/* This file contains essentially all of the process and message handling. * It has two main entry points from the outside: * * sys_call: a system call, that is, the kernel is trapped with an INT * notify: notify process of a system event (notifications aren't queued) * * It also has several minor entry points: * * lock_ready: put a process on one of the ready queues so it can be run * lock_unready: remove a process from the ready queues * lock_sched: a process has run too long; schedule another one * lock_pick_proc: pick a process to run (used by system initialization) * unhold: repeat all held-up notifications * * Changes: * Nov 05, 2004 removed lock_mini_send() (Jorrit N. Herder) * Oct 28, 2004 non-blocking SEND and RECEIVE (Jorrit N. Herder) * Oct 28, 2004 rewrite of sys_call() (Jorrit N. Herder) * Oct 10, 2004 require BOTH for kernel sys_call() (Jorrit N. Herder) * (to protect kernel tasks from being blocked) * Sep 25, 2004 generalized notify() function (Jorrit N. Herder) * Sep 23, 2004 removed PM sig check in mini_rec() (Jorrit N. Herder) * Aug 19, 2004 generalized ready()/unready() (Jorrit N. Herder) * Aug 18, 2004 added notify() function (Jorrit N. Herder) * May 01, 2004 check p_sendmask in mini_send() (Jorrit N. Herder) */ #include "kernel.h" #include #include #include "proc.h" #include "sendmask.h" PRIVATE unsigned char switching; /* nonzero to inhibit notify() */ FORWARD _PROTOTYPE( int mini_send, (struct proc *caller_ptr, int dest, message *m_ptr, int may_block) ); FORWARD _PROTOTYPE( int mini_rec, (struct proc *caller_ptr, int src, message *m_ptr, int may_block) ); FORWARD _PROTOTYPE( void ready, (struct proc *rp) ); FORWARD _PROTOTYPE( void sched, (void) ); FORWARD _PROTOTYPE( void unready, (struct proc *rp) ); FORWARD _PROTOTYPE( void pick_proc, (void) ); #if (CHIP == M68000) FORWARD _PROTOTYPE( void cp_mess, (int src, struct proc *src_p, message *src_m, struct proc *dst_p, message *dst_m) ); #endif #if (CHIP == INTEL) #define CopyMess(s,sp,sm,dp,dm) \ cp_mess(s, (sp)->p_memmap[D].mem_phys, (vir_bytes)sm, (dp)->p_memmap[D].mem_phys, (vir_bytes)dm) #endif /* (CHIP == INTEL) */ #if (CHIP == M68000) /* M68000 does not have cp_mess() in assembly like INTEL. Declare prototype * for cp_mess() here and define the function below. Also define CopyMess. */ #endif /* (CHIP == M68000) */ /* Bit mask operations used to bits of the notification mask. */ #define set_bit(mask, n) ((mask) |= (1 << (n))) #define clear_bit(mask, n) ((mask) &= ~(1 << (n))) #define isset_bit(mask, n) ((mask) & (1 << (n))) /*===========================================================================* * notify * *===========================================================================*/ PUBLIC void notify(proc_nr, notify_type) int proc_nr; /* number of process to be started */ int notify_type; /* notification to be sent */ { /* A system event has occurred. Send a notification with source HARDWARE to * the given process. The notify() function was carefully designed so that it * (1) can be used safely from both interrupt handlers and the task level, and * (2) realizes asynchronous message passing with at least once semantics, * that is, the notifications are not queued. If a race condition occurs, the * notification is queued and repeated later by unhold(). If the receiver is * not ready, the notification is blocked and checked later in receive(). */ register struct proc *rp; /* pointer to task's proc entry */ message m; /* message to send the notification */ unsigned int notify_bit; /* bit for this notification */ /* Get notify bit and process pointer. */ notify_bit = (unsigned int) (notify_type - NOTIFICATION); rp = proc_addr(proc_nr); /* If this call would compete with other process-switching functions, put * it on the 'held' queue to be flushed at the next non-competing restart(). * The competing conditions are: * (1) k_reenter == (typeof k_reenter) -1: * Call from the task level, typically from an output interrupt * routine. An interrupt handler might reenter notify(). Rare, * so not worth special treatment. * (2) k_reenter > 0: * Call from a nested interrupt handler. A