#include "../../kernel.h" #include "../../proc.h" #include "../../vm.h" #include #include #include #include #include #include #include #include "proto.h" #include "../../proto.h" #include "../../proto.h" #include "../../debug.h" #ifdef CONFIG_APIC #include "apic.h" #endif PRIVATE int psok = 0; #define PROCPDEPTR(pr, pi) ((u32_t *) ((u8_t *) vm_pagedirs +\ I386_PAGE_SIZE * pr->p_nr + \ I386_VM_PT_ENT_SIZE * pi)) u8_t *vm_pagedirs = NULL; #define NOPDE -1 #define PDEMASK(n) (1L << (n)) PUBLIC u32_t dirtypde; #define WANT_FREEPDES (sizeof(dirtypde)*8-5) PRIVATE int nfreepdes = 0, freepdes[WANT_FREEPDES], inusepde = NOPDE; #define HASPT(procptr) ((procptr)->p_seg.p_cr3 != 0) FORWARD _PROTOTYPE( u32_t phys_get32, (vir_bytes v) ); FORWARD _PROTOTYPE( void vm_enable_paging, (void) ); FORWARD _PROTOTYPE( void set_cr3, (void) ); /* *** Internal VM Functions *** */ PUBLIC void vm_init(struct proc *newptproc) { int i; if(vm_running) minix_panic("vm_init: vm_running", NO_NUM); vm_set_cr3(newptproc); level0(vm_enable_paging); vm_running = 1; } #define TYPEDIRECT 0 #define TYPEPROCMAP 1 #define TYPEPHYS 2 /* This macro sets up a mapping from within the kernel's address * space to any other area of memory, either straight physical * memory (PROC == NULL) or a process view of memory, in 4MB chunks. * It recognizes PROC having kernel address space as a special case. * * It sets PTR to the pointer within kernel address space at the start * of the 4MB chunk, and OFFSET to the offset within that chunk * that corresponds to LINADDR. * * It needs FREEPDE (available and addressable PDE within kernel * address space), SEG (hardware segment), VIRT (in-datasegment * address if known). */ #define CREATEPDE(PROC, PTR, LINADDR, REMAIN, BYTES, PDE, TYPE) { \ u32_t *pdeptr = NULL; \ int proc_pde_index; \ proc_pde_index = I386_VM_PDE(LINADDR); \ PDE = NOPDE; \ if((PROC) && (((PROC) == ptproc) || !HASPT(PROC))) { \ PTR = LINADDR; \ TYPE = TYPEDIRECT; \ } else { \ int fp; \ int mustinvl; \ u32_t pdeval, *pdevalptr, mask; \ phys_bytes offset; \ vmassert(psok); \ if(PROC) { \ TYPE = TYPEPROCMAP; \ vmassert(!iskernelp(PROC)); \ vmassert(HASPT(PROC)); \ pdeptr = PROCPDEPTR(PROC, proc_pde_index); \ pdeval = *pdeptr; \ } else { \ TYPE = TYPEPHYS; \ pdeval = (LINADDR & I386_VM_ADDR_MASK_4MB) | \ I386_VM_BIGPAGE | I386_VM_PRESENT | \ I386_VM_WRITE | I386_VM_USER; \ } \ for(fp = 0; fp < nfreepdes; fp++) { \ int k = freepdes[fp]; \ if(inusepde == k) \ continue; \ *PROCPDEPTR(ptproc, k) = 0; \ PDE = k; \ vmassert(k >= 0); \ vmassert(k < sizeof(dirtypde)*8); \ mask = PDEMASK(PDE); \ if(dirtypde & mask) \ continue; \ break; \ } \ vmassert(PDE != NOPDE); \ vmassert(mask); \ if(dirtypde & mask) { \ mustinvl = 1; \ } else { \ mustinvl = 0; \ } \ inusepde = PDE; \ *PROCPDEPTR(ptproc, PDE) = pdeval; \ offset = LINADDR & I386_VM_OFFSET_MASK_4MB; \ PTR = I386_BIG_PAGE_SIZE*PDE + offset; \ REMAIN = MIN(REMAIN, I386_BIG_PAGE_SIZE - offset); \ if(1 || mustinvl) { \ level0(reload_cr3); \ } \ } \ } #define DONEPDE(PDE) { \ if(PDE != NOPDE) { \ vmassert(PDE > 0); \ vmassert(PDE < sizeof(dirtypde)*8); \ dirtypde |= PDEMASK(PDE); \ } \ } #define WIPEPDE(PDE) { \ if(PDE != NOPDE) { \ vmassert(PDE > 0); \ vmassert(PDE < sizeof(dirtypde)*8); \ *PROCPDEPTR(ptproc, PDE) = 0; \ } \ } /*===========================================================================* * lin_lin_copy * *===========================================================================*/ int lin_lin_copy(struct proc *srcproc, vir_bytes srclinaddr, struct proc *dstproc, vir_bytes dstlinaddr, vir_bytes bytes) { u32_t addr; int o1, o2; int procslot; int firstloop = 1; NOREC_ENTER(linlincopy); vmassert(vm_running); vmassert(nfreepdes >= 3); vmassert(ptproc); vmassert(proc_ptr); vmassert(read_cr3() == ptproc->p_seg.p_cr3); procslot = ptproc->p_nr; vmassert(procslot >= 0 && procslot < I386_VM_DIR_ENTRIES); while(bytes > 0) { phys_bytes srcptr, dstptr; vir_bytes chunk = bytes; int srcpde, dstpde; int srctype, dsttype; /* Set up 4MB ranges. */ inusepde = NOPDE; CREATEPDE(srcproc, srcptr, srclinaddr, chunk, bytes, srcpde, srctype); CREATEPDE(dstproc, dstptr, dstlinaddr, chunk, bytes, dstpde, dsttype); /* Copy pages. */ PHYS_COPY_CATCH(srcptr, dstptr, chunk, addr); DONEPDE(srcpde); DONEPDE(dstpde); if(addr) { /* If addr is nonzero, a page fault was caught. */ if(addr >= srcptr && addr < (srcptr + chunk)) { WIPEPDE(srcpde); WIPEPDE(dstpde); NOREC_RETURN(linlincopy, EFAULT_SRC); } if(addr >= dstptr && addr < (dstptr + chunk)) { WIPEPDE(srcpde); WIPEPDE(dstpde); NOREC_RETURN(linlincopy, EFAULT_DST); } minix_panic("lin_lin_copy fault out of range", NO_NUM); /* Not reached. */ NOREC_RETURN(linlincopy, EFAULT); } WIPEPDE(srcpde); WIPEPDE(dstpde); /* Update counter and addresses for next iteration, if any. */ bytes -= chunk; srclinaddr += chunk; dstlinaddr += chunk; firstloop = 0; } NOREC_RETURN(linlincopy, OK); } PRIVATE u32_t phys_get32(addr) phys_bytes addr; { u32_t v; int r; if(!vm_running) { phys_copy(addr, vir2phys(&v), sizeof(v)); return v; } if((r=lin_lin_copy(NULL, addr, proc_addr(SYSTEM), vir2phys(&v), sizeof(v))) != OK) { minix_panic("lin_lin_copy for phys_get32 failed", r); } return v; } PRIVATE u32_t vm_cr3; /* temp arg to level0() func */ PRIVATE void set_cr3() { write_cr3(vm_cr3); } PUBLIC void vm_set_cr3(struct proc *newptproc) { int u = 0; if(!intr_disabled()) { lock; u = 1; } vm_cr3= newptproc->p_seg.p_cr3; if(vm_cr3) { level0(set_cr3); ptproc = newptproc; } if(u) { unlock; } } char *cr0_str(u32_t e) { static char str[80]; strcpy(str, ""); #define FLAG(v) do { if(e & (v)) { strcat(str, #v " "); e &= ~v; } } while(0) FLAG(I386_CR0_PE); FLAG(I386_CR0_MP); FLAG(I386_CR0_EM); FLAG(I386_CR0_TS); FLAG(I386_CR0_ET); FLAG(I386_CR0_PG); FLAG(I386_CR0_WP); if(e) { strcat(str, " (++)"); } return str; } char *cr4_str(u32_t e) { static char str[80]; strcpy(str, ""); FLAG(I386_CR4_VME); FLAG(I386_CR4_PVI); FLAG(I386_CR4_TSD); FLAG(I386_CR4_DE); FLAG(I386_CR4_PSE); FLAG(I386_CR4_PAE); FLAG(I386_CR4_MCE); FLAG(I386_CR4_PGE); if(e) { strcat(str, " (++)"); } return str; } PRIVATE void vm_enable_paging(void) { u32_t cr0, cr4; int pgeok; psok = _cpufeature(_CPUF_I386_PSE); pgeok = _cpufeature(_CPUF_I386_PGE); cr0= read_cr0(); cr4= read_cr4(); /* First clear PG and PGE flag, as PGE must be enabled after PG. */ write_cr0(cr0 & ~I386_CR0_PG); write_cr4(cr4 & ~(I386_CR4_PGE | I386_CR4_PSE)); cr0= read_cr0(); cr4= read_cr4(); /* Our first page table contains 4MB entries. */ if(psok) cr4 |= I386_CR4_PSE; write_cr4(cr4); /* First enable paging, then enable global page flag. */ cr0 |= I386_CR0_PG; write_cr0(cr0 ); cr0 |= I386_CR0_WP; write_cr0(cr0); /* May we enable these features? */ if(pgeok) cr4 |= I386_CR4_PGE; write_cr4(cr4); } PUBLIC vir_bytes alloc_remote_segment(u32_t *selector, segframe_t *segments, int index, phys_bytes phys, vir_bytes size, int priv) { phys_bytes offset = 0; /* Check if the segment size can be recorded in bytes, that is, check * if descriptor's limit field can delimited the allowed memory region * precisely. This works up to 1MB. If the size is larger, 4K pages * instead of bytes are used. */ if (size < BYTE_GRAN_MAX) { init_dataseg(&segments->p_ldt[EXTRA_LDT_INDEX+index], phys, size, priv); *selector = ((EXTRA_LDT_INDEX+index)*0x08) | (1*0x04) | priv; offset = 0; } else { init_dataseg(&segments->p_ldt[EXTRA_LDT_INDEX+index], phys & ~0xFFFF, 0, priv); *selector = ((EXTRA_LDT_INDEX+index)*0x08) | (1*0x04) | priv; offset = phys & 0xFFFF; } return offset; } PUBLIC phys_bytes umap_remote(struct proc* rp, int seg, vir_bytes vir_addr, vir_bytes bytes) { /* Calculate the physical memory address for a given virtual address. */ struct far_mem *fm; #if 0 if(rp->p_misc_flags & MF_FULLVM) return 0; #endif if (bytes <= 0) return( (phys_bytes) 0); if (seg < 0 || seg >= NR_REMOTE_SEGS) return( (phys_bytes) 0); fm = &rp->p_priv->s_farmem[seg]; if (! fm->in_use) return( (phys_bytes) 0); if (vir_addr + bytes > fm->mem_len) return( (phys_bytes) 0); return(fm->mem_phys + (phys_bytes) vir_addr); } /*===========================================================================* * umap_local * *===========================================================================*/ PUBLIC phys_bytes umap_local(rp, seg, vir_addr, bytes) register struct proc *rp; /* pointer to proc table entry for process */ int seg; /* T, D, or S segment */ vir_bytes vir_addr; /* virtual address in bytes within the seg */ vir_bytes bytes; /* # of bytes to be copied */ { /* Calculate the physical memory address for a given virtual address. */ vir_clicks vc; /* the virtual address in clicks */ phys_bytes pa; /* intermediate variables as phys_bytes */ phys_bytes seg_base; if(seg != T && seg != D && seg != S) minix_panic("umap_local: wrong seg", seg); if (bytes <= 0) return( (phys_bytes) 0); if (vir_addr + bytes <= vir_addr) return 0; /* overflow */ vc = (vir_addr + bytes - 1) >> CLICK_SHIFT; /* last click of data */ if (seg != T) seg = (vc < rp->p_memmap[D].mem_vir + rp->p_memmap[D].mem_len ? D : S); if ((vir_addr>>CLICK_SHIFT) >= rp->p_memmap[seg].mem_vir + rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 ); if (vc >= rp->p_memmap[seg].mem_vir + rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 ); seg_base = (phys_bytes) rp->p_memmap[seg].mem_phys; seg_base = seg_base << CLICK_SHIFT; /* segment origin in bytes */ pa = (phys_bytes) vir_addr; pa -= rp->p_memmap[seg].mem_vir << CLICK_SHIFT; return(seg_base + pa); } /*===========================================================================* * umap_virtual * *===========================================================================*/ PUBLIC phys_bytes umap_virtual(rp, seg, vir_addr, bytes) register struct proc *rp; /* pointer to proc table entry for process */ int seg; /* T, D, or S segment */ vir_bytes vir_addr; /* virtual address in bytes within the seg */ vir_bytes bytes; /* # of bytes to be copied */ { vir_bytes linear; u32_t phys = 0; if(seg == MEM_GRANT) { phys = umap_grant(rp, vir_addr, bytes); } else { if(!