/* This file contains the main program of the process manager and some related * procedures. When MINIX starts up, the kernel runs for a little while, * initializing itself and its tasks, and then it runs PM and VFS. Both PM * and VFS initialize themselves as far as they can. PM asks the kernel for * all free memory and starts serving requests. * * The entry points into this file are: * main: starts PM running * setreply: set the reply to be sent to process making an PM system call */ #include "pm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mproc.h" #include "param.h" #include "kernel/const.h" #include "kernel/config.h" #include "kernel/proc.h" #if ENABLE_SYSCALL_STATS EXTERN unsigned long calls_stats[NCALLS]; #endif FORWARD _PROTOTYPE( void sendreply, (void) ); FORWARD _PROTOTYPE( int get_nice_value, (int queue) ); FORWARD _PROTOTYPE( void handle_vfs_reply, (void) ); #define click_to_round_k(n) \ ((unsigned) ((((unsigned long) (n) << CLICK_SHIFT) + 512) / 1024)) #if !defined(__ELF__) extern int unmap_ok; #endif /* SEF functions and variables. */ FORWARD _PROTOTYPE( void sef_local_startup, (void) ); FORWARD _PROTOTYPE( int sef_cb_init_fresh, (int type, sef_init_info_t *info) ); FORWARD _PROTOTYPE( int sef_cb_signal_manager, (endpoint_t target, int signo) ); /*===========================================================================* * main * *===========================================================================*/ PUBLIC int main() { /* Main routine of the process manager. */ int result; /* SEF local startup. */ sef_local_startup(); /* This is PM's main loop- get work and do it, forever and forever. */ while (TRUE) { int ipc_status; /* Wait for the next message and extract useful information from it. */ if (sef_receive_status(ANY, &m_in, &ipc_status) != OK) panic("PM sef_receive_status error"); who_e = m_in.m_source; /* who sent the message */ if(pm_isokendpt(who_e, &who_p) != OK) panic("PM got message from invalid endpoint: %d", who_e); call_nr = m_in.m_type; /* system call number */ /* Process slot of caller. Misuse PM's own process slot if the kernel is * calling. This can happen in case of synchronous alarms (CLOCK) or or * event like pending kernel signals (SYSTEM). */ mp = &mproc[who_p < 0 ? PM_PROC_NR : who_p]; if(who_p >= 0 && mp->mp_endpoint != who_e) { panic("PM endpoint number out of sync with source: %d", mp->mp_endpoint); } /* Drop delayed calls from exiting processes. */ if (mp->mp_flags & EXITING) continue; /* Check for system notifications first. Special cases. */ if (is_ipc_notify(ipc_status)) { switch(who_p) { case CLOCK: expire_timers(m_in.NOTIFY_TIMESTAMP); result = SUSPEND; /* don't reply */ break; default : result = ENOSYS; } /* done, send reply and continue */ if (result != SUSPEND) setreply(who_p, result); sendreply(); continue; } switch(call_nr) { case PM_SETUID_REPLY: case PM_SETGID_REPLY: case PM_SETSID_REPLY: case PM_EXEC_REPLY: case PM_EXIT_REPLY: case PM_CORE_REPLY: case PM_FORK_REPLY: case PM_SRV_FORK_REPLY: case PM_UNPAUSE_REPLY: case PM_REBOOT_REPLY: case PM_SETGROUPS_REPLY: if (who_e == VFS_PROC_NR) { handle_vfs_reply(); result= SUSPEND; /* don't reply */ } else result= ENOSYS; break; case COMMON_GETSYSINFO: result = do_getsysinfo(); break; default: /* Else, if the system call number is valid, perform the * call. */ if ((unsigned) call_nr >= NCALLS) { result = ENOSYS; } else { #if ENABLE_SYSCALL_STATS calls_stats[call_nr]++; #endif result = (*call_vec[call_nr])(); } break; } /* Send reply. */ if (result != SUSPEND) setreply(who_p, result); sendreply(); } return(OK); } /*===========================================================================* * sef_local_startup * *===========================================================================*/ PRIVATE void sef_local_startup() { /* Register init callbacks. */ sef_setcb_init_fresh(sef_cb_init_fresh); sef_setcb_init_restart(sef_cb_init_fail); /* No live update support for now. */ /* Register signal callbacks. */ sef_setcb_signal_manager(sef_cb_signal_manager); /* Let SEF perform startup. */ sef_startup(); } /*===========================================================================* * sef_cb_init_fresh * *===========================================================================*/ PRIVATE int sef_cb_init_fresh(int UNUSED(type), sef_init_info_t *UNUSED(info)) { /* Initialize the process manager. * Memory use info is collected from the boot monitor, the kernel, and * all processes compiled into the system image. Initially this information * is put into an array mem_chunks. Elements of mem_chunks are struct memory, * and hold base, size pairs in units of clicks. This array is small, there * should be no more than 8 chunks. After the array of chunks has been built * the contents are used to initialize the hole list. Space for the hole list * is reserved as an array with twice as many elements as the maximum number * of processes allowed. It is managed as a linked list, and elements of the * array are struct hole, which, in addition to storage for a base and size in * click units also contain space for a link, a pointer to another element. */ int s; static struct boot_image image[NR_BOOT_PROCS]; register struct boot_image *ip; static char core_sigs[] = { SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGEMT, SIGFPE, SIGBUS, SIGSEGV }; static char ign_sigs[] = { SIGCHLD, SIGWINCH, SIGCONT }; static char noign_sigs[] = { SIGILL, SIGTRAP, SIGEMT, SIGFPE, SIGBUS, SIGSEGV }; register struct mproc *rmp; register char *sig_ptr; message mess; /* Initialize process table, including timers. */ for (rmp=&mproc[0]; rmp<&mproc[NR_PROCS]; rmp++) { init_timer(&rmp->mp_timer); rmp->mp_magic = MP_MAGIC; } /* Build the set of signals which cause core dumps, and the set of signals * that are by default ignored. */ (void) sigemptyset(&core_sset); for (sig_ptr = core_sigs; sig_ptr < core_sigs+sizeof(core_sigs); sig_ptr++) (void) sigaddset(&core_sset, *sig_ptr); (void) sigemptyset(&ign_sset); for (sig_ptr = ign_sigs; sig_ptr < ign_sigs+sizeof(ign_sigs); sig_ptr++) (void) sigaddset(&ign_sset, *sig_ptr); (void) sigemptyset(&noign_sset); for (sig_ptr = noign_sigs; sig_ptr < noign_sigs+sizeof(noign_sigs); sig_ptr++) (void) sigaddset(&noign_sset, *sig_ptr); /* Obtain a copy of the boot monitor parameters and the kernel info struct. * Parse the list of free memory chunks. This list is what the boot monitor * reported, but it must be corrected for the kernel and system processes. */ if ((s=sys_getmonparams(monitor_params, sizeof(monitor_params))) != OK) panic("get monitor params failed: %d", s); if ((s=sys_getkinfo(&kinfo)) != OK) panic("get kernel info failed: %d", s); /* Initialize PM's process table. Request a copy of the system image table * that is defined at the kernel level to see which slots to fill in. */ if (OK != (s=sys_getimage(image))) panic("couldn't get image table: %d", s); procs_in_use = 0; /* start populating table */ for (ip = &image[0]; ip < &image[NR_BOOT_PROCS]; ip++) { if (ip->proc_nr >= 0) { /* task have negative nrs */ procs_in_use += 1; /* found user process */ /* Set process details found in the image table. */ rmp = &mproc[ip->proc_nr]; strncpy(rmp->mp_name, ip->proc_name, PROC_NAME_LEN); (void) sigemptyset(&rmp->mp_ignore); (void) sigemptyset(&rmp->mp_sigmask); (void) sigemptyset(&rmp->mp_catch); if (ip->proc_nr == INIT_PROC_NR) { /* user process */ /* INIT is root, we make it father of itself. This is * not really OK, INIT