/* This file contains the main program of the process manager and some related * procedures. When MINIX starts up, the kernel runs for a little while, * initializing itself and its tasks, and then it runs PM and FS. Both PM * and FS initialize themselves as far as they can. PM asks the kernel for * all free memory and starts serving requests. * * The entry points into this file are: * main: starts PM running * setreply: set the reply to be sent to process making an PM system call */ #include "pm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mproc.h" #include "param.h" #include "../../kernel/const.h" #include "../../kernel/config.h" #include "../../kernel/proc.h" #if ENABLE_SYSCALL_STATS EXTERN unsigned long calls_stats[NCALLS]; #endif FORWARD _PROTOTYPE( void get_work, (void) ); FORWARD _PROTOTYPE( void pm_init, (void) ); FORWARD _PROTOTYPE( int get_nice_value, (int queue) ); FORWARD _PROTOTYPE( void send_work, (void) ); FORWARD _PROTOTYPE( void handle_fs_reply, (message *m_ptr) ); FORWARD _PROTOTYPE( void restart_sigs, (struct mproc *rmp) ); #define click_to_round_k(n) \ ((unsigned) ((((unsigned long) (n) << CLICK_SHIFT) + 512) / 1024)) /*===========================================================================* * main * *===========================================================================*/ PUBLIC int main() { /* Main routine of the process manager. */ int result, s, proc_nr; struct mproc *rmp; sigset_t sigset; pm_init(); /* initialize process manager tables */ /* This is PM's main loop- get work and do it, forever and forever. */ while (TRUE) { get_work(); /* wait for an PM system call */ /* Check for system notifications first. Special cases. */ if (is_notify(call_nr)) { switch(who_p) { case CLOCK: pm_expire_timers(m_in.NOTIFY_TIMESTAMP); result = SUSPEND; /* don't reply */ break; case SYSTEM: /* signals pending */ sigset = m_in.NOTIFY_ARG; if (sigismember(&sigset, SIGKSIG)) { (void) ksig_pending(); } result = SUSPEND; /* don't reply */ break; default : result = ENOSYS; } /* done, send reply and continue */ goto send_reply; } switch(call_nr) { case PM_GET_WORK: if (who_e == FS_PROC_NR) { send_work(); result= SUSPEND; /* don't reply */ } else result= ENOSYS; break; case PM_EXIT_REPLY: case PM_REBOOT_REPLY: case PM_EXEC_REPLY: case PM_CORE_REPLY: if (who_e == FS_PROC_NR) { handle_fs_reply(&m_in); result= SUSPEND; /* don't reply */ } else result= ENOSYS; break; case ALLOCMEM: result= do_allocmem(); break; case FORK_NB: result= do_fork_nb(); break; case EXEC_NEWMEM: result= exec_newmem(); break; case EXEC_RESTART: result= do_execrestart(); break; case PROCSTAT: result= do_procstat(); break; case GETPROCNR: result= do_getprocnr(); break; case GETPUID: result= do_getpuid(); break; default: /* Else, if the system call number is valid, perform the * call. */ if ((unsigned) call_nr >= NCALLS) { result = ENOSYS; } else { #if ENABLE_SYSCALL_STATS calls_stats[call_nr]++; #endif result = (*call_vec[call_nr])(); } break; } send_reply: /* Send the results back to the user to indicate completion. */ if (result != SUSPEND) setreply(who_p, result); /* Send out all pending reply messages, including the answer to * the call just made above. */ for (proc_nr=0, rmp=mproc; proc_nr < NR_PROCS; proc_nr++, rmp++) { /* In the meantime, the process may have been killed by a * signal (e.g. if a lethal pending signal was unblocked) * without the PM realizing it. If the slot is no longer in * use or the