#define _POSIX_SOURCE 1 #define _MINIX 1 #define _SYSTEM 1 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _MAIN 1 #include "glo.h" #include "proto.h" #include "util.h" #include "vm.h" #include "sanitycheck.h" extern int missing_spares; #include #include #include "kernel/const.h" #include "kernel/config.h" #include "kernel/proc.h" #include /* Table of calls and a macro to test for being in range. */ struct { int (*vmc_func)(message *); /* Call handles message. */ char *vmc_name; /* Human-readable string. */ } vm_calls[NR_VM_CALLS]; /* Macro to verify call range and map 'high' range to 'base' range * (starting at 0) in one. Evaluates to zero-based call number if call * number is valid, returns -1 otherwise. */ #define CALLNUMBER(c) (((c) >= VM_RQ_BASE && \ (c) < VM_RQ_BASE + ELEMENTS(vm_calls)) ? \ ((c) - VM_RQ_BASE) : -1) static int map_service(struct rprocpub *rpub); static int vm_acl_ok(endpoint_t caller, int call); static int do_rs_init(message *m); /* SEF functions and variables. */ static void sef_cb_signal_handler(int signo); void init_vm(void); /*===========================================================================* * main * *===========================================================================*/ int main(void) { message msg; int result, who_e, rcv_sts; int caller_slot; struct vmproc *vmp_caller; /* Initialize system so that all processes are runnable */ init_vm(); /* Register init callbacks. */ sef_setcb_init_restart(sef_cb_init_fail); sef_setcb_signal_handler(sef_cb_signal_handler); /* Let SEF perform startup. */ sef_startup(); SANITYCHECK(SCL_TOP); /* This is VM's main loop. */ while (TRUE) { int r, c; SANITYCHECK(SCL_TOP); if(missing_spares > 0) { pt_cycle(); /* pagetable code wants to be called */ } if ((r=sef_receive_status(ANY, &msg, &rcv_sts)) != OK) panic("sef_receive_status() error: %d", r); if (is_ipc_notify(rcv_sts)) { /* Unexpected notify(). */ printf("VM: ignoring notify() from %d\n", msg.m_source); continue; } who_e = msg.m_source; if(vm_isokendpt(who_e, &caller_slot) != OK) panic("invalid caller %d", who_e); vmp_caller = &vmproc[caller_slot]; c = CALLNUMBER(msg.m_type); result = ENOSYS; /* Out of range or restricted calls return this. */ if(msg.m_type == RS_INIT && msg.m_source == RS_PROC_NR) { result = do_rs_init(&msg); } else if (msg.m_type == VM_PAGEFAULT) { if (!IPC_STATUS_FLAGS_TEST(rcv_sts, IPC_FLG_MSG_FROM_KERNEL)) { printf("VM: process %d faked VM_PAGEFAULT " "message!\n", msg.m_source); } do_pagefaults(&msg); pt_clearmapcache(); /* * do not reply to this call, the caller is unblocked by * a sys_vmctl() call in do_pagefaults if success. VM panics * otherwise */ continue; } else if(c < 0 || !vm_calls[c].vmc_func) { /* out of range or missing callnr */ } else { if (vm_acl_ok(who_e, c) != OK) { printf("VM: unauthorized %s by %d\n", vm_calls[c].vmc_name, who_e); } else { SANITYCHECK(SCL_FUNCTIONS); result = vm_calls[c].vmc_func(&msg); SANITYCHECK(SCL_FUNCTIONS); } } /* Send reply message, unless the return code is SUSPEND, * which is a pseudo-result suppressing the reply message. */ if(result != SUSPEND) { msg.m_type = result; if((r=send(who_e, &msg)) != OK) { printf("VM: couldn't send %d to %d (err %d)\n", msg.m_type, who_e, r); panic("send() error"); } } } return(OK); } static int do_rs_init(message *m) { int s, i; static struct rprocpub rprocpub[NR_BOOT_PROCS]; /* Map all the services in the boot image. */ if((s = sys_safecopyfrom(RS_PROC_NR, m->RS_INIT_RPROCTAB_GID, 0, (vir_bytes) rprocpub, sizeof(rprocpub))) != OK) { panic("vm: sys_safecopyfrom (rs) failed: %d", s); } for(i=0;i < NR_BOOT_PROCS;i++) { if(rprocpub[i].in_use) { if((s = map_service(&rprocpub[i])) != OK) { panic("unable to map service: %d", s); } } } /* RS expects this response that it then again wants to reply to: */ m->RS_INIT_RESULT = OK; sendrec(RS_PROC_NR, m); return(SUSPEND); } struct vmproc *init_proc(endpoint_t ep_nr) { static struct boot_image *ip; for (ip = &kernel_boot_info.boot_procs[0]; ip < &kernel_boot_info.boot_procs[NR_BOOT_PROCS]; ip++) { struct vmproc *vmp; if(ip->proc_nr != ep_nr) continue; if(ip->proc_nr >= _NR_PROCS || ip->proc_nr < 0) panic("proc: %d", ip->proc_nr); vmp = &vmproc[ip->proc_nr]; assert(!