//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // These classes wrap the information about a call or function // definition used to handle ABI compliancy. // //===----------------------------------------------------------------------===// #include "TargetInfo.h" #include "ABIInfo.h" #include "CGCXXABI.h" #include "CodeGenFunction.h" #include "clang/AST/RecordLayout.h" #include "clang/CodeGen/CGFunctionInfo.h" #include "clang/Frontend/CodeGenOptions.h" #include "llvm/ADT/Triple.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Type.h" #include "llvm/Support/raw_ostream.h" using namespace clang; using namespace CodeGen; static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, llvm::Value *Array, llvm::Value *Value, unsigned FirstIndex, unsigned LastIndex) { // Alternatively, we could emit this as a loop in the source. for (unsigned I = FirstIndex; I <= LastIndex; ++I) { llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); Builder.CreateStore(Value, Cell); } } static bool isAggregateTypeForABI(QualType T) { return !CodeGenFunction::hasScalarEvaluationKind(T) || T->isMemberFunctionPointerType(); } ABIInfo::~ABIInfo() {} static bool isRecordReturnIndirect(const RecordType *RT, CGCXXABI &CXXABI) { const CXXRecordDecl *RD = dyn_cast(RT->getDecl()); if (!RD) return false; return CXXABI.isReturnTypeIndirect(RD); } static bool isRecordReturnIndirect(QualType T, CGCXXABI &CXXABI) { const RecordType *RT = T->getAs(); if (!RT) return false; return isRecordReturnIndirect(RT, CXXABI); } static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, CGCXXABI &CXXABI) { const CXXRecordDecl *RD = dyn_cast(RT->getDecl()); if (!RD) return CGCXXABI::RAA_Default; return CXXABI.getRecordArgABI(RD); } static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, CGCXXABI &CXXABI) { const RecordType *RT = T->getAs(); if (!RT) return CGCXXABI::RAA_Default; return getRecordArgABI(RT, CXXABI); } CGCXXABI &ABIInfo::getCXXABI() const { return CGT.getCXXABI(); } ASTContext &ABIInfo::getContext() const { return CGT.getContext(); } llvm::LLVMContext &ABIInfo::getVMContext() const { return CGT.getLLVMContext(); } const llvm::DataLayout &ABIInfo::getDataLayout() const { return CGT.getDataLayout(); } const TargetInfo &ABIInfo::getTarget() const { return CGT.getTarget(); } void ABIArgInfo::dump() const { raw_ostream &OS = llvm::errs(); OS << "(ABIArgInfo Kind="; switch (TheKind) { case Direct: OS << "Direct Type="; if (llvm::Type *Ty = getCoerceToType()) Ty->print(OS); else OS << "null"; break; case Extend: OS << "Extend"; break; case Ignore: OS << "Ignore"; break; case Indirect: OS << "Indirect Align=" << getIndirectAlign() << " ByVal=" << getIndirectByVal() << " Realign=" << getIndirectRealign(); break; case Expand: OS << "Expand"; break; } OS << ")\n"; } TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } // If someone can figure out a general rule for this, that would be great. // It's probably just doomed to be platform-dependent, though. unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { // Verified for: // x86-64 FreeBSD, Linux, Darwin // x86-32 FreeBSD, Linux, Darwin // PowerPC Linux, Darwin // ARM Darwin (*not* EABI) // AArch64 Linux return 32; } bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, const FunctionNoProtoType *fnType) const { // The following conventions are known to require this to be false: // x86_stdcall // MIPS // For everything else, we just prefer false unless we opt out. return false; } void TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, llvm::SmallString<24> &Opt) const { // This assumes the user is passing a library name like "rt" instead of a // filename like "librt.a/so", and that they don't care whether it's static or // dynamic. Opt = "-l"; Opt += Lib; } static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); /// isEmptyField - Return true iff a the field is "empty", that is it /// is an unnamed bit-field or an (array of) empty record(s). static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, bool AllowArrays) { if (FD->isUnnamedBitfield()) return true; QualType FT = FD->getType(); // Constant arrays of empty records count as empty, strip them off. // Constant arrays of zero length always count as empty. if (AllowArrays) while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { if (AT->getSize() == 0) return true; FT = AT->getElementType(); } const RecordType *RT = FT->getAs(); if (!RT) return false; // C++ record fields are never empty, at least in the Itanium ABI. // // FIXME: We should use a predicate for whether this behavior is