreturn(2) will be called. Then KERNEL will restore the signal * context from the sigcontext structure. * If there is insufficient stack space, kill the process. */ int r, slot, badignore; slot = (int) (rmp - mproc); if ((rmp->mp_flags & (IN_USE | EXITING)) != IN_USE) { printf("PM: signal %d sent to exiting process %d\n", signo, slot); panic(""); } #if USE_TRACE if (trace == TRUE && rmp->mp_tracer != NO_TRACER && signo != SIGKILL) { /* Signal should be passed to the debugger first. * This happens before any checks on block/ignore masks; otherwise, * the process itself could block/ignore debugger signals. */ (void) sigaddset(&rmp->mp_sigtrace, signo); if (!(rmp->mp_flags & STOPPED)) stop_proc(rmp, signo); /* a signal causes it to stop */ return; } #endif if (rmp->mp_flags & VFS_CALL) { (void) sigaddset(&rmp->mp_sigpending, signo); if(ksig) (void) sigaddset(&rmp->mp_ksigpending, signo); if (!(rmp->mp_flags & PM_SIG_PENDING)) { /* No delay calls: VFS_CALL implies the process called us. */ if ((r = sys_stop(rmp->mp_endpoint)) != OK) panic("sys_stop failed: %d", r); rmp->mp_flags |= PM_SIG_PENDING; } return; } /* Handle system signals for system processes first. */ if(rmp->mp_flags & PRIV_PROC) { /* Always skip signals for PM (only necessary when broadcasting). */ if(rmp->mp_endpoint == PM_PROC_NR) { return; } /* System signals have always to go through the kernel first to let it * pick the right signal manager. If PM is the assigned signal manager, * the signal will come back and will actually be processed. */ if(!ksig) { sys_kill(rmp->mp_endpoint, signo); return; } /* Print stacktrace if necessary. */ if(SIGS_IS_STACKTRACE(signo)) { sys_sysctl_stacktrace(rmp->mp_endpoint); } if(!SIGS_IS_TERMINATION(signo)) { /* Translate every non-termination sys signal into a message. */ message m; m.m_type = SIGS_SIGNAL_RECEIVED; m.SIGS_SIG_NUM = signo; asynsend3(rmp->mp_endpoint, &m, AMF_NOREPLY); } else { /* Exit the process in case of termination system signal. */ sig_proc_exit(rmp, signo); } return; } /* Handle user processes now. See if the signal cannot be safely ignored. */ badignore = ksig && sigismember(&noign_sset, signo) && ( sigismember(&rmp->mp_ignore, signo) || sigismember(&rmp->mp_sigmask, signo)); if (!badignore && sigismember(&rmp->mp_ignore, signo)) { /* Signal should be ignored. */ return; } if (!badignore && sigismember(&rmp->mp_sigmask, signo)) { /* Signal should be blocked. */ (void) sigaddset(&rmp->mp_sigpending, signo); if(ksig) (void) sigaddset(&rmp->mp_ksigpending, signo); return; } #if USE_TRACE if ((rmp->mp_flags & STOPPED) && signo != SIGKILL) { /* If the process is stopped for a debugger, do not deliver any signals * (except SIGKILL) in order not to confuse the debugger. The signals * will be delivered using the check_pending() calls in do_trace(). */ (void) sigaddset(&rmp->mp_sigpending, signo); if(ksig) (void) sigaddset(&rmp->mp_ksigpending, signo); return; } #endif /* USE_TRACE */ if (!badignore && sigismember(&rmp->mp_catch, signo)) { /* Signal is caught. First interrupt the process's current call, if * applicable. This may involve a roundtrip to VFS, in which case we'll * have to check back later. */ if (!(rmp->mp_flags & UNPAUSED)) { unpause(rmp); if (!