process is exiting, don't try to reply. */ if ((rmp->mp_flags & (REPLY | IN_USE | EXITING)) == (REPLY | IN_USE)) { s=sendnb(rmp->mp_endpoint, &rmp->mp_reply); if (s != OK) { printf("PM can't reply to %d (%s): %d\n", rmp->mp_endpoint, rmp->mp_name, s); } rmp->mp_flags &= ~REPLY; } } } return(OK); } /*===========================================================================* * get_work * *===========================================================================*/ PRIVATE void get_work() { /* Wait for the next message and extract useful information from it. */ if (receive(ANY, &m_in) != OK) panic(__FILE__,"PM receive error", NO_NUM); who_e = m_in.m_source; /* who sent the message */ if(pm_isokendpt(who_e, &who_p) != OK) panic(__FILE__, "PM got message from invalid endpoint", who_e); call_nr = m_in.m_type; /* system call number */ /* Process slot of caller. Misuse PM's own process slot if the kernel is * calling. This can happen in case of synchronous alarms (CLOCK) or or * event like pending kernel signals (SYSTEM). */ mp = &mproc[who_p < 0 ? PM_PROC_NR : who_p]; if(who_p >= 0 && mp->mp_endpoint != who_e) { panic(__FILE__, "PM endpoint number out of sync with source", mp->mp_endpoint); } } /*===========================================================================* * setreply * *===========================================================================*/ PUBLIC void setreply(proc_nr, result) int proc_nr; /* process to reply to */ int result; /* result of call (usually OK or error #) */ { /* Fill in a reply message to be sent later to a user process. System calls * may occasionally fill in other fields, this is only for the main return * value, and for setting the "must send reply" flag. */ register struct mproc *rmp = &mproc[proc_nr]; if(proc_nr < 0 || proc_nr >= NR_PROCS) panic(__FILE__,"setreply arg out of range", proc_nr); rmp->mp_reply.reply_res = result; rmp->mp_flags |= REPLY; /* reply pending */ } extern int unmap_ok; /*===========================================================================* * pm_init * *===========================================================================*/ PRIVATE void pm_init() { int failed = 0; int f = 0; /* Initialize the process manager. * Memory use info is collected from the boot monitor, the kernel, and * all processes compiled into the system image. Initially this information * is put into an array mem_chunks. Elements of mem_chunks are struct memory, * and hold base, size pairs in units of clicks. This array is small, there * should be no more than 8 chunks. After the array of chunks has been built * the contents are used to initialize the hole list. Space for the hole list * is reserved as an array with twice as many elements as the maximum number * of processes allowed. It is managed as a linked list, and elements of the * array are struct hole, which, in addition to storage for a base and size in * click units also contain space for a link, a pointer to another element. */ int s; static struct boot_image image[NR_BOOT_PROCS]; register struct boot_image *ip; static char core_sigs[] = { SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGEMT, SIGFPE, SIGBUS, SIGSEGV }; static char ign_sigs[] = { SIGCHLD, SIGWINCH, SIGCONT }; static char mess_sigs[] = { SIGTERM, SIGHUP, SIGABRT, SIGQUIT }; register struct mproc *rmp; register char *sig_ptr; message mess; /* Initialize process table, including timers. */ for (rmp=&mproc[0]; rmp<&mproc[NR_PROCS]; rmp++) { tmr_inittimer(&rmp->mp_timer); rmp->mp_fs_call= PM_IDLE; rmp->mp_fs_call2= PM_IDLE; } /* Build the set of signals which cause core dumps, and the set of signals * that are by default ignored. */ sigemptyset(&core_sset); for (sig_ptr = core_sigs; sig_ptr < core_sigs+sizeof(core_sigs); sig_ptr++) sigaddset(&core_sset, *sig_ptr); sigemptyset(&ign_sset); for (sig_ptr = ign_sigs; sig_ptr < ign_sigs+sizeof(ign_sigs); sig_ptr++) sigaddset(&ign_sset, *sig_ptr); /* Obtain a copy of the boot monitor parameters and the kernel info struct. * Parse the list of free memory chunks. This list is what the boot monitor * reported, but it must be corrected for the kernel and system processes. */ if ((s=sys_getmonparams(monitor_params, sizeof(monitor_params))) != OK) panic(__FILE__,"get monitor params failed",s); if ((s=sys_getkinfo(&kinfo)) != OK) panic(__FILE__,"get kernel info failed",s); /* Initialize PM's process table. Request a copy of the system image table * that is defined at the kernel level to see which slots to fill in. */ if (OK != (s=sys_getimage(image))) panic(__FILE__,"couldn't get image table: %d\n", s); procs_in_use = 0; /* start populating table */ for (ip = &image[0]; ip < &image[NR_BOOT_PROCS]; ip++) { if (ip->proc_nr >= 0) { /* task have negative nrs */ procs_in_use += 1; /* found user process */ /* Set process details found in the image table. */ rmp = &mproc[ip->proc_nr]; strncpy(rmp->mp_name, ip->proc_name, PROC_NAME_LEN); #if 0 rmp->mp_parent = RS_PROC_NR; #endif rmp->mp_nice = get_nice_value(ip->priority); sigemptyset(&rmp->mp_sig2mess); sigemptyset(&rmp->mp_ignore); sigemptyset(&rmp->mp_sigmask); sigemptyset(&rmp->mp_catch); if (ip->proc_nr == INIT_PROC_NR) { /* user process */ rmp->mp_procgrp = rmp->mp_pid = INIT_PID; rmp->mp_flags |= IN_USE; } else { /* system process */ rmp->mp_pid = get_free_pid(); rmp->mp_flags |= IN_USE | PRIV_PROC; for (sig_ptr = mess_sigs; sig_ptr < mess_sigs+sizeof(mess_sigs); sig_ptr++) sigaddset(&rmp->mp_sig2mess, *sig_ptr); } /* Get kernel endpoint identifier. */ rmp->mp_endpoint = ip->endpoint; /* Tell FS about this system process. */ mess.PR_SLOT = ip->proc_nr; mess.PR_PID = rmp->mp_pid; mess.PR_ENDPT = rmp->mp_endpoint; if (OK != (s=send(FS_PROC_NR, &mess))) panic(__FILE__,"can't sync up with FS", s); /* Register proces with ds */ s= ds_publish_u32(rmp->mp_name, rmp->mp_endpoint); if (s != OK) failed++; } } if(failed > 0) printf("PM: failed to register %d/%d boot processes\n", failed, NR_BOOT_PROCS); /* Override some details. INIT, PM, FS and RS are somewhat special. */ mproc[PM_PROC_NR].mp_pid = PM_PID; /* PM has magic pid */ #if 0 mproc[RS_PROC_NR].mp_parent = INIT_PROC_NR; /* INIT is root */ #endif sigfillset(&mproc[PM_PROC_NR].mp_ignore); /* guard against signals */ /* Tell FS that no more system processes follow and synchronize. */ mess.PR_ENDPT = NONE; if (sendrec(FS_PROC_NR, &mess) != OK || mess.m_type != OK) panic(__FILE__,"can't sync up with FS", NO_NUM); #if (CHIP == INTEL) uts_val.machine[0] = 'i'; strcpy(uts_val.machine + 1, itoa(getprocessor())); #endif if(f > 0) printf("PM: failed to register %d processes with DS.