(linear = umap_local(rp, seg, vir_addr, bytes))) { kprintf("SYSTEM:umap_virtual: umap_local failed\n"); phys = 0; } else { if(vm_lookup(rp, linear, &phys, NULL) != OK) { kprintf("SYSTEM:umap_virtual: vm_lookup of %s: seg 0x%lx: 0x%lx failed\n", rp->p_name, seg, vir_addr); phys = 0; } if(phys == 0) minix_panic("vm_lookup returned phys", phys); } } if(phys == 0) { kprintf("SYSTEM:umap_virtual: lookup failed\n"); return 0; } /* Now make sure addresses are contiguous in physical memory * so that the umap makes sense. */ if(bytes > 0 && !vm_contiguous(rp, linear, bytes)) { kprintf("umap_virtual: %s: %d at 0x%lx (vir 0x%lx) not contiguous\n", rp->p_name, bytes, linear, vir_addr); return 0; } /* phys must be larger than 0 (or the caller will think the call * failed), and address must not cross a page boundary. */ vmassert(phys); return phys; } /*===========================================================================* * vm_lookup * *===========================================================================*/ PUBLIC int vm_lookup(struct proc *proc, vir_bytes virtual, vir_bytes *physical, u32_t *ptent) { u32_t *root, *pt; int pde, pte; u32_t pde_v, pte_v; NOREC_ENTER(vmlookup); vmassert(proc); vmassert(physical); vmassert(!isemptyp(proc)); if(!HASPT(proc)) { *physical = virtual; NOREC_RETURN(vmlookup, OK); } /* Retrieve page directory entry. */ root = (u32_t *) proc->p_seg.p_cr3; vmassert(!((u32_t) root % I386_PAGE_SIZE)); pde = I386_VM_PDE(virtual); vmassert(pde >= 0 && pde < I386_VM_DIR_ENTRIES); pde_v = phys_get32((u32_t) (root + pde)); if(!(pde_v & I386_VM_PRESENT)) { NOREC_RETURN(vmlookup, EFAULT); } /* We don't expect to ever see this. */ if(pde_v & I386_VM_BIGPAGE) { *physical = pde_v & I386_VM_ADDR_MASK_4MB; if(ptent) *ptent = pde_v; *physical += virtual & I386_VM_OFFSET_MASK_4MB; } else { /* Retrieve page table entry. */ pt = (u32_t *) I386_VM_PFA(pde_v); vmassert(!((u32_t) pt % I386_PAGE_SIZE)); pte = I386_VM_PTE(virtual); vmassert(pte >= 0 && pte < I386_VM_PT_ENTRIES); pte_v = phys_get32((u32_t) (pt + pte)); if(!(pte_v & I386_VM_PRESENT)) { NOREC_RETURN(vmlookup, EFAULT); } if(ptent) *ptent = pte_v; /* Actual address now known; retrieve it and add page offset. */ *physical = I386_VM_PFA(pte_v); *physical += virtual % I386_PAGE_SIZE; } NOREC_RETURN(vmlookup, OK); } /* From virtual address v in process p, * lookup physical address and assign it to d. * If p is NULL, assume it's already a physical address. */ #define LOOKUP(d, p, v, flagsp) { \ int r; \ if(!