(rmp->mp_flags & UNPAUSED)) { /* not yet unpaused; continue later */ (void) sigaddset(&rmp->mp_sigpending, signo); if(ksig) (void) sigaddset(&rmp->mp_ksigpending, signo); return; } } /* Then send the actual signal to the process, by setting up a signal * handler. */ if (sig_send(rmp, signo)) return; /* We were unable to spawn a signal handler. Kill the process. */ printf("PM: %d can't catch signal %d - killing\n", rmp->mp_pid, signo); } else if (!badignore && sigismember(&ign_sset, signo)) { /* Signal defaults to being ignored. */ return; } /* Terminate process */ sig_proc_exit(rmp, signo); } /*===========================================================================* * sig_proc_exit * *===========================================================================*/ PRIVATE void sig_proc_exit(rmp, signo) struct mproc *rmp; /* process that must exit */ int signo; /* signal that caused termination */ { rmp->mp_sigstatus = (char) signo; if (sigismember(&core_sset, signo)) { if(!(rmp->mp_flags & PRIV_PROC)) { printf("PM: coredump signal %d for %d / %s\n", signo, rmp->mp_pid, rmp->mp_name); sys_sysctl_stacktrace(rmp->mp_endpoint); } exit_proc(rmp, 0, TRUE /*dump_core*/); } else { exit_proc(rmp, 0, FALSE /*dump_core*/); } } /*===========================================================================* * check_sig * *===========================================================================*/ PUBLIC int check_sig(proc_id, signo, ksig) pid_t proc_id; /* pid of proc to sig, or 0 or -1, or -pgrp */ int signo; /* signal to send to process (0 to _NSIG-1) */ int ksig; /* non-zero means signal comes from kernel */ { /* Check to see if it is possible to send a signal. The signal may have to be * sent to a group of processes. This routine is invoked by the KILL system * call, and also when the kernel catches a DEL or other signal. */ register struct mproc *rmp; int count; /* count # of signals sent */ int error_code; if (signo < 0 || signo >= _NSIG) return(EINVAL); /* Return EINVAL for attempts to send SIGKILL to INIT alone. */ if (proc_id == INIT_PID && signo == SIGKILL) return(EINVAL); /* Signal RS first when broadcasting SIGTERM. */ if (proc_id == -1 && signo == SIGTERM) sys_kill(RS_PROC_NR, signo); /* Search the proc table for processes to signal. Start from the end of the * table to analyze core system processes at the end when broadcasting. * (See forkexit.c about pid magic.) */ count = 0; error_code = ESRCH; for (rmp = &mproc[NR_PROCS-1]; rmp >= &mproc[0]; rmp--) { if (!(rmp->mp_flags & IN_USE)) continue; /* Check for selection. */ if (proc_id > 0 && proc_id != rmp->mp_pid) continue; if (proc_id == 0 && mp->mp_procgrp != rmp->mp_procgrp) continue; if (proc_id == -1 && rmp->mp_pid <= INIT_PID) continue; if (proc_id < -1 && rmp->mp_procgrp != -proc_id) continue; /* Do not kill servers and drivers when broadcasting SIGKILL. */ if (proc_id == -1 && signo == SIGKILL && (rmp->mp_flags & PRIV_PROC)) continue; /* Disallow lethal signals sent by user processes to sys processes. */ if (!ksig && SIGS_IS_LETHAL(signo) && (rmp->mp_flags & PRIV_PROC)) { error_code = EPERM; continue; } /* Check for permission. */ if (mp->mp_effuid != SUPER_USER && mp->mp_realuid != rmp->mp_realuid && mp->mp_effuid != rmp->mp_realuid && mp->mp_realuid != rmp->mp_effuid && mp->mp_effuid != rmp->mp_effuid) { error_code = EPERM; continue; } count++; if (signo == 0 || (rmp->mp_flags & EXITING)) continue; /* 'sig_proc' will handle the disposition of the signal. The * signal may be caught, blocked, ignored, or cause process * termination, possibly with