(vmp->vm_flags & VMF_INUSE)); /* no double procs */ clear_proc(vmp); vmp->vm_flags = VMF_INUSE; vmp->vm_endpoint = ip->endpoint; vmp->vm_boot = ip; return vmp; } panic("no init_proc"); } struct vm_exec_info { struct exec_info execi; struct boot_image *ip; struct vmproc *vmp; }; static int libexec_copy_physcopy(struct exec_info *execi, off_t off, off_t vaddr, size_t len) { vir_bytes end; struct vm_exec_info *ei = execi->opaque; end = ei->ip->start_addr + ei->ip->len; assert(ei->ip->start_addr + off + len <= end); return sys_physcopy(NONE, ei->ip->start_addr + off, execi->proc_e, vaddr, len); } static void boot_alloc(struct exec_info *execi, off_t vaddr, size_t len, int flags) { struct vmproc *vmp = ((struct vm_exec_info *) execi->opaque)->vmp; if(!(map_page_region(vmp, vaddr, 0, len, MAP_NONE, VR_ANON | VR_WRITABLE | VR_UNINITIALIZED, flags))) { panic("VM: exec: map_page_region for boot process failed"); } } static int libexec_alloc_vm_prealloc(struct exec_info *execi, off_t vaddr, size_t len) { boot_alloc(execi, vaddr, len, MF_PREALLOC); return OK; } static int libexec_alloc_vm_ondemand(struct exec_info *execi, off_t vaddr, size_t len) { boot_alloc(execi, vaddr, len, 0); return OK; } void exec_bootproc(struct vmproc *vmp, struct boot_image *ip) { struct vm_exec_info vmexeci; struct exec_info *execi = &vmexeci.execi; char hdr[VM_PAGE_SIZE]; memset(&vmexeci, 0, sizeof(vmexeci)); if(pt_new(&vmp->vm_pt) != OK) panic("VM: no new pagetable"); if(pt_bind(&vmp->vm_pt, vmp) != OK) panic("VM: pt_bind failed"); if(sys_physcopy(NONE, ip->start_addr, SELF, (vir_bytes) hdr, sizeof(hdr)) != OK) panic("can't look at boot proc header"); execi->stack_high = kernel_boot_info.user_sp; execi->stack_size = DEFAULT_STACK_LIMIT; execi->proc_e = vmp->vm_endpoint; execi->hdr = hdr; execi->hdr_len = sizeof(hdr); strcpy(execi->progname, ip->proc_name); execi->frame_len = 0; execi->opaque = &vmexeci; vmexeci.ip = ip; vmexeci.vmp = vmp; /* callback functions and data */ execi->copymem = libexec_copy_physcopy; execi->clearproc = NULL; execi->clearmem = libexec_clear_sys_memset; execi->allocmem_prealloc = libexec_alloc_vm_prealloc; execi->allocmem_ondemand = libexec_alloc_vm_ondemand; if(libexec_load_elf(execi) != OK) panic("vm: boot process load of %d failed\n", vmp->vm_endpoint); if(sys_exec(vmp->vm_endpoint, (char *) execi->stack_high - 12, (char *) ip->proc_name, execi->pc) != OK) panic("vm: boot process exec of %d failed\n", vmp->vm_endpoint); } void init_vm(void) { int s, i; static struct memory mem_chunks[NR_MEMS]; static struct boot_image *ip; #if SANITYCHECKS incheck = nocheck = 0; #endif /* Retrieve various crucial boot parameters */ if(OK != (s=sys_getkinfo(&kernel_boot_info))) { panic("couldn't get bootinfo: %d", s); } /* Sanity check */ assert(kernel_boot_info.mmap_size > 0); assert(kernel_boot_info.mods_with_kernel > 0); #if SANITYCHECKS env_parse("vm_sanitychecklevel", "d", 0, &vm_sanitychecklevel, 0, SCL_MAX); vm_sanitychecklevel = 1; #endif /* Get chunks of available memory. */ get_mem_chunks(mem_chunks); /* Set table to 0. This invalidates all slots (clear VMF_INUSE). */ memset(vmproc, 0, sizeof(vmproc)); for(i = 0; i < ELEMENTS(vmproc); i++) { vmproc[i].vm_slot = i; } /* region management initialization. */ map_region_init(); /* Architecture-dependent initialization. */ init_proc(VM_PROC_NR); pt_init(); /* Initialize tables to all physical memory. */ mem_init(mem_chunks); meminit_done = 1; /* Give these processes their own page table. */ for (ip = &kernel_boot_info.boot_procs[0]; ip < &kernel_boot_info.boot_procs[NR_BOOT_PROCS]; ip++) { struct vmproc *vmp; if(ip->proc_nr < 0) continue; assert(ip->start_addr); /* VM has already been set up by the kernel and pt_init(). * Any other boot process is already in memory and is set up * here. */ if(ip->proc_nr == VM_PROC_NR) continue; vmp = init_proc(ip->proc_nr); exec_bootproc(vmp, ip); /* Free the file blob */ assert(!