\n", f); system_hz = sys_hz(); /* Map out our own text and data. This is normally done in crtso.o * but PM is an exception - we don't get to talk to VM so early on. * That's why we override munmap() and munmap_text() in utility.c. * * _minix_unmapzero() is the same code in crtso.o that normally does * it on startup. It's best that it's there as crtso.o knows exactly * what the ranges are of the filler data. */ unmap_ok = 1; _minix_unmapzero(); } /*===========================================================================* * get_nice_value * *===========================================================================*/ PRIVATE int get_nice_value(queue) int queue; /* store mem chunks here */ { /* Processes in the boot image have a priority assigned. The PM doesn't know * about priorities, but uses 'nice' values instead. The priority is between * MIN_USER_Q and MAX_USER_Q. We have to scale between PRIO_MIN and PRIO_MAX. */ int nice_val = (queue - USER_Q) * (PRIO_MAX-PRIO_MIN+1) / (MIN_USER_Q-MAX_USER_Q+1); if (nice_val > PRIO_MAX) nice_val = PRIO_MAX; /* shouldn't happen */ if (nice_val < PRIO_MIN) nice_val = PRIO_MIN; /* shouldn't happen */ return nice_val; } void checkme(char *str, int line) { struct mproc *trmp; int boned = 0; int proc_nr; for (proc_nr=0, trmp=mproc; proc_nr < NR_PROCS; proc_nr++, trmp++) { if ((trmp->mp_flags & (REPLY | IN_USE | EXITING)) == (REPLY | IN_USE)) { int tp; if(pm_isokendpt(trmp->mp_endpoint, &tp) != OK) { printf("PM: %s:%d: reply %d to %s is bogus endpoint %d after call %d by %d\n", str, line, trmp->mp_reply.m_type, trmp->mp_name, trmp->mp_endpoint, call_nr, who_e); boned=1; } } if(boned) panic(__FILE__, "corrupt mp_endpoint?", NO_NUM); } } /*===========================================================================* * send_work * *===========================================================================*/ PRIVATE void send_work() { int r, call; struct mproc *rmp; message m; m.m_type= PM_IDLE; for (rmp= mproc; rmp < &mproc[NR_PROCS]; rmp++) { call= rmp->mp_fs_call; if (call == PM_IDLE) call= rmp->mp_fs_call2; if (call == PM_IDLE) continue; switch(call) { case PM_SETSID: m.m_type= call; m.PM_SETSID_PROC= rmp->mp_endpoint; /* FS does not reply */ rmp->mp_fs_call= PM_IDLE; /* Wakeup the original caller */ setreply(rmp-mproc, rmp->mp_procgrp); break; case PM_SETGID: m.m_type= call; m.PM_SETGID_PROC= rmp->mp_endpoint; m.PM_SETGID_EGID= rmp->mp_effgid; m.PM_SETGID_RGID= rmp->mp_realgid; /* FS does not reply */ rmp->mp_fs_call= PM_IDLE; /* Wakeup the original caller */ setreply(rmp-mproc, OK); break; case PM_SETUID: m.m_type= call; m.PM_SETUID_PROC= rmp->mp_endpoint; m.PM_SETUID_EGID= rmp->mp_effuid; m.PM_SETUID_RGID= rmp->mp_realuid; /* FS does not reply */ rmp->mp_fs_call= PM_IDLE; /* Wakeup the original caller */ setreply(rmp-mproc, OK); break; case PM_FORK: { int parent_p; struct mproc *parent_mp; parent_p = rmp->mp_parent; parent_mp = &mproc[parent_p]; m.m_type= call; m.PM_FORK_PPROC= parent_mp->mp_endpoint; m.PM_FORK_CPROC= rmp->mp_endpoint; m.PM_FORK_CPID= rmp->mp_pid; /* FS does not reply */ rmp->mp_fs_call= PM_IDLE; /* Wakeup the newly created process */ setreply(rmp-mproc, OK); /* Wakeup the parent */ setreply(parent_mp-mproc, rmp->mp_pid); break; } case PM_EXIT: m.m_type= call; m.PM_EXIT_PROC= rmp->mp_endpoint; /* Mark the process as busy */ rmp->mp_fs_call= PM_BUSY; break; case PM_UNPAUSE: m.m_type= call; m.PM_UNPAUSE_PROC= rmp->mp_endpoint; /* FS does not reply */ rmp->mp_fs_call2= PM_IDLE; /* Ask the kernel to deliver the signal */ r= sys_sigsend(rmp->mp_endpoint, &rmp->mp_sigmsg); if (r != OK) { #if 0 panic(__FILE__,"sys_sigsend failed",r); #else printf("PM: PM_UNPAUSE: sys_sigsend failed to %d: %d\n", rmp->mp_endpoint, r); #endif } break; case PM_UNPAUSE_TR: m.m_type= call; m.PM_UNPAUSE_PROC= rmp->mp_endpoint; /* FS does not reply */ rmp->mp_fs_call= PM_IDLE; break; case PM_EXEC: m.m_type= call; m.PM_EXEC_PROC= rmp->mp_endpoint; m.PM_EXEC_PATH= rmp->mp_exec_path; m.PM_EXEC_PATH_LEN= rmp->mp_exec_path_len; m.PM_EXEC_FRAME= rmp->mp_exec_frame; m.PM_EXEC_FRAME_LEN= rmp->mp_exec_frame_len; /* Mark the process as busy */ rmp->mp_fs_call= PM_BUSY; break; case PM_FORK_NB: { int parent_p; struct mproc *parent_mp; parent_p = rmp->mp_parent; parent_mp = &mproc[parent_p]; m.m_type= PM_FORK; m.PM_FORK_PPROC= parent_mp->mp_endpoint; m.PM_FORK_CPROC= rmp->mp_endpoint; m.PM_FORK_CPID= rmp->mp_pid; /* FS does not reply */ rmp->mp_fs_call= PM_IDLE; break; } case PM_DUMPCORE: m.m_type= call; m.PM_CORE_PROC= rmp->mp_endpoint; /* XXX m.PM_CORE_SEGPTR= (char *)rmp->mp_seg; */ /* Mark the process as busy */ rmp->mp_fs_call= PM_BUSY; break; default: printf("send_work: should report call 0x%x to FS\n", call); break; } break; } if (m.m_type != PM_IDLE) { restart_sigs(rmp); } else if (report_reboot) { m.m_type= PM_REBOOT; report_reboot= FALSE; } r= send(FS_PROC_NR, &m); if (r != OK) panic("pm", "send_work: send failed", r); } /*===========================================================================* * handle_fs_reply * *===========================================================================*/ PRIVATE void handle_fs_reply(m_ptr) message *m_ptr; { int r, proc_e, proc_n, s; struct mproc *rmp; switch(m_ptr->m_type) { case PM_EXIT_REPLY: proc_e= m_ptr->PM_EXIT_PROC; if (pm_isokendpt(proc_e, &proc_n) != OK) { panic(__FILE__, "PM_EXIT_REPLY: got bad endpoint from FS", proc_e); } rmp= &mproc[proc_n]; /* Call is finished */ rmp->mp_fs_call= PM_IDLE; exit_restart(rmp, FALSE /*dump_core*/); break; case PM_REBOOT_REPLY: { vir_bytes code_addr; size_t code_size; /* Ask the kernel to abort. All system services, including * the PM, will get a HARD_STOP notification. Await the * notification in the main loop. */ code_addr = (vir_bytes) monitor_code; code_size = strlen(monitor_code) + 1; sys_abort(abort_flag, PM_PROC_NR, code_addr, code_size); break; } case PM_EXEC_REPLY: proc_e= m_ptr->PM_EXEC_PROC; if (pm_isokendpt(proc_e, &proc_n) != OK) { panic(__FILE__, "PM_EXIT_REPLY: got bad endpoint from FS", proc_e); } rmp= &mproc[proc_n]; /* Call is finished */ rmp->mp_fs_call= PM_IDLE; exec_restart(rmp, m_ptr->PM_EXEC_STATUS); restart_sigs(rmp); break; case PM_CORE_REPLY: { proc_e= m_ptr->PM_CORE_PROC; if (pm_isokendpt(proc_e, &proc_n) != OK) { panic(__FILE__, "PM_EXIT_REPLY: got bad endpoint from FS", proc_e); } rmp= &mproc[proc_n]; if (m_ptr->PM_CORE_STATUS == OK) rmp->mp_sigstatus |= DUMPED; /* Call is finished */ rmp->mp_fs_call= PM_IDLE; exit_restart(rmp, TRUE /*dump_core*/); break; } default: panic(__FILE__, "handle_fs_reply: unknown reply type", m_ptr->m_type); break; } } /*===========================================================================* * restart_sigs * *===========================================================================*/ PRIVATE void restart_sigs(rmp) struct mproc *rmp; { if (rmp->mp_fs_call != PM_IDLE || rmp->mp_fs_call2 != PM_IDLE) return; if (rmp->mp_flags & TRACE_EXIT) { exit_proc(rmp, rmp->mp_exitstatus, FALSE /*dump_core*/); } else if (rmp->mp_flags & PM_SIG_PENDING) { rmp->mp_flags &= ~PM_SIG_PENDING; check_pending(rmp); if (!(rmp->mp_flags & PM_SIG_PENDING)) { /* Allow the process to be scheduled */ sys_nice(rmp->mp_endpoint, rmp->mp_nice); } } }