(p)) { (d) = (v); } \ else { \ if((r=vm_lookup((p), (v), &(d), flagsp)) != OK) { \ kprintf("vm_copy: lookup failed of 0x%lx in %d (%s)\n"\ "kernel stacktrace: ", (v), (p)->p_endpoint, \ (p)->p_name); \ util_stacktrace(); \ return r; \ } } } /*===========================================================================* * vm_contiguous * *===========================================================================*/ PUBLIC int vm_contiguous(struct proc *targetproc, u32_t vir_buf, size_t bytes) { int first = 1, r, boundaries = 0; u32_t prev_phys, po; u32_t prev_vir; vmassert(targetproc); vmassert(bytes > 0); if(!HASPT(targetproc)) return 1; /* Start and end at page boundary to make logic simpler. */ po = vir_buf % I386_PAGE_SIZE; if(po > 0) { bytes += po; vir_buf -= po; } po = (vir_buf + bytes) % I386_PAGE_SIZE; if(po > 0) bytes += I386_PAGE_SIZE - po; /* Keep going as long as we cross a page boundary. */ while(bytes > 0) { u32_t phys; if((r=vm_lookup(targetproc, vir_buf, &phys, NULL)) != OK) { kprintf("vm_contiguous: vm_lookup failed, %d\n", r); kprintf("kernel stack: "); util_stacktrace(); return 0; } if(!first) { if(prev_phys+I386_PAGE_SIZE != phys) { kprintf("vm_contiguous: no (0x%lx, 0x%lx)\n", prev_phys, phys); kprintf("kernel stack: "); util_stacktrace(); return 0; } } first = 0; prev_phys = phys; prev_vir = vir_buf; vir_buf += I386_PAGE_SIZE; bytes -= I386_PAGE_SIZE; boundaries++; } return 1; } /*===========================================================================* * vm_suspend * *===========================================================================*/ PUBLIC int vm_suspend(struct proc *caller, struct proc *target, vir_bytes linaddr, vir_bytes len, int wrflag, int type) { /* This range is not OK for this process. Set parameters * of the request and notify VM about the pending request. */ vmassert(!RTS_ISSET(caller, RTS_VMREQUEST)); vmassert(!RTS_ISSET(target, RTS_VMREQUEST)); RTS_LOCK_SET(caller, RTS_VMREQUEST); #if DEBUG_VMASSERT caller->p_vmrequest.stacktrace[0] = '\0'; util_stacktrace_strcat(caller->p_vmrequest.stacktrace); #endif caller->p_vmrequest.writeflag = 1; caller->p_vmrequest.start = linaddr; caller->p_vmrequest.length = len; caller->p_vmrequest.who = target->p_endpoint; caller->p_vmrequest.type = type; /* Connect caller on vmrequest wait queue. */ if(!(caller->p_vmrequest.nextrequestor = vmrequest)) mini_notify(proc_addr(SYSTEM), VM_PROC_NR); vmrequest = caller; } /*===========================================================================* * delivermsg * *===========================================================================*/ int delivermsg(struct proc *rp) { phys_bytes addr; int r; NOREC_ENTER(deliver); vmassert(rp->p_misc_flags & MF_DELIVERMSG); vmassert(rp->p_delivermsg.m_source != NONE); vmassert(rp->p_delivermsg_lin); #if DEBUG_VMASSERT if(rp->p_delivermsg_lin != umap_local(rp, D, rp->p_delivermsg_vir, sizeof(message))) { printf("vir: 0x%lx lin was: 0x%lx umap now: 0x%lx\n", rp->p_delivermsg_vir, rp->p_delivermsg_lin, umap_local(rp, D, rp->p_delivermsg_vir, sizeof(message))); minix_panic("that's wrong", NO_NUM); } #endif vm_set_cr3(rp); PHYS_COPY_CATCH(vir2phys(&rp->p_delivermsg), rp->p_delivermsg_lin, sizeof(message), addr); if(addr) { vm_suspend(rp, rp, rp->p_delivermsg_lin, sizeof(message), 1, VMSTYPE_DELIVERMSG); r = VMSUSPEND; } else { #if DEBUG_VMASSERT rp->p_delivermsg.m_source = NONE; rp->p_delivermsg_lin = 0; #endif