(ip->start_addr % VM_PAGE_SIZE)); ip->len = roundup(ip->len, VM_PAGE_SIZE); free_mem(ABS2CLICK(ip->start_addr), ABS2CLICK(ip->len)); } /* Set up table of calls. */ #define CALLMAP(code, func) { int i; \ if((i=CALLNUMBER(code)) < 0) { panic(#code " invalid: %d", (code)); } \ if(i >= NR_VM_CALLS) { panic(#code " invalid: %d", (code)); } \ vm_calls[i].vmc_func = (func); \ vm_calls[i].vmc_name = #code; \ } /* Set call table to 0. This invalidates all calls (clear * vmc_func). */ memset(vm_calls, 0, sizeof(vm_calls)); /* Basic VM calls. */ CALLMAP(VM_MMAP, do_mmap); CALLMAP(VM_MUNMAP, do_munmap); CALLMAP(VM_MUNMAP_TEXT, do_munmap); CALLMAP(VM_MAP_PHYS, do_map_phys); CALLMAP(VM_UNMAP_PHYS, do_unmap_phys); /* Calls from PM. */ CALLMAP(VM_EXIT, do_exit); CALLMAP(VM_FORK, do_fork); CALLMAP(VM_BRK, do_brk); CALLMAP(VM_PUSH_SIG, do_push_sig); CALLMAP(VM_WILLEXIT, do_willexit); CALLMAP(VM_ADDDMA, do_adddma); CALLMAP(VM_DELDMA, do_deldma); CALLMAP(VM_GETDMA, do_getdma); CALLMAP(VM_NOTIFY_SIG, do_notify_sig); /* Calls from RS */ CALLMAP(VM_RS_SET_PRIV, do_rs_set_priv); CALLMAP(VM_RS_UPDATE, do_rs_update); CALLMAP(VM_RS_MEMCTL, do_rs_memctl); /* Calls from RS/VFS */ CALLMAP(VM_PROCCTL, do_procctl); /* Generic calls. */ CALLMAP(VM_REMAP, do_remap); CALLMAP(VM_REMAP_RO, do_remap); CALLMAP(VM_GETPHYS, do_get_phys); CALLMAP(VM_SHM_UNMAP, do_shared_unmap); CALLMAP(VM_GETREF, do_get_refcount); CALLMAP(VM_INFO, do_info); CALLMAP(VM_QUERY_EXIT, do_query_exit); CALLMAP(VM_WATCH_EXIT, do_watch_exit); CALLMAP(VM_FORGETBLOCKS, do_forgetblocks); CALLMAP(VM_FORGETBLOCK, do_forgetblock); CALLMAP(VM_YIELDBLOCKGETBLOCK, do_yieldblockgetblock); /* Initialize the structures for queryexit */ init_query_exit(); } /*===========================================================================* * sef_cb_signal_handler * *===========================================================================*/ static void sef_cb_signal_handler(int signo) { /* Check for known kernel signals, ignore anything else. */ switch(signo) { /* There is a pending memory request from the kernel. */ case SIGKMEM: do_memory(); break; } /* It can happen that we get stuck receiving signals * without sef_receive() returning. We could need more memory * though. */ if(missing_spares > 0) { pt_cycle(); /* pagetable code wants to be called */ } pt_clearmapcache(); } /*===========================================================================* * map_service * *===========================================================================*/ static int map_service(rpub) struct rprocpub *rpub; { /* Map a new service by initializing its call mask. */ int r, proc_nr; if ((r = vm_isokendpt(rpub->endpoint, &proc_nr)) != OK) { return r; } /* Copy the call mask. */ memcpy(&vmproc[proc_nr].vm_call_mask, &rpub->vm_call_mask, sizeof(vmproc[proc_nr].vm_call_mask)); return(OK); } /*===========================================================================* * vm_acl_ok * *===========================================================================*/ static int vm_acl_ok(endpoint_t caller, int call) { int n, r; if ((r = vm_isokendpt(caller, &n)) != OK) panic("VM: from strange source: %d", caller); /* See if the call is allowed. */ if (!GET_BIT(vmproc[n].vm_call_mask, call)) { return EPERM; } return OK; }