previous interrupt * handler might be inside notify() or sys_call(). * (3) switching != 0: * A process-switching function other than notify() is being called * from the task level, typically sched() from CLOCK. An interrupt * handler might call notify() and pass the 'k_reenter' test. */ if (k_reenter != 0 || switching) { lock(); if (! rp->p_ntf_held) { /* already on held queue? */ if (held_head != NIL_PROC) held_tail->p_ntf_nextheld = rp; else held_head = rp; held_tail = rp; rp->p_ntf_nextheld = NIL_PROC; } set_bit(rp->p_ntf_held, notify_bit); /* add bit to held mask */ unlock(); return; } switching = TRUE; /* If process is not waiting for a notification, record the blockage. */ if ( (rp->p_flags & (RECEIVING | SENDING)) != RECEIVING || !isrxhardware(rp->p_getfrom)) { set_bit(rp->p_ntf_blocked, notify_bit); /* add bit to blocked mask */ switching = FALSE; return; } /* Destination is waiting for a notification. Send it a message with source * HARDWARE and type 'notify_type'. No more information can be reliably * provided since notifications are not queued. */ m.m_source = HARDWARE; /* direct copy does not work for servers */ m.m_type = notify_type; CopyMess(HARDWARE, proc_addr(HARDWARE), &m, rp, rp->p_messbuf); rp->p_flags &= ~RECEIVING; clear_bit(rp->p_ntf_blocked, notify_bit); /* Announce the process ready and select a fresh process to run. */ ready(rp); pick_proc(); switching = FALSE; } /*===========================================================================* * sys_call * *===========================================================================*/ PUBLIC int sys_call(call_nr, src_dst, m_ptr) int call_nr; /* (NB_)SEND, (NB_)RECEIVE, BOTH */ int src_dst; /* source to receive from or dest to send to */ message *m_ptr; /* pointer to message in the caller's space */ { /* System calls are done by trapping to the kernel with an INT instruction. * The trap is caught and sys_call() is called to send or receive a message * (or both). The caller is always given by 'proc_ptr'. */ register struct proc *caller_ptr = proc_ptr; /* get pointer to caller */ int function = call_nr & SYSCALL_FUNC; /* get system call function */ int may_block = ! (call_nr & NON_BLOCKING); /* (dis)allow blocking? */ int mask_entry; /* bit to check in send mask */ int result; /* the system call's result */ /* Calls directed to the kernel may only be sendrec(), because tasks always * reply and may not block if the caller doesn't do receive(). Users also * may only use sendrec() to protect the process manager and file system. */ if ((iskernel(src_dst) || isuserp(caller_ptr)) && function != BOTH) { result = ECALLDENIED; /* BOTH was required */ } /* Verify that requested source and/ or destination is a valid process. */ else if (! isoksrc_dst(src_dst)) { result = EBADSRCDST; /* invalid process number */ } /* Now check if the call is known and try to perform the request. The only * system calls that exist in MINIX are sending and receiving messages. * Receiving is straightforward. Sending requires checks to see if sending * is allowed by the caller's send mask and to see if the destination is * alive. */ else { switch(function) { case SEND: /* fall through, SEND is done in BOTH */ case BOTH: if (! isalive(src_dst)) { result = EDEADDST; /* cannot send to the dead */ break; } mask_entry = isuser(src_dst) ? USER_PROC_NR : src_dst; if (! isallowed(caller_ptr->p_sendmask, mask_entry)) { kprintf("WARNING: sys_call denied %d ", caller_ptr->p_nr); kprintf("sending to %d\n", proc_addr(src_dst)->p_nr); result = ECALLDENIED; /* call denied by send mask */ break; } result = mini_send(caller_ptr, src_dst, m_ptr, may_block); if (function == SEND || result != OK) { break; /* done, or SEND failed */ } /* fall through for BOTH */ case RECEIVE: result = mini_rec(caller_ptr, src_dst, m_ptr, may_block); break; default: result = EBADCALL; /* illegal system call */ } } /* Now, return the result of the system call to the caller. */ return(result); } /*===========================================================================* * mini_send * *===========================================================================*/ PRIVATE int mini_send(caller_ptr, dest, m_ptr, may_block) register struct proc *caller_ptr; /* who is trying to send a message? */ int dest; /* to whom is message being sent? */ message *m_ptr; /* pointer to message buffer */ int may_block; /* (dis)allow blocking */ { /* Send a message from 'caller_ptr' to 'dest'. If 'dest' is blocked waiting * for this message, copy the message to it and unblock 'dest'. If 'dest' is * not waiting at all, or is waiting for another source, queue 'caller_ptr'. */ register struct proc *dest_ptr, *next_ptr; vir_bytes vb; /* message buffer pointer as vir_bytes */ vir_clicks vlo, vhi; /* virtual clicks containing message to send */ dest_ptr = proc_addr(dest); /* pointer to destination's proc entry */ #if ALLOW_GAP_MESSAGES /* This check allows a message to be anywhere in data or stack or gap. * It will have to be made more elaborate later for machines which * don't have the gap mapped. */ vb = (vir_bytes) m_ptr; vlo = vb >> CLICK_SHIFT; /* vir click for bottom of message */ vhi = (vb + MESS_SIZE - 1) >> CLICK_SHIFT; /* vir click for top of msg */ if (vlo < caller_ptr->p_memmap[D].mem_vir || vlo > vhi || vhi >= caller_ptr->p_memmap[S].mem_vir + caller_ptr->p_memmap[S].mem_len) return(EFAULT); #else /* Check for messages wrapping around top of memory or outside data seg. */ vb = (vir_bytes) m_ptr; vlo = vb >> CLICK_SHIFT; /* vir click for bottom of message */ vhi = (vb + MESS_SIZE - 1) >> CLICK_SHIFT; /* vir click for top of msg */ if (vhi < vlo || vhi - caller_ptr->p_memmap[D].mem_vir >= caller_ptr->p_memmap[D].mem_len) return(EFAULT); #endif /* Check for deadlock by 'caller_ptr' and 'dest' sending to each other. */ if (dest_ptr->p_flags & SENDING) { next_ptr = proc_addr(dest_ptr->p_sendto); while (TRUE) { if (next_ptr == caller_ptr) return(ELOCKED); if (next_ptr->p_flags & SENDING) next_ptr = proc_addr(next_ptr->p_sendto); else break; } } /* Check to see if 'dest' is blocked waiting for this message. */ if ( (dest_ptr->p_flags & (RECEIVING | SENDING)) == RECEIVING && (dest_ptr->p_getfrom == ANY || dest_ptr->p_getfrom == proc_number(caller_ptr))) { /* Destination is indeed waiting for this message. */ CopyMess(proc_number(caller_ptr), caller_ptr, m_ptr, dest_ptr, dest_ptr->p_messbuf); dest_ptr->p_flags &= ~RECEIVING; /* deblock destination */ if (dest_ptr->p_flags == 0) ready(dest_ptr); } else if (may_block) { /* Destination is not waiting. Block and queue caller. */ caller_ptr->p_messbuf = m_ptr; if (caller_ptr->p_flags == 0) unready(caller_ptr); caller_ptr->p_flags |= SENDING; caller_ptr->p_sendto= dest; /* Process is now blocked. Put in on the destination's queue. */ if ( (next_ptr = dest_ptr->p_callerq) == NIL_PROC) dest_ptr->p_callerq = caller_ptr; else { while (next_ptr->p_sendlink != NIL_PROC) next_ptr = next_ptr->p_sendlink; next_ptr->p_sendlink = caller_ptr; } caller_ptr->p_sendlink = NIL_PROC; } else { return(ENOTREADY); } return(OK); } /*===========================================================================* * mini_rec * *===========================================================================*/ PRIVATE int mini_rec(caller_ptr, src, m_ptr, may_block) register struct proc *caller_ptr; /* process trying to get message */ int src; /* which message source is wanted */ message *m_ptr; /* pointer to message buffer */ int may_block; /* (dis)allow blocking */ { /* A process or task wants to get a message. If one is already queued, * acquire it and deblock the sender. If no message from the desired source * is available, block the caller. */ register struct proc *sender_ptr; register struct proc *previous_ptr; message m; int i; /* Check to see if a message from desired source is already available. */ if (!