rp->p_misc_flags &= ~MF_DELIVERMSG; r = OK; } NOREC_RETURN(deliver, r); } char *flagstr(u32_t e, int dir) { static char str[80]; strcpy(str, ""); FLAG(I386_VM_PRESENT); FLAG(I386_VM_WRITE); FLAG(I386_VM_USER); FLAG(I386_VM_PWT); FLAG(I386_VM_PCD); FLAG(I386_VM_GLOBAL); if(dir) FLAG(I386_VM_BIGPAGE); /* Page directory entry only */ else FLAG(I386_VM_DIRTY); /* Page table entry only */ return str; } void vm_pt_print(u32_t *pagetable, u32_t v) { int pte, l = 0; int col = 0; vmassert(!((u32_t) pagetable % I386_PAGE_SIZE)); for(pte = 0; pte < I386_VM_PT_ENTRIES; pte++) { u32_t pte_v, pfa; pte_v = phys_get32((u32_t) (pagetable + pte)); if(!(pte_v & I386_VM_PRESENT)) continue; pfa = I386_VM_PFA(pte_v); kprintf("%4d:%08lx:%08lx %2s ", pte, v + I386_PAGE_SIZE*pte, pfa, (pte_v & I386_VM_WRITE) ? "rw":"RO"); col++; if(col == 3) { kprintf("\n"); col = 0; } } if(col > 0) kprintf("\n"); return; } void vm_print(u32_t *root) { int pde; vmassert(!((u32_t) root % I386_PAGE_SIZE)); printf("page table 0x%lx:\n", root); for(pde = 0; pde < I386_VM_DIR_ENTRIES; pde++) { u32_t pde_v; u32_t *pte_a; pde_v = phys_get32((u32_t) (root + pde)); if(!(pde_v & I386_VM_PRESENT)) continue; if(pde_v & I386_VM_BIGPAGE) { kprintf("%4d: 0x%lx, flags %s\n", pde, I386_VM_PFA(pde_v), flagstr(pde_v, 1)); } else { pte_a = (u32_t *) I386_VM_PFA(pde_v); kprintf("%4d: pt %08lx %s\n", pde, pte_a, flagstr(pde_v, 1)); vm_pt_print(pte_a, pde * I386_VM_PT_ENTRIES * I386_PAGE_SIZE); kprintf("\n"); } } return; } u32_t thecr3; u32_t read_cr3(void) { level0(getcr3val); return thecr3; } /*===========================================================================* * lin_memset * *===========================================================================*/ int vm_phys_memset(phys_bytes ph, u8_t c, phys_bytes bytes) { char *v; u32_t p; NOREC_ENTER(physmemset); p = c | (c << 8) | (c << 16) | (c << 24); if(!vm_running) { phys_memset(ph, p, bytes); NOREC_RETURN(physmemset, OK); } vmassert(nfreepdes >= 3); /* With VM, we have to map in the physical memory. * We can do this 4MB at a time. */ while(bytes > 0) { int pde, t; vir_bytes chunk = bytes; phys_bytes ptr; inusepde = NOPDE; CREATEPDE(((struct proc *) NULL), ptr, ph, chunk, bytes, pde, t); /* We can memset as many bytes as we have remaining, * or as many as remain in the 4MB chunk we mapped in. */ phys_memset(ptr, p, chunk); DONEPDE(pde); bytes -= chunk; ph += chunk; } NOREC_RETURN(physmemset, OK); } /*===========================================================================* * virtual_copy_f * *===========================================================================*/ PUBLIC int virtual_copy_f(src_addr, dst_addr, bytes, vmcheck) struct vir_addr *src_addr; /* source virtual address */ struct vir_addr *dst_addr; /* destination virtual address */ vir_bytes bytes; /* # of bytes to copy */ int vmcheck; /* if nonzero, can return VMSUSPEND */ { /* Copy bytes from virtual address src_addr to virtual address dst_addr. * Virtual addresses can be in ABS, LOCAL_SEG, REMOTE_SEG, or BIOS_SEG. */ struct vir_addr *vir_addr[2]; /* virtual source and destination address */ phys_bytes phys_addr[2]; /* absolute source and destination */ int seg_index; int