#include "../../kernel.h" #include "../../proc.h" #include #include #include #include #include "proto.h" /* VM functions and data. */ PRIVATE int vm_needs_init= 1; PRIVATE u32_t vm_cr3; FORWARD _PROTOTYPE( void phys_put32, (phys_bytes addr, u32_t value) ); FORWARD _PROTOTYPE( u32_t phys_get32, (phys_bytes addr) ); FORWARD _PROTOTYPE( void vm_set_cr3, (u32_t value) ); FORWARD _PROTOTYPE( void set_cr3, (void) ); FORWARD _PROTOTYPE( void vm_enable_paging, (void) ); /* *** Internal VM Functions *** */ PUBLIC void vm_init(void) { int o; phys_bytes p, pt_size; phys_bytes vm_dir_base, vm_pt_base, phys_mem; u32_t entry; unsigned pages; if (!vm_size) panic("i386_vm_init: no space for page tables", NO_NUM); /* Align page directory */ o= (vm_base % PAGE_SIZE); if (o != 0) o= PAGE_SIZE-o; vm_dir_base= vm_base+o; /* Page tables start after the page directory */ vm_pt_base= vm_dir_base+PAGE_SIZE; pt_size= (vm_base+vm_size)-vm_pt_base; pt_size -= (pt_size % PAGE_SIZE); /* Compute the number of pages based on vm_mem_high */ pages= (vm_mem_high-1)/PAGE_SIZE + 1; if (pages * I386_VM_PT_ENT_SIZE > pt_size) panic("i386_vm_init: page table too small", NO_NUM); for (p= 0; p*I386_VM_PT_ENT_SIZE < pt_size; p++) { phys_mem= p*PAGE_SIZE; entry= phys_mem | I386_VM_USER | I386_VM_WRITE | I386_VM_PRESENT; if (phys_mem >= vm_mem_high) entry= 0; phys_put32(vm_pt_base + p*I386_VM_PT_ENT_SIZE, entry); } for (p= 0; p < I386_VM_DIR_ENTRIES; p++) { phys_mem= vm_pt_base + p*PAGE_SIZE; entry= phys_mem | I386_VM_USER | I386_VM_WRITE | I386_VM_PRESENT; if (phys_mem >= vm_pt_base + pt_size) entry= 0; phys_put32(vm_dir_base + p*I386_VM_PT_ENT_SIZE, entry); } vm_set_cr3(vm_dir_base); level0(vm_enable_paging); } PRIVATE void phys_put32(addr, value) phys_bytes addr; u32_t value; { phys_copy(vir2phys((vir_bytes)&value), addr, sizeof(value)); } PRIVATE u32_t phys_get32(addr) phys_bytes addr; { u32_t value; phys_copy(addr, vir2phys((vir_bytes)&value), sizeof(value)); return value; } PRIVATE void vm_set_cr3(value) u32_t value; { vm_cr3= value; level0(set_cr3); } PRIVATE void set_cr3() { write_cr3(vm_cr3); } PRIVATE void vm_enable_paging(void) { u32_t cr0; cr0= read_cr0(); write_cr0(cr0 | I386_CR0_PG); } PUBLIC void vm_map_range(base, size, offset) u32_t base; u32_t size; u32_t offset; { u32_t curr_pt, curr_pt_addr, entry; int dir_ent, pt_ent; if (base % PAGE_SIZE != 0) panic("map_range: bad base", base); if (size % PAGE_SIZE != 0) panic("map_range: bad size", size); if (offset % PAGE_SIZE != 0) panic("map_range: bad offset", offset); curr_pt= -1; curr_pt_addr= 0; while (size != 0) { dir_ent= (base >> I386_VM_DIR_ENT_SHIFT); pt_ent= (base >> I386_VM_PT_ENT_SHIFT) & I386_VM_PT_ENT_MASK; if (dir_ent != curr_pt) { /* Get address of page table */ curr_pt= dir_ent; curr_pt_addr= phys_get32(vm_cr3 + dir_ent * I386_VM_PT_ENT_SIZE); curr_pt_addr &= I386_VM_ADDR_MASK; } entry= offset | I386_VM_USER | I386_VM_WRITE | I386_VM_PRESENT; #if 0 /* Do we need this for memory mapped I/O? */ entry |= I386_VM_PCD | I386_VM_PWT; #endif phys_put32(curr_pt_addr + pt_ent * I386_VM_PT_ENT_SIZE, entry); offset += PAGE_SIZE; base += PAGE_SIZE; size -= PAGE_SIZE; } /* reload root of page table. */ vm_set_cr3(vm_cr3); } PUBLIC vir_bytes alloc_remote_segment(u32_t *selector, segframe_t *segments, int index, phys_bytes phys, vir_bytes size, int priv) { phys_bytes offset = 0; /* Check if the segment size can be recorded in bytes, that is, check * if descriptor's limit field can delimited the allowed memory region * precisely. This works up to 1MB. If the size is larger, 4K pages * instead of bytes are used. */ if (size < BYTE_GRAN_MAX) { init_dataseg(&segments->p_ldt[EXTRA_LDT_INDEX+index], phys, size, priv); *selector = ((EXTRA_LDT_INDEX+index)*0x08) | (1*0x04) | priv; offset = 0; } else { init_dataseg(&segments->p_ldt[EXTRA_LDT_INDEX+index], phys & ~0xFFFF, 0, priv); *selector = ((EXTRA_LDT_INDEX+index)*0x08) | (1*0x04) | priv; offset = phys & 0xFFFF; } return offset; } PUBLIC phys_bytes umap_remote(struct proc* rp, int seg, vir_bytes vir_addr, vir_bytes bytes) { /* Calculate the physical memory address for a given virtual address. */ struct far_mem *fm; if (bytes <= 0) return( (phys_bytes) 0); if (seg < 0 || seg >= NR_REMOTE_SEGS) return( (phys_bytes) 0); fm = &rp->p_priv->s_farmem[seg]; if (! fm->in_use) return( (phys_bytes) 0); if (vir_addr + bytes > fm->mem_len) return( (phys_bytes) 0); return(fm->mem_phys + (phys_bytes) vir_addr); } /*===========================================================================* * umap_local * *===========================================================================*/ PUBLIC phys_bytes umap_local(rp, seg, vir_addr, bytes) register struct proc *rp; /* pointer to proc table entry for process */ int seg; /* T, D, or S segment */ vir_bytes vir_addr; /* virtual address in bytes within the seg */ vir_bytes bytes; /* # of bytes to be copied */ { /* Calculate the physical memory address for a given virtual address. */ vir_clicks vc; /* the virtual address in clicks */ phys_bytes pa; /* intermediate variables as phys_bytes */ phys_bytes seg_base; if (bytes <= 0) return( (phys_bytes) 0); if (vir_addr + bytes <= vir_addr) return 0; /* overflow */ vc = (vir_addr + bytes - 1) >> CLICK_SHIFT; /* last click of data */ if (seg != T) seg = (vc < rp->p_memmap[D].mem_vir + rp->p_memmap[D].mem_len ? D : S); if ((vir_addr>>CLICK_SHIFT) >= rp->p_memmap[seg].mem_vir + rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 ); if (vc >= rp->p_memmap[seg].mem_vir + rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 ); seg_base = (phys_bytes) rp->p_memmap[seg].mem_phys; seg_base = seg_base << CLICK_SHIFT; /* segment origin in bytes */ pa = (phys_bytes) vir_addr; pa -= rp->p_memmap[seg].mem_vir << CLICK_SHIFT; return(seg_base + pa); }