core dump. */ sig_proc(rmp, signo, TRUE /*trace*/, ksig); if (proc_id > 0) break; /* only one process being signaled */ } /* If the calling process has killed itself, don't reply. */ if ((mp->mp_flags & (IN_USE | EXITING)) != IN_USE) return(SUSPEND); return(count > 0 ? OK : error_code); } /*===========================================================================* * check_pending * *===========================================================================*/ PUBLIC void check_pending(rmp) register struct mproc *rmp; { /* Check to see if any pending signals have been unblocked. Deliver as many * of them as we can, until we have to wait for a reply from VFS first. * * There are several places in this file where the signal mask is * changed. At each such place, check_pending() should be called to * check for newly unblocked signals. */ int i; int ksig; for (i = 1; i < _NSIG; i++) { if (sigismember(&rmp->mp_sigpending, i) && !sigismember(&rmp->mp_sigmask, i)) { ksig = sigismember(&rmp->mp_ksigpending, i); (void) sigdelset(&rmp->mp_sigpending, i); (void) sigdelset(&rmp->mp_ksigpending, i); sig_proc(rmp, i, FALSE /*trace*/, ksig); if (rmp->mp_flags & VFS_CALL) break; } } } /*===========================================================================* * restart_sigs * *===========================================================================*/ PUBLIC void restart_sigs(rmp) struct mproc *rmp; { /* VFS has replied to a request from us; do signal-related work. */ int r; if (rmp->mp_flags & (VFS_CALL | EXITING)) return; if (rmp->mp_flags & TRACE_EXIT) { #if USE_TRACE /* Tracer requested exit with specific exit value */ exit_proc(rmp, rmp->mp_exitstatus, FALSE /*dump_core*/); #endif /* USE_TRACE */ } else if (rmp->mp_flags & PM_SIG_PENDING) { /* We saved signal(s) for after finishing a VFS call. Deal with this. * PM_SIG_PENDING remains set to indicate the process is still stopped. */ check_pending(rmp); /* The process may now be VFS-blocked again, because a signal exited the * process or was caught. Restart the process only when this is NOT the * case. */ if (!(rmp->mp_flags & VFS_CALL)) { rmp->mp_flags &= ~(PM_SIG_PENDING | UNPAUSED); if ((r = sys_resume(rmp->mp_endpoint)) != OK) panic("sys_resume failed: %d", r); } } } /*===========================================================================* * unpause * *===========================================================================*/ PRIVATE void unpause(rmp) struct mproc *rmp; /* which process */ { /* A signal is to be sent to a process. If that process is hanging on a * system call, the system call must be terminated with EINTR. Possible * calls are PAUSE, WAIT, READ and WRITE, the latter two for pipes and ttys. * First check if the process is hanging on an PM call. If not, tell VFS, * so it can check for READs and WRITEs from pipes, ttys and the like. */ message m; int r; /* If we're already waiting for a delayed call, don't do anything now. */ if (rmp->mp_flags & DELAY_CALL) return; /* Check to see if process is hanging on a PAUSE, WAIT or SIGSUSPEND call. */ if (rmp->mp_flags & (PAUSED | WAITING | SIGSUSPENDED)) { /* Stop process from running. No delay calls: it called us. */ if ((r = sys_stop(rmp->mp_endpoint)) != OK) panic("sys_stop failed: %d", r); rmp->mp_flags |= UNPAUSED; /* We interrupt the actual call from sig_send() below. */ return; } /* Not paused in PM. Let VFS try to unpause the process. */ if (!