true in the // current ABI. if (isa(RT->getDecl())) return false; return isEmptyRecord(Context, FT, AllowArrays); } /// isEmptyRecord - Return true iff a structure contains only empty /// fields. Note that a structure with a flexible array member is not /// considered empty. static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { const RecordType *RT = T->getAs(); if (!RT) return 0; const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return false; // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), e = CXXRD->bases_end(); i != e; ++i) if (!isEmptyRecord(Context, i->getType(), true)) return false; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i) if (!isEmptyField(Context, *i, AllowArrays)) return false; return true; } /// isSingleElementStruct - Determine if a structure is a "single /// element struct", i.e. it has exactly one non-empty field or /// exactly one field which is itself a single element /// struct. Structures with flexible array members are never /// considered single element structs. /// /// \return The field declaration for the single non-empty field, if /// it exists. static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { const RecordType *RT = T->getAsStructureType(); if (!RT) return 0; const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return 0; const Type *Found = 0; // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) { for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), e = CXXRD->bases_end(); i != e; ++i) { // Ignore empty records. if (isEmptyRecord(Context, i->getType(), true)) continue; // If we already found an element then this isn't a single-element struct. if (Found) return 0; // If this is non-empty and not a single element struct, the composite // cannot be a single element struct. Found = isSingleElementStruct(i->getType(), Context); if (!Found) return 0; } } // Check for single element. for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i) { const FieldDecl *FD = *i; QualType FT = FD->getType(); // Ignore empty fields. if (isEmptyField(Context, FD, true)) continue; // If we already found an element then this isn't a single-element // struct. if (Found) return 0; // Treat single element arrays as the element. while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { if (AT->getSize().getZExtValue() != 1) break; FT = AT->getElementType(); } if (!isAggregateTypeForABI(FT)) { Found = FT.getTypePtr(); } else { Found = isSingleElementStruct(FT, Context); if (!Found) return 0; } } // We don't consider a struct a single-element struct if it has // padding beyond the element type. if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) return 0; return Found; } static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { // Treat complex types as the element type. if (const ComplexType *CTy = Ty->getAs()) Ty = CTy->getElementType(); // Check for a type which we know has a simple scalar argument-passing // convention without any padding. (We're specifically looking for 32 // and 64-bit integer and integer-equivalents, float, and double.) if (!Ty->getAs() && !Ty->hasPointerRepresentation() && !Ty->isEnumeralType() && !Ty->isBlockPointerType()) return false; uint64_t Size = Context.getTypeSize(Ty); return Size == 32 || Size == 64; } /// canExpandIndirectArgument - Test whether an argument type which is to be /// passed indirectly (on the stack) would have the equivalent layout if it was /// expanded into separate arguments. If so, we prefer to do the latter to avoid /// inhibiting optimizations. /// // FIXME: This predicate is missing many cases, currently it just follows // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We // should probably make this smarter, or better yet make the LLVM backend // capable of handling it. static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { // We can only expand structure types. const RecordType *RT = Ty->getAs(); if (!RT) return false; // We can only expand (C) structures. // // FIXME: This needs to be generalized to handle classes as well. const RecordDecl *RD = RT->getDecl(); if (!RD->isStruct() || isa(RD)) return false; uint64_t Size = 0; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i) { const FieldDecl *FD = *i; if (!is32Or64BitBasicType(FD->getType(), Context)) return false; // FIXME: Reject bit-fields wholesale; there are two problems, we don't know // how to expand them yet, and the predicate for telling if a bitfield still // counts as "basic" is more complicated than what we were doing previously. if (FD->isBitField()) return false; Size += Context.getTypeSize(FD->getType()); } // Make sure there are not any holes in the struct. if (Size != Context.getTypeSize(Ty)) return false; return true; } namespace { /// DefaultABIInfo - The default implementation for ABI specific /// details. This implementation provides information which results in /// self-consistent and sensible LLVM IR generation, but does not /// conform to any particular ABI. class DefaultABIInfo : public ABIInfo { public: DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy) const; virtual void computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) it->info = classifyArgumentType(it->type); } virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; }; class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { public: DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} }; llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { return 0; } ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { if (isAggregateTypeForABI(Ty)) { // Records with non trivial destructors/constructors should not be passed // by value. if (isRecordReturnIndirect(Ty, getCXXABI())) return ABIArgInfo::getIndirect(0, /*ByVal=*/false); return ABIArgInfo::getIndirect(0); } // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (isAggregateTypeForABI(RetTy)) return ABIArgInfo::getIndirect(0); // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } //===----------------------------------------------------------------------===// // le32/PNaCl bitcode ABI Implementation // // This is a simplified version of the x86_32 ABI. Arguments and return values // are always passed on the stack. //===----------------------------------------------------------------------===// class PNaClABIInfo : public ABIInfo { public: PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy) const; virtual void computeInfo(CGFunctionInfo &FI) const; virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; }; class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { public: PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} }; void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) it->info = classifyArgumentType(it->type); } llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { return 0; } /// \brief Classify argument of given type \p Ty. ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { if (isAggregateTypeForABI(Ty)) { if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); return ABIArgInfo::getIndirect(0); } else if (const EnumType *EnumTy = Ty->getAs()) { // Treat an enum type as its underlying type. Ty = EnumTy->getDecl()->getIntegerType(); } else if (Ty->isFloatingType()) { // Floating-point types don't go inreg. return ABIArgInfo::getDirect(); } return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); // In the PNaCl ABI we always return records/structures on the stack. if (isAggregateTypeForABI(RetTy)) return ABIArgInfo::getIndirect(0); // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } /// IsX86_MMXType - Return true if this is an MMX type. bool IsX86_MMXType(llvm::Type *IRType) { // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && cast(IRType)->getElementType()->isIntegerTy() && IRType->getScalarSizeInBits() != 64; } static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, StringRef Constraint, llvm::Type* Ty) { if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { if (cast(Ty)->getBitWidth() != 64) { // Invalid MMX constraint return 0; } return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); } // No operation needed return Ty; } //===----------------------------------------------------------------------===// // X86-32 ABI Implementation //===----------------------------------------------------------------------===// /// X86_32ABIInfo - The X86-32 ABI information. class X86_32ABIInfo : public ABIInfo { enum Class { Integer, Float }; static const unsigned MinABIStackAlignInBytes = 4; bool IsDarwinVectorABI; bool IsSmallStructInRegABI; bool IsWin32StructABI; unsigned DefaultNumRegisterParameters; static bool isRegisterSize(unsigned Size) { return (Size == 8 || Size == 16 || Size == 32 || Size == 64); } static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context, unsigned callingConvention); /// getIndirectResult - Give a source type \arg Ty, return a suitable result /// such that the argument will be passed in memory. ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, unsigned &FreeRegs) const; /// \brief Return the alignment to use for the given type on the stack. unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; Class classify(QualType Ty) const; ABIArgInfo classifyReturnType(QualType RetTy, unsigned callingConvention) const; ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs, bool IsFastCall) const; bool shouldUseInReg(QualType Ty, unsigned &FreeRegs, bool IsFastCall, bool &NeedsPadding) const; public: virtual void computeInfo(CGFunctionInfo &FI) const; virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, unsigned r) : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} }; class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { public: X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, unsigned r) :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} static bool isStructReturnInRegABI( const llvm::Triple &Triple, const CodeGenOptions &Opts); void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const; int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { // Darwin uses different dwarf register numbers for EH. if (CGM.getTarget().getTriple().isOSDarwin()) return 5; return 4; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const; llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, StringRef Constraint, llvm::Type* Ty) const { return X86AdjustInlineAsmType(CGF, Constraint, Ty); } llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const { unsigned Sig = (0xeb << 0) | // jmp rel8 (0x06 << 8) | // .+0x08 ('F' << 16) | ('T' << 24); return llvm::ConstantInt::get(CGM.Int32Ty, Sig); } }; } /// shouldReturnTypeInRegister - Determine if the given type should be /// passed in a register (for the Darwin ABI). bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, ASTContext &Context, unsigned callingConvention) { uint64_t Size = Context.getTypeSize(Ty); // Type must be register sized. if (!isRegisterSize(Size)) return false; if (Ty->isVectorType()) { // 64- and 128- bit vectors inside structures are not returned in // registers. if (Size == 64 || Size == 128) return false; return true; } // If this is a builtin, pointer, enum, complex type, member pointer, or // member function pointer it is ok. if (Ty->getAs() || Ty->hasPointerRepresentation() || Ty->isAnyComplexType() || Ty->isEnumeralType() || Ty->isBlockPointerType() || Ty->isMemberPointerType()) return true; // Arrays are treated like records. if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) return shouldReturnTypeInRegister(AT->getElementType(), Context, callingConvention); // Otherwise, it must be a record type. const RecordType *RT = Ty->getAs(); if (!RT) return false; // FIXME: Traverse bases here too. // For thiscall conventions, structures will never be returned in // a register. This is for compatibility with the MSVC ABI if (callingConvention == llvm::CallingConv::X86_ThisCall && RT->isStructureType()) { return false; } // Structure types are passed in register if all fields would be // passed in a register. for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(), e = RT->getDecl()->field_end(); i != e; ++i) { const FieldDecl *FD = *i; // Empty fields are ignored. if (isEmptyField(Context, FD, true)) continue; // Check fields recursively. if (!shouldReturnTypeInRegister(FD->getType(), Context, callingConvention)) return false; } return true; } ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, unsigned callingConvention) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (const VectorType *VT = RetTy->getAs()) { // On Darwin, some vectors are returned in registers. if (IsDarwinVectorABI) { uint64_t Size = getContext().getTypeSize(RetTy); // 128-bit vectors are a special case; they are returned in // registers and we need to make sure to pick a type the LLVM // backend will like. if (Size == 128) return ABIArgInfo::getDirect(llvm::VectorType::get( llvm::Type::getInt64Ty(getVMContext()), 2)); // Always return in register if it fits in a general purpose // register, or if it is 64 bits and has a single element. if ((Size == 8 || Size == 16 || Size == 32) || (Size == 64 && VT->getNumElements() == 1)) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); return ABIArgInfo::getIndirect(0); } return ABIArgInfo::getDirect(); } if (isAggregateTypeForABI(RetTy)) { if (const RecordType *RT = RetTy->getAs()) { if (isRecordReturnIndirect(RT, getCXXABI())) return ABIArgInfo::getIndirect(0, /*ByVal=*/false); // Structures with flexible arrays are always indirect. if (RT->getDecl()->hasFlexibleArrayMember()) return ABIArgInfo::getIndirect(0); } // If specified, structs and unions are always indirect. if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) return ABIArgInfo::getIndirect(0); // Small structures which are register