(caller_ptr->p_flags & SENDING)) { /* Check caller queue. */ for (sender_ptr = caller_ptr->p_callerq; sender_ptr != NIL_PROC; previous_ptr = sender_ptr, sender_ptr = sender_ptr->p_sendlink) { if (src == ANY || src == proc_number(sender_ptr)) { /* An acceptable message has been found. */ CopyMess(proc_number(sender_ptr), sender_ptr, sender_ptr->p_messbuf, caller_ptr, m_ptr); if (sender_ptr == caller_ptr->p_callerq) caller_ptr->p_callerq = sender_ptr->p_sendlink; else previous_ptr->p_sendlink = sender_ptr->p_sendlink; if ((sender_ptr->p_flags &= ~SENDING) == 0) ready(sender_ptr); /* deblock sender */ return(OK); } } /* Check bit mask for blocked notifications. If multiple bits are set, * send the first notification encountered; the rest is handled later. * This effectively prioritizes notifications. Notification also have * priority of other messages. */ if (caller_ptr->p_ntf_blocked && isrxhardware(src)) { for (i=0; ip_ntf_blocked, i)) { m.m_source = HARDWARE; m.m_type = NOTIFICATION + i; CopyMess(HARDWARE, proc_addr(HARDWARE), &m, caller_ptr, m_ptr); clear_bit(caller_ptr->p_ntf_blocked, i); return(OK); } } } } /* No suitable message is available. Block the process trying to receive, * unless this is not allowed by the system call. */ if (may_block) { caller_ptr->p_getfrom = src; caller_ptr->p_messbuf = m_ptr; if (caller_ptr->p_flags == 0) unready(caller_ptr); caller_ptr->p_flags |= RECEIVING; return(OK); } else { return(ENOTREADY); } } /*===========================================================================* * pick_proc * *===========================================================================*/ PRIVATE void pick_proc() { /* Decide who to run now. A new process is selected by setting 'proc_ptr'. * When a fresh user (or idle) process is selected, record it in 'bill_ptr', * so the clock task can tell who to bill for system time. */ register struct proc *rp; /* process to run */ int q; /* iterate over queues */ /* Check each of the scheduling queues for ready processes. The number of * queues is defined in proc.h, and priorities are set in the task table. * The lowest queue contains IDLE, which is always ready. */ for (q=0; q < NR_SCHED_QUEUES; q++) { if ( (rp = rdy_head[q]) != NIL_PROC) { proc_ptr = rp; /* run process 'rp' next */ if (isuserp(rp) || isidlep(rp)) /* possible bill 'rp' */ bill_ptr = rp; return; } } } /*===========================================================================* * ready * *===========================================================================*/ PRIVATE void ready(rp) register struct proc *rp; /* this process is now runnable */ { /* Add 'rp' to one of the queues of runnable processes. */ int q = rp->p_priority; /* scheduling queue to use */ /* Processes, in principle, are added to the end of the queue. However, * user processes are added in front of the queue, because this is a bit * fairer to I/O bound processes. */ if (isuserp(rp)) { /* add to front of queue */ if (rdy_head[q] == NIL_PROC) rdy_tail[q] = rp; rp->p_nextready = rdy_head[q]; /* add to front of queue */ rdy_head[q] = rp; } else { if (rdy_head[q] != NIL_PROC) rdy_tail[q]->p_nextready = rp; /* add to end of queue */ else rdy_head[q] = rp; /* add to empty queue */ rdy_tail[q] = rp; rp->p_nextready = NIL_PROC; } /* Run 'rp' next if it has a higher priority than 'proc_ptr'. This actually * should be done via pick_proc(), but mini_send() and mini_rec() rely * on this side-effect. */ if (rp->p_priority < proc_ptr->p_priority) proc_ptr = rp; } /*===========================================================================* * unready * *===========================================================================*/ PRIVATE void unready(rp) register struct proc *rp; /* this process is no longer runnable */ { /* A process has blocked. See ready for a description of the queues. */ register struct proc *xp; register struct proc **qtail; /* queue's rdy_tail */ int q = rp->p_priority; /* queue to use */ /* Side-effect for tasks: check if the task's stack still is ok? */ if (istaskp(rp)) { if (*rp->p_stguard != STACK_GUARD) panic("stack overrun by task", proc_number(rp)); } /* Now make sure that the process is not in its ready queue. Remove the * process if it is found. The easy part is to check the front of the queue. */ if ( (xp = rdy_head[q]) == NIL_PROC) return; if (xp == rp) { rdy_head[q] = xp->p_nextready; /* remove head of queue */ if (rp == proc_ptr) /* current process removed */ pick_proc(); /* pick new process to run */ return; } /* No match