should have no father, i.e. * a father with pid NO_PID. But PM currently assumes * that mp_parent always points to a valid slot number. */ rmp->mp_parent = INIT_PROC_NR; rmp->mp_procgrp = rmp->mp_pid = INIT_PID; rmp->mp_flags |= IN_USE; /* Set scheduling info */ rmp->mp_scheduler = KERNEL; rmp->mp_nice = get_nice_value(USR_Q); } else { /* system process */ if(ip->proc_nr == RS_PROC_NR) { rmp->mp_parent = INIT_PROC_NR; } else { rmp->mp_parent = RS_PROC_NR; } rmp->mp_pid = get_free_pid(); rmp->mp_flags |= IN_USE | PRIV_PROC; /* RS schedules this process */ rmp->mp_scheduler = NONE; rmp->mp_nice = get_nice_value(SRV_Q); } /* Get kernel endpoint identifier. */ rmp->mp_endpoint = ip->endpoint; /* Tell VFS about this system process. */ mess.m_type = PM_INIT; mess.PM_SLOT = ip->proc_nr; mess.PM_PID = rmp->mp_pid; mess.PM_PROC = rmp->mp_endpoint; if (OK != (s=send(VFS_PROC_NR, &mess))) panic("can't sync up with VFS: %d", s); } } /* Tell VFS that no more system processes follow and synchronize. */ mess.PR_ENDPT = NONE; if (sendrec(VFS_PROC_NR, &mess) != OK || mess.m_type != OK) panic("can't sync up with VFS"); #if (CHIP == INTEL) uts_val.machine[0] = 'i'; strcpy(uts_val.machine + 1, itoa(getprocessor())); #endif system_hz = sys_hz(); /* Map out our own text and data. This is normally done in crtso.o * but PM is an exception - we don't get to talk to VM so early on. * That's why we override munmap() and munmap_text() in utility.c. * * _minix_unmapzero() is the same code in crtso.o that normally does * it on startup. It's best that it's there as crtso.o knows exactly * what the ranges are of the filler data. */ #if !defined(__ELF__) unmap_ok = 1; _minix_unmapzero(); #endif /* Initialize user-space scheduling. */ sched_init(); return(OK); } /*===========================================================================* * sef_cb_signal_manager * *===========================================================================*/ PRIVATE int sef_cb_signal_manager(endpoint_t target, int signo) { /* Process signal on behalf of the kernel. */ int r; r = process_ksig(target, signo); sendreply(); return r; } /*===========================================================================* * setreply * *===========================================================================*/ PUBLIC void setreply(proc_nr, result) int proc_nr; /* process to reply to */ int result; /* result of call (usually OK or error #) */ { /* Fill in a reply message to be sent later to a user process. System calls * may occasionally fill in other fields, this is only for the main return * value, and for setting the "must send reply" flag. */ register struct mproc *rmp = &mproc[proc_nr]; if(proc_nr < 0 || proc_nr >= NR_PROCS) panic("setreply arg out of range: %d", proc_nr); rmp->mp_reply.reply_res = result; rmp->mp_flags |= REPLY; /* reply pending */ } /*===========================================================================* * sendreply * *===========================================================================*/ PRIVATE void sendreply() { int proc_nr; int s; struct mproc *rmp; /* Send out all pending reply messages, including the answer to * the call just made above. */ for (proc_nr=0, rmp=mproc; proc_nr < NR_PROCS; proc_nr++, rmp++) { /* In the meantime, the process may have been killed by a * signal (e.g. if a lethal pending signal was unblocked) * without the PM realizing it. If the slot is no longer in * use or the process is exiting, don't try to reply. */ if ((rmp->mp_flags & (REPLY | IN_USE | EXITING)) == (REPLY | IN_USE)) { s=sendnb(rmp->mp_endpoint, &rmp->mp_reply); if (s != OK) { printf("PM can't reply to %d (%s): %d\n", rmp->mp_endpoint, rmp->mp_name, s); } rmp->mp_flags &= ~REPLY; } } } /*===========================================================================* * get_nice_value * *===========================================================================*/ PRIVATE int get_nice_value(queue) int queue; /* store mem chunks here */ { /* Processes in the boot image have a priority assigned. The PM doesn't know * about priorities, but uses 'nice' values instead. The priority is between * MIN_USER_Q and MAX_USER_Q. We have to scale between PRIO_MIN and PRIO_MAX. */ int nice_val = (queue - USER_Q) * (PRIO_MAX-PRIO_MIN+1) / (MIN_USER_Q-MAX_USER_Q+1); if (nice_val > PRIO_MAX) nice_val = PRIO_MAX; /* shouldn't happen */ if (nice_val < PRIO_MIN) nice_val = PRIO_MIN; /* shouldn't happen */ return nice_val; } /*===========================================================================* * handle_vfs_reply * *===========================================================================*/ PRIVATE void handle_vfs_reply() { struct mproc *rmp; endpoint_t proc_e; int r, proc_n; /* PM_REBOOT is the only request not associated with a process. * Handle its reply first. */ if (call_nr == PM_REBOOT_REPLY) { vir_bytes code_addr; size_t code_size; /* Ask the kernel to abort. All system services, including * the PM, will get a HARD_STOP notification. Await the * notification in the main loop. */ code_addr = (vir_bytes) monitor_code; code_size = strlen(monitor_code) + 1; sys_abort(abort_flag, PM_PROC_NR, code_addr, code_size); return; } /* Get the process associated with this call */ proc_e = m_in.PM_PROC; if (pm_isokendpt(proc_e, &proc_n) != OK) { panic("handle_vfs_reply: got bad endpoint from VFS: %d", proc_e); } rmp = &mproc[proc_n]; /* Now that VFS replied, mark the process as VFS-idle again */ if (!(rmp->mp_flags & VFS_CALL)) panic("handle_vfs_reply: reply without request: %d", call_nr); rmp->mp_flags &= ~VFS_CALL; if (rmp->mp_flags & UNPAUSED) panic("handle_vfs_reply: UNPAUSED set on entry: %d", call_nr); /* Call-specific handler code */ switch (call_nr) { case PM_SETUID_REPLY: case PM_SETGID_REPLY: case PM_SETGROUPS_REPLY: /* Wake up the original caller */ setreply(rmp-mproc, OK); break; case PM_SETSID_REPLY: /* Wake up the original caller */ setreply(rmp-mproc, rmp->mp_procgrp); break; case PM_EXEC_REPLY: exec_restart(rmp, m_in.PM_STATUS, (vir_bytes)m_in.PM_PC); break; case PM_EXIT_REPLY: exit_restart(rmp, FALSE /*dump_core*/); break; case PM_CORE_REPLY: if (m_in.PM_STATUS == OK) rmp->mp_sigstatus |= DUMPED; if (m_in.PM_PROC == m_in.PM_TRACED_PROC) /* The reply is to a core dump request * for a killed process */ exit_restart(rmp, TRUE /*dump_core*/); else /* The reply is to a core dump request * for a traced process (T_DUMPCORE) */ /* Wake up the original caller */ setreply(rmp-mproc, rmp->mp_procgrp); break; case PM_FORK_REPLY: /* Schedule the newly created process ... */ r = (OK); if (rmp->mp_scheduler != KERNEL && rmp->mp_scheduler != NONE) { r = sched_start_user(rmp->mp_scheduler, rmp); } /* If scheduling the process failed, we want to tear down the process * and fail the fork */ if (r != (OK)) { /* Tear down the newly created process */ rmp->mp_scheduler = NONE; /* don't try to stop scheduling */ exit_proc(rmp, -1, FALSE /*dump_core*/); /* Wake up the parent with a failed fork */ setreply(rmp->mp_parent, -1); } else { /* Wake up the child */ setreply(proc_n, OK); /* Wake up the parent */ setreply(rmp->mp_parent, rmp->mp_pid); } break; case PM_SRV_FORK_REPLY: /* Nothing to do */ break; case PM_UNPAUSE_REPLY: /* Process is now unpaused */ rmp->mp_flags |= UNPAUSED; break; default: panic("handle_vfs_reply: unknown reply code: %d", call_nr); } /* Now that the process is idle again, look at pending signals */ if ((rmp->mp_flags & (IN_USE | EXITING)) == IN_USE) restart_sigs(rmp); }