i, r; struct proc *procs[2]; NOREC_ENTER(virtualcopy); /* Check copy count. */ if (bytes <= 0) return(EDOM); /* Do some more checks and map virtual addresses to physical addresses. */ vir_addr[_SRC_] = src_addr; vir_addr[_DST_] = dst_addr; for (i=_SRC_; i<=_DST_; i++) { int proc_nr, type; struct proc *p; type = vir_addr[i]->segment & SEGMENT_TYPE; if((type != PHYS_SEG && type != BIOS_SEG) && isokendpt(vir_addr[i]->proc_nr_e, &proc_nr)) p = proc_addr(proc_nr); else p = NULL; procs[i] = p; /* Get physical address. */ switch(type) { case LOCAL_SEG: case LOCAL_VM_SEG: if(!p) { NOREC_RETURN(virtualcopy, EDEADSRCDST); } seg_index = vir_addr[i]->segment & SEGMENT_INDEX; if(type == LOCAL_SEG) phys_addr[i] = umap_local(p, seg_index, vir_addr[i]->offset, bytes); else phys_addr[i] = umap_virtual(p, seg_index, vir_addr[i]->offset, bytes); if(phys_addr[i] == 0) { kprintf("virtual_copy: map 0x%x failed for %s seg %d, " "offset %lx, len %d, i %d\n", type, p->p_name, seg_index, vir_addr[i]->offset, bytes, i); } break; case REMOTE_SEG: if(!p) { NOREC_RETURN(virtualcopy, EDEADSRCDST); } seg_index = vir_addr[i]->segment & SEGMENT_INDEX; phys_addr[i] = umap_remote(p, seg_index, vir_addr[i]->offset, bytes); break; #if _MINIX_CHIP == _CHIP_INTEL case BIOS_SEG: phys_addr[i] = umap_bios(vir_addr[i]->offset, bytes ); break; #endif case PHYS_SEG: phys_addr[i] = vir_addr[i]->offset; break; default: kprintf("virtual_copy: strange type 0x%x\n", type); NOREC_RETURN(virtualcopy, EINVAL); } /* Check if mapping succeeded. */ if (phys_addr[i] <= 0 && vir_addr[i]->segment != PHYS_SEG) { kprintf("virtual_copy EFAULT\n"); NOREC_RETURN(virtualcopy, EFAULT); } } if(vm_running) { int r; struct proc *caller; caller = proc_addr(who_p); if(RTS_ISSET(caller, RTS_VMREQUEST)) { struct proc *target; int pn; vmassert(caller->p_vmrequest.vmresult != VMSUSPEND); RTS_LOCK_UNSET(caller, RTS_VMREQUEST); if(caller->p_vmrequest.vmresult != OK) { printf("virtual_copy: returning VM error %d\n", caller->p_vmrequest.vmresult); NOREC_RETURN(virtualcopy, caller->p_vmrequest.vmresult); } } if((r=lin_lin_copy(procs[_SRC_], phys_addr[_SRC_], procs[_DST_], phys_addr[_DST_], bytes)) != OK) { struct proc *target; int wr; phys_bytes lin; if(r != EFAULT_SRC && r != EFAULT_DST) minix_panic("lin_lin_copy failed", r); if(!vmcheck) { NOREC_RETURN(virtualcopy, r); } vmassert(procs[_SRC_] && procs[_DST_]); if(r == EFAULT_SRC) { lin = phys_addr[_SRC_]; target = procs[_SRC_]; wr = 0; } else if(r == EFAULT_DST) { lin = phys_addr[_DST_]; target = procs[_DST_]; wr = 1; } else { minix_panic("r strange", r); } #if 0 printf("virtual_copy: suspending caller %d / %s, target %d / %s\n", caller->p_endpoint, caller->p_name, target->p_endpoint, target->p_name); #endif vmassert(proc_ptr->p_endpoint == SYSTEM); vm_suspend(caller, target, lin, bytes, wr, VMSTYPE_KERNELCALL); NOREC_RETURN(virtualcopy, VMSUSPEND); } NOREC_RETURN(virtualcopy, OK); } vmassert(!vm_running); /* can't copy to/from process with PT without VM */ #define NOPT(p) (!