/* This file contains a collection of miscellaneous procedures. Some of them * perform simple system calls. Some others do a little part of system calls * that are mostly performed by the Memory Manager. * * The entry points into this file are * do_dup: perform the DUP system call * do_fcntl: perform the FCNTL system call * do_sync: perform the SYNC system call * do_reboot: sync disks and prepare for shutdown * do_fork: adjust the tables after MM has performed a FORK system call * do_exec: handle files with FD_CLOEXEC on after MM has done an EXEC * do_exit: a process has exited; note that in the tables * do_set: set uid or gid for some process * do_revive: revive a process that was waiting for something (e.g. TTY) * do_svrctl: file system control * do_getsysinfo: request copy of FS data structure */ #include "fs.h" #include #include /* cc runs out of memory with unistd.h :-( */ #include #include #include #include "buf.h" #include "file.h" #include "fproc.h" #include "inode.h" #include "dmap.h" #include "param.h" #include "super.h" /*===========================================================================* * do_getsysinfo * *===========================================================================*/ PUBLIC int do_getsysinfo() { return(OK); } /*===========================================================================* * do_dup * *===========================================================================*/ PUBLIC int do_dup() { /* Perform the dup(fd) or dup2(fd,fd2) system call. These system calls are * obsolete. In fact, it is not even possible to invoke them using the * current library because the library routines call fcntl(). They are * provided to permit old binary programs to continue to run. */ register int rfd; register struct filp *f; struct filp *dummy; int r; /* Is the file descriptor valid? */ rfd = m_in.fd & ~DUP_MASK; /* kill off dup2 bit, if on */ if ((f = get_filp(rfd)) == NIL_FILP) return(err_code); /* Distinguish between dup and dup2. */ if (m_in.fd == rfd) { /* bit not on */ /* dup(fd) */ if ( (r = get_fd(0, 0, &m_in.fd2, &dummy)) != OK) return(r); } else { /* dup2(fd, fd2) */ if (m_in.fd2 < 0 || m_in.fd2 >= OPEN_MAX) return(EBADF); if (rfd == m_in.fd2) return(m_in.fd2); /* ignore the call: dup2(x, x) */ m_in.fd = m_in.fd2; /* prepare to close fd2 */ (void) do_close(); /* cannot fail */ } /* Success. Set up new file descriptors. */ f->filp_count++; fp->fp_filp[m_in.fd2] = f; return(m_in.fd2); } /*===========================================================================* * do_fcntl * *===========================================================================*/ PUBLIC int do_fcntl() { /* Perform the fcntl(fd, request, ...) system call. */ register struct filp *f; int new_fd, r, fl; long cloexec_mask; /* bit map for the FD_CLOEXEC flag */ long clo_value; /* FD_CLOEXEC flag in proper position */ struct filp *dummy; /* Is the file descriptor valid? */ if ((f = get_filp(m_in.fd)) == NIL_FILP) return(err_code); switch (m_in.request) { case F_DUPFD: /* This replaces the old dup() system call. */ if (m_in.addr < 0 || m_in.addr >= OPEN_MAX) return(EINVAL); if ((r = get_fd(m_in.addr, 0, &new_fd, &dummy)) != OK) return(r); f->filp_count++; fp->fp_filp[new_fd] = f; return(new_fd); case F_GETFD: /* Get close-on-exec flag (FD_CLOEXEC in POSIX Table 6-2). */ return( ((fp->fp_cloexec >> m_in.fd) & 01) ? FD_CLOEXEC : 0); case F_SETFD: /* Set close-on-exec flag (FD_CLOEXEC in POSIX Table 6-2). */ cloexec_mask = 1L << m_in.fd; /* singleton set position ok */ clo_value = (m_in.addr & FD_CLOEXEC ? cloexec_mask : 0L); fp->fp_cloexec = (fp->fp_cloexec & ~cloexec_mask) | clo_value; return(OK); case F_GETFL: /* Get file status flags (O_NONBLOCK and O_APPEND). */ fl = f->filp_flags & (O_NONBLOCK | O_APPEND | O_ACCMODE); return(fl); case F_SETFL: /* Set file status flags (O_NONBLOCK and O_APPEND). */ fl = O_NONBLOCK | O_APPEND; f->filp_flags = (f->filp_flags & ~fl) | (m_in.addr & fl); return(OK); case F_GETLK: case F_SETLK: case F_SETLKW: /* Set or clear a file lock. */ r = lock_op(f, m_in.request); return(r); default: return(EINVAL); } } /*===========================================================================* * do_sync * *===========================================================================*/ PUBLIC int do_sync() { /* Perform the sync() system call. Flush all the tables. * The order in which the various tables are flushed is critical. The * blocks must be flushed last, since rw_inode() leaves its results in * the block cache. */ register struct inode *rip; register struct buf *bp; /* Write all the dirty inodes to the disk. */ for (rip = &inode[0]; rip < &inode[NR_INODES]; rip++) if (rip->i_count > 0 && rip->i_dirt == DIRTY) rw_inode(rip, WRITING); /* Write all the dirty blocks to the disk, one drive at a time. */ for (bp = &buf[0]; bp < &buf[NR_BUFS]; bp++) if (bp->b_dev != NO_DEV && bp->b_dirt == DIRTY) flushall(bp->b_dev); return(OK); /* sync() can't fail */ } /*===========================================================================* * do_reboot * *===========================================================================*/ PUBLIC int do_reboot() { /* Perform the FS side of the reboot call. */ int i; struct super_block *sp; struct inode dummy; /* Only MM may make this call directly. */ if (who != MM_PROC_NR) return(EGENERIC); /* Do exit processing for all leftover processes and servers. */ for (i = 0; i < NR_PROCS; i++) { m_in.slot1 = i; do_exit(); } /* The root file system is mounted onto itself, which keeps it from being * unmounted. Pull an inode out of thin air and put the root on it. */ put_inode(super_block[0].s_imount); super_block[0].s_imount= &dummy; dummy.i_count = 2; /* expect one "put" */ /* Unmount all filesystems. File systems are mounted on other file systems, * so you have to pull off the loose bits repeatedly to get it all undone. */ for (i= 0; i < NR_SUPERS; i++) { /* Unmount at least one. */ for (sp= &super_block[0]; sp < &super_block[NR_SUPERS]; sp++) { if (sp->s_dev != NO_DEV) (void) unmount(sp->s_dev); } } return(OK); } /*===========================================================================* * do_fork * *===========================================================================*/ PUBLIC int do_fork() { /* Perform those aspects of the fork() system call that relate to files. * In particular, let the child inherit its parent's file descriptors. * The parent and child parameters tell who forked off whom. The file * system uses the same slot numbers as the kernel. Only MM makes this call. */ register struct fproc *cp; int i; /* Only MM may make this call directly. */ if (who != MM_PROC_NR) return(EGENERIC); /* Copy the parent's fproc struct to the child. */ fproc[m_in.child] = fproc[m_in.parent]; /* Increase the counters in the 'filp' table. */ cp = &fproc[m_in.child]; for (i = 0; i < OPEN_MAX; i++) if (cp->fp_filp[i] != NIL_FILP) cp->fp_filp[i]->filp_count++; /* Fill in new process id. */ cp->fp_pid = m_in.pid; /* A child is not a process leader. */ cp->fp_sesldr = 0; /* Record the fact that both root and working dir have another user. */ dup_inode(cp->fp_rootdir); dup_inode(cp->fp_workdir); return(OK); } /*===========================================================================* * do_exec * *===========================================================================*/ PUBLIC int do_exec() { /* Files can be marked with the FD_CLOEXEC bit (in fp->fp_cloexec). When * MM does an EXEC, it calls FS to allow FS to find these files and close them. */ register int i; long bitmap; /* Only MM may make this call directly. */ if (who != MM_PROC_NR) return(EGENERIC); /* The array of FD_CLOEXEC bits is in the fp_cloexec bit map. */ fp = &fproc[m_in.slot1]; /* get_filp() needs 'fp' */ bitmap = fp->fp_cloexec; if (bitmap == 0) return(OK); /* normal case, no FD_CLOEXECs */ /* Check the file desriptors one by one for presence of FD_CLOEXEC. */ for (i = 0; i < OPEN_MAX; i++) { m_in.fd = i; if ( (bitmap >> i) & 01) (void) do_close(); } return(OK); } /*===========================================================================* * do_exit * *===========================================================================*/ PUBLIC int do_exit() { /* Perform the file system portion of the exit(status) system call. */ register int i, exitee, task; register struct fproc *rfp; register struct filp *rfilp; register struct inode *rip; dev_t dev; /* Only MM may do the EXIT call directly. */ if (who != MM_PROC_NR) return(EGENERIC); /* Nevertheless, pretend that the call came from the user. */ fp = &fproc[m_in.slot1]; /* get_filp() needs 'fp' */ exitee = m_in.slot1; if (fp->fp_suspended == SUSPENDED) { task = -fp->fp_task; if (task == XPIPE || task == XPOPEN) susp_count--; m_in.pro = exitee; (void) do_unpause(); /* this always succeeds for MM */ fp->fp_suspended = NOT_SUSPENDED; } /* Loop on file descriptors, closing any that are open. */ for (i = 0; i < OPEN_MAX; i++) { m_in.fd = i; (void) do_close(); } /* Release root and working directories. */ put_inode(fp->fp_rootdir); put_inode(fp->fp_workdir); fp->fp_rootdir = NIL_INODE; fp->fp_workdir = NIL_INODE; /* If a session leader exits then revoke access to its controlling tty from * all other processes using it. */ if (!fp->fp_sesldr) return(OK); /* not a session leader */ fp->fp_sesldr = FALSE; if (fp->fp_tty == 0) return(OK); /* no controlling tty */ dev = fp->fp_tty; for (rfp = &fproc[LOW_USER]; rfp < &fproc[NR_PROCS]; rfp++) { if (rfp->fp_tty == dev) rfp->fp_tty = 0; for (i = 0; i < OPEN_MAX; i++) { if ((rfilp = rfp->fp_filp[i]) == NIL_FILP) continue; if (rfilp->filp_mode == FILP_CLOSED) continue; rip = rfilp->filp_ino; if ((rip->i_mode & I_TYPE) != I_CHAR_SPECIAL) continue; if ((dev_t) rip->i_zone[0] != dev) continue; dev_close(dev); rfilp->filp_mode = FILP_CLOSED; } } /* Truly exiting, or becoming a server? */ fp->fp_pid = PID_FREE; return(OK); } /*===========================================================================* * do_set * *===========================================================================*/ PUBLIC int do_set() { /* Set uid_t or gid_t field. */ register struct fproc *tfp; /* Only MM may make this call directly. */ if (who != MM_PROC_NR) return(EGENERIC); tfp = &fproc[m_in.slot1]; if (call_nr == SETUID) { tfp->fp_realuid = (uid_t) m_in.real_user_id; tfp->fp_effuid = (uid_t) m_in.eff_user_id; } if (call_nr == SETGID) { tfp->fp_effgid = (gid_t) m_in.eff_grp_id; tfp->fp_realgid = (gid_t) m_in.real_grp_id; } return(OK); } /*===========================================================================* * do_revive * *===========================================================================*/ PUBLIC int do_revive() { /* A task, typically TTY, has now gotten the characters that were needed for a * previous read. The process did not get a reply when it made the call. * Instead it was suspended. Now we can send the reply to wake it up. This * business has to be done carefully, since the incoming message is from * a task (to which no reply can be sent), and the reply must go to a process * that blocked earlier. The reply to the caller is inhibited by returning the * 'SUSPEND' pseudo error, and the reply to the blocked process is done * explicitly in revive(). */ if (who >= LOW_USER && fp->fp_pid != PID_SERVER) return(EPERM); revive(m_in.REP_PROC_NR, m_in.REP_STATUS); return(SUSPEND); /* don't reply to the TTY task */ } /*===========================================================================* * do_svrctl * *===========================================================================*/ PUBLIC int do_svrctl() { switch (m_in.svrctl_req) { case FSSIGNON: { /* A server in user space calls in to manage a device. */ struct fssignon device; int r, major; struct dmap *dp; if (fp->fp_effuid != SU_UID) return(EPERM); /* Try to copy request structure to FS. */ if ((r = sys_datacopy(who, (vir_bytes) m_in.svrctl_argp, FS_PROC_NR, (vir_bytes) &device, (phys_bytes) sizeof(device))) != OK) return(r); /* Try to update device mapping. */ major = (device.dev >> MAJOR) & BYTE; if ((r=map_driver(major, who, device.style)) == OK) fp->fp_pid = PID_SERVER; return(r); } default: return(EINVAL); } }