sized are generally returned // in a register. if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(), callingConvention)) { uint64_t Size = getContext().getTypeSize(RetTy); // As a special-case, if the struct is a "single-element" struct, and // the field is of type "float" or "double", return it in a // floating-point register. (MSVC does not apply this special case.) // We apply a similar transformation for pointer types to improve the // quality of the generated IR. if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) || SeltTy->hasPointerRepresentation()) return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); // FIXME: We should be able to narrow this integer in cases with dead // padding. return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); } return ABIArgInfo::getIndirect(0); } // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } static bool isSSEVectorType(ASTContext &Context, QualType Ty) { return Ty->getAs() && Context.getTypeSize(Ty) == 128; } static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { const RecordType *RT = Ty->getAs(); if (!RT) return 0; const RecordDecl *RD = RT->getDecl(); // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), e = CXXRD->bases_end(); i != e; ++i) if (!isRecordWithSSEVectorType(Context, i->getType())) return false; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i) { QualType FT = i->getType(); if (isSSEVectorType(Context, FT)) return true; if (isRecordWithSSEVectorType(Context, FT)) return true; } return false; } unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, unsigned Align) const { // Otherwise, if the alignment is less than or equal to the minimum ABI // alignment, just use the default; the backend will handle this. if (Align <= MinABIStackAlignInBytes) return 0; // Use default alignment. // On non-Darwin, the stack type alignment is always 4. if (!IsDarwinVectorABI) { // Set explicit alignment, since we may need to realign the top. return MinABIStackAlignInBytes; } // Otherwise, if the type contains an SSE vector type, the alignment is 16. if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || isRecordWithSSEVectorType(getContext(), Ty))) return 16; return MinABIStackAlignInBytes; } ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, unsigned &FreeRegs) const { if (!ByVal) { if (FreeRegs) { --FreeRegs; // Non byval indirects just use one pointer. return ABIArgInfo::getIndirectInReg(0, false); } return ABIArgInfo::getIndirect(0, false); } // Compute the byval alignment. unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); if (StackAlign == 0) return ABIArgInfo::getIndirect(4); // If the stack alignment is less than the type alignment, realign the // argument. if (StackAlign < TypeAlign) return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, /*Realign=*/true); return ABIArgInfo::getIndirect(StackAlign); } X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { const Type *T = isSingleElementStruct(Ty, getContext()); if (!T) T = Ty.getTypePtr(); if (const BuiltinType *BT = T->getAs()) { BuiltinType::Kind K = BT->getKind(); if (K == BuiltinType::Float || K == BuiltinType::Double) return Float; } return Integer; } bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs, bool IsFastCall, bool &NeedsPadding) const { NeedsPadding = false; Class C = classify(Ty); if (C == Float) return false; unsigned Size = getContext().getTypeSize(Ty); unsigned SizeInRegs = (Size + 31) / 32; if (SizeInRegs == 0) return false; if (SizeInRegs > FreeRegs) { FreeRegs = 0; return false; } FreeRegs -= SizeInRegs; if (IsFastCall) { if (Size > 32) return false; if (Ty->isIntegralOrEnumerationType()) return true; if (Ty->isPointerType()) return true; if (Ty->isReferenceType()) return true; if (FreeRegs) NeedsPadding = true; return false; } return true; } ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, unsigned &FreeRegs, bool IsFastCall) const { // FIXME: Set alignment on indirect arguments. if (isAggregateTypeForABI(Ty)) { if (const RecordType *RT = Ty->getAs()) { if (IsWin32StructABI) return getIndirectResult(Ty, true, FreeRegs); if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) return getIndirectResult(Ty, RAA == CGCXXABI::RAA_DirectInMemory, FreeRegs); // Structures with flexible arrays are always indirect. if (RT->getDecl()->hasFlexibleArrayMember()) return getIndirectResult(Ty, true, FreeRegs); } // Ignore empty structs/unions. if (isEmptyRecord(getContext(), Ty, true)) return ABIArgInfo::getIgnore(); llvm::LLVMContext &LLVMContext = getVMContext(); llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); bool