(p) || !HASPT(p)) if(!NOPT(procs[_SRC_])) { kprintf("ignoring page table src: %s / %d at 0x%lx\n", procs[_SRC_]->p_name, procs[_SRC_]->p_endpoint, procs[_SRC_]->p_seg.p_cr3); } if(!NOPT(procs[_DST_])) { kprintf("ignoring page table dst: %s / %d at 0x%lx\n", procs[_DST_]->p_name, procs[_DST_]->p_endpoint, procs[_DST_]->p_seg.p_cr3); } /* Now copy bytes between physical addresseses. */ if(phys_copy(phys_addr[_SRC_], phys_addr[_DST_], (phys_bytes) bytes)) NOREC_RETURN(virtualcopy, EFAULT); NOREC_RETURN(virtualcopy, OK); } /*===========================================================================* * data_copy * *===========================================================================*/ PUBLIC int data_copy( endpoint_t from_proc, vir_bytes from_addr, endpoint_t to_proc, vir_bytes to_addr, size_t bytes) { struct vir_addr src, dst; src.segment = dst.segment = D; src.offset = from_addr; dst.offset = to_addr; src.proc_nr_e = from_proc; dst.proc_nr_e = to_proc; return virtual_copy(&src, &dst, bytes); } /*===========================================================================* * data_copy_vmcheck * *===========================================================================*/ PUBLIC int data_copy_vmcheck( endpoint_t from_proc, vir_bytes from_addr, endpoint_t to_proc, vir_bytes to_addr, size_t bytes) { struct vir_addr src, dst; src.segment = dst.segment = D; src.offset = from_addr; dst.offset = to_addr; src.proc_nr_e = from_proc; dst.proc_nr_e = to_proc; return virtual_copy_vmcheck(&src, &dst, bytes); } /*===========================================================================* * arch_pre_exec * *===========================================================================*/ PUBLIC int arch_pre_exec(struct proc *pr, u32_t ip, u32_t sp) { /* wipe extra LDT entries, set program counter, and stack pointer. */ memset(pr->p_seg.p_ldt + EXTRA_LDT_INDEX, 0, sizeof(pr->p_seg.p_ldt[0]) * (LDT_SIZE - EXTRA_LDT_INDEX)); pr->p_reg.pc = ip; pr->p_reg.sp = sp; } /*===========================================================================* * arch_umap * *===========================================================================*/ PUBLIC int arch_umap(struct proc *pr, vir_bytes offset, vir_bytes count, int seg, phys_bytes *addr) { switch(seg) { case BIOS_SEG: *addr = umap_bios(offset, count); return OK; } /* This must be EINVAL; the umap fallback function in * lib/syslib/alloc_util.c depends on it to detect an * older kernel (as opposed to mapping error). */ return EINVAL; } /* VM reports page directory slot we're allowed to use freely. */ void i386_freepde(int pde) { if(nfreepdes >= WANT_FREEPDES) return; freepdes[nfreepdes++] = pde; } PUBLIC arch_phys_map(int index, phys_bytes *addr, phys_bytes *len, int *flags) { #ifdef CONFIG_APIC /* map the local APIC if enabled */ if (index == 0 && lapic_addr) { *addr = vir2phys(lapic_addr); *len = 4 << 10 /* 4kB */; *flags = VMMF_UNCACHED; return OK; } return EINVAL; #else /* we don't want anything */ return EINVAL; #endif } PUBLIC arch_phys_map_reply(int index, vir_bytes addr) { #ifdef CONFIG_APIC /* if local APIC is enabled */ if (index == 0 && lapic_addr) { lapic_addr_vaddr = addr; } #endif return OK; } PUBLIC int arch_enable_paging(void) { #ifdef CONFIG_APIC /* if local APIC is enabled */ if (lapic_addr) { lapic_addr = lapic_addr_vaddr; lapic_eoi_addr = LAPIC_EOI; } #endif return OK; }