(rmp->mp_flags & PM_SIG_PENDING)) { /* Stop process from running. */ r = sys_delay_stop(rmp->mp_endpoint); /* If the process is still busy sending a message, the kernel will give * us EBUSY now and send a SIGSNDELAY to the process as soon as sending * is done. */ if (r == EBUSY) { rmp->mp_flags |= DELAY_CALL; return; } else if (r != OK) panic("sys_stop failed: %d", r); rmp->mp_flags |= PM_SIG_PENDING; } m.m_type = PM_UNPAUSE; m.PM_PROC = rmp->mp_endpoint; tell_vfs(rmp, &m); /* Also tell VM. */ vm_notify_sig_wrapper(rmp->mp_endpoint); } /*===========================================================================* * sig_send * *===========================================================================*/ PRIVATE int sig_send(rmp, signo) struct mproc *rmp; /* what process to spawn a signal handler in */ int signo; /* signal to send to process (1 to _NSIG-1) */ { /* The process is supposed to catch this signal. Spawn a signal handler. * Return TRUE if this succeeded, FALSE otherwise. */ struct sigmsg sigmsg; vir_bytes cur_sp; int r, sigflags, slot; if (!(rmp->mp_flags & UNPAUSED)) panic("sig_send: process not unpaused"); sigflags = rmp->mp_sigact[signo].sa_flags; slot = (int) (rmp - mproc); if (rmp->mp_flags & SIGSUSPENDED) sigmsg.sm_mask = rmp->mp_sigmask2; else sigmsg.sm_mask = rmp->mp_sigmask; sigmsg.sm_signo = signo; sigmsg.sm_sighandler = (vir_bytes) rmp->mp_sigact[signo].sa_handler; sigmsg.sm_sigreturn = rmp->mp_sigreturn; rmp->mp_sigmask |= rmp->mp_sigact[signo].sa_mask; if (sigflags & SA_NODEFER) (void) sigdelset(&rmp->mp_sigmask, signo); else (void) sigaddset(&rmp->mp_sigmask, signo); if (sigflags & SA_RESETHAND) { (void) sigdelset(&rmp->mp_catch, signo); rmp->mp_sigact[signo].sa_handler = SIG_DFL; } (void) sigdelset(&rmp->mp_sigpending, signo); (void) sigdelset(&rmp->mp_ksigpending, signo); if(vm_push_sig(rmp->mp_endpoint, &cur_sp) != OK) return(FALSE); sigmsg.sm_stkptr = cur_sp; /* Ask the kernel to deliver the signal */ r = sys_sigsend(rmp->mp_endpoint, &sigmsg); /* sys_sigsend can fail legitimately with EFAULT if * the process memory can't accomodate the signal handler. */ if(r == EFAULT) { return(FALSE); } /* Other errors are unexpected pm/kernel discrepancies. */ if (r != OK) { panic("sys_sigsend failed: %d", r); } /* Was the process suspended in PM? Then interrupt the blocking call. */ if (rmp->mp_flags & (PAUSED | WAITING | SIGSUSPENDED)) { rmp->mp_flags &= ~(PAUSED | WAITING | SIGSUSPENDED); setreply(slot, EINTR); } /* Was the process stopped just for this signal? Then resume it. */ if ((rmp->mp_flags & (PM_SIG_PENDING | UNPAUSED)) == UNPAUSED) { rmp->mp_flags &= ~UNPAUSED; if ((r = sys_resume(rmp->mp_endpoint)) != OK) panic("sys_resume failed: %d", r); } return(TRUE); } /*===========================================================================* * vm_notify_sig_wrapper * *===========================================================================*/ PUBLIC void vm_notify_sig_wrapper(endpoint_t ep) { /* get IPC's endpoint, * the reason that we directly get the endpoint * instead of from DS server is that otherwise * it will cause deadlock between PM, VM and DS. */ struct mproc *rmp; endpoint_t ipc_ep = 0; for (rmp = &mproc[0]; rmp < &mproc[NR_PROCS]; rmp++) { if (!(rmp->mp_flags & IN_USE)) continue; if (!strcmp(rmp->mp_name, "ipc")) { ipc_ep = rmp->mp_endpoint; vm_notify_sig(ep, ipc_ep); return; } } }