yet. Search body of queue. A process can be made unready even * if it is not running by being sent a signal that kills it. */ while (xp->p_nextready != rp) if ( (xp = xp->p_nextready) == NIL_PROC) return; xp->p_nextready = xp->p_nextready->p_nextready; qtail = &rdy_tail[q]; if (*qtail == rp) *qtail = xp; } /*===========================================================================* * sched * *===========================================================================*/ PRIVATE void sched() { /* The current process has run too long. If another low priority (user) * process is runnable, put the current process on the end of the user queue, * possibly promoting another user to head of the queue. */ if (rdy_head[PPRI_USER] == NIL_PROC) return; /* One or more user processes queued. */ rdy_tail[PPRI_USER]->p_nextready = rdy_head[PPRI_USER]; rdy_tail[PPRI_USER] = rdy_head[PPRI_USER]; rdy_head[PPRI_USER] = rdy_head[PPRI_USER]->p_nextready; rdy_tail[PPRI_USER]->p_nextready = NIL_PROC; pick_proc(); } /*==========================================================================* * lock_pick_proc * *==========================================================================*/ PUBLIC void lock_pick_proc() { /* Safe gateway to pick_proc() for tasks. */ switching = TRUE; pick_proc(); switching = FALSE; } /*==========================================================================* * lock_ready * *==========================================================================*/ PUBLIC void lock_ready(rp) struct proc *rp; /* this process is now runnable */ { /* Safe gateway to ready() for tasks. */ switching = TRUE; ready(rp); switching = FALSE; } /*==========================================================================* * lock_unready * *==========================================================================*/ PUBLIC void lock_unready(rp) struct proc *rp; /* this process is no longer runnable */ { /* Safe gateway to unready() for tasks. */ switching = TRUE; unready(rp); switching = FALSE; } /*==========================================================================* * lock_sched * *==========================================================================*/ PUBLIC void lock_sched() { /* Safe gateway to sched() for tasks. */ switching = TRUE; sched(); switching = FALSE; } /*==========================================================================* * unhold * *==========================================================================*/ PUBLIC void unhold() { /* Flush any held-up notifications. 'k_reenter' must be 0. 'held_head' must * not be NIL_PROC. Interrupts must be disabled. They will be enabled but * will be disabled when this returns. */ register struct proc *rp; /* current head of held queue */ int i; if (switching) return; rp = held_head; do { for (i=0; ip_ntf_held,i)) { clear_bit(rp->p_ntf_held,i); if (! rp->p_ntf_held) /* proceed to next in queue? */ if ( (held_head = rp->p_ntf_nextheld) == NIL_PROC) held_tail = NIL_PROC; unlock(); /* reduce latency; held queue may change! */ notify(proc_number(rp), NOTIFICATION + i); lock(); /* protect the held queue again */ } } } while ( (rp = held_head) != NIL_PROC); } #if (CHIP == M68000) /*==========================================================================* * cp_mess * *==========================================================================*/ PRIVATE void cp_mess(src, src_p, src_m, dst_p, dst_m) int src; /* sender process */ register struct proc *src_p; /* source proc entry */ message *src_m; /* source message */ register struct proc *dst_p; /* destination proc entry */ message *dst_m; /* destination buffer */ { /* convert virtual address to physical address */ /* The caller has already checked if all addresses are within bounds */ src_m = (message *)((char *)src_m + (((phys_bytes)src_p->p_map[D].mem_phys - src_p->p_map[D].mem_vir) << CLICK_SHIFT)); dst_m = (message *)((char *)dst_m + (((phys_bytes)dst_p->p_map[D].mem_phys - dst_p->p_map[D].mem_vir) << CLICK_SHIFT)); #ifdef NEEDFSTRUCOPY phys_copy(src_m,dst_m,(phys_bytes) sizeof(message)); #else *dst_m = *src_m; #endif dst_m->m_source = src; } #endif