NeedsPadding; if (shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding)) { unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; SmallVector Elements(SizeInRegs, Int32); llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); return ABIArgInfo::getDirectInReg(Result); } llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0; // Expand small (<= 128-bit) record types when we know that the stack layout // of those arguments will match the struct. This is important because the // LLVM backend isn't smart enough to remove byval, which inhibits many // optimizations. if (getContext().getTypeSize(Ty) <= 4*32 && canExpandIndirectArgument(Ty, getContext())) return ABIArgInfo::getExpandWithPadding(IsFastCall, PaddingType); return getIndirectResult(Ty, true, FreeRegs); } if (const VectorType *VT = Ty->getAs()) { // On Darwin, some vectors are passed in memory, we handle this by passing // it as an i8/i16/i32/i64. if (IsDarwinVectorABI) { uint64_t Size = getContext().getTypeSize(Ty); if ((Size == 8 || Size == 16 || Size == 32) || (Size == 64 && VT->getNumElements() == 1)) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); } if (IsX86_MMXType(CGT.ConvertType(Ty))) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); return ABIArgInfo::getDirect(); } if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); bool NeedsPadding; bool InReg = shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding); if (Ty->isPromotableIntegerType()) { if (InReg) return ABIArgInfo::getExtendInReg(); return ABIArgInfo::getExtend(); } if (InReg) return ABIArgInfo::getDirectInReg(); return ABIArgInfo::getDirect(); } void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.getCallingConvention()); unsigned CC = FI.getCallingConvention(); bool IsFastCall = CC == llvm::CallingConv::X86_FastCall; unsigned FreeRegs; if (IsFastCall) FreeRegs = 2; else if (FI.getHasRegParm()) FreeRegs = FI.getRegParm(); else FreeRegs = DefaultNumRegisterParameters; // If the return value is indirect, then the hidden argument is consuming one // integer register. if (FI.getReturnInfo().isIndirect() && FreeRegs) { --FreeRegs; ABIArgInfo &Old = FI.getReturnInfo(); Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(), Old.getIndirectByVal(), Old.getIndirectRealign()); } for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) it->info = classifyArgumentType(it->type, FreeRegs, IsFastCall); } llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { llvm::Type *BPP = CGF.Int8PtrPtrTy; CGBuilderTy &Builder = CGF.Builder; llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); // Compute if the address needs to be aligned unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); Align = getTypeStackAlignInBytes(Ty, Align); Align = std::max(Align, 4U); if (Align > 4) { // addr = (addr + align - 1) & -align; llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); Addr = CGF.Builder.CreateGEP(Addr, Offset); llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, CGF.Int32Ty); llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), Addr->getType(), "ap.cur.aligned"); } llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); uint64_t Offset = llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); llvm::Value *NextAddr = Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); Builder.CreateStore(NextAddr, VAListAddrAsBPP); return AddrTyped; } void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { if (const FunctionDecl *FD = dyn_cast(D)) { if (FD->hasAttr()) { // Get the LLVM function. llvm::Function *Fn = cast(GV); // Now add the 'alignstack' attribute with a value of 16. llvm::AttrBuilder B; B.addStackAlignmentAttr(16); Fn->addAttributes(llvm::AttributeSet::FunctionIndex, llvm::AttributeSet::get(CGM.getLLVMContext(), llvm::AttributeSet::FunctionIndex, B)); } } } bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { CodeGen::CGBuilderTy &Builder = CGF.Builder; llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); // 0-7 are the eight integer registers; the order is different // on Darwin (for EH), but the range is the same. // 8 is %eip. AssignToArrayRange(Builder, Address, Four8, 0, 8); if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { // 12-16 are st(0..4). Not sure why we stop at 4. // These have size 16, which is sizeof(long double) on // platforms with 8-byte alignment for that type. llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); } else { // 9 is %eflags, which doesn't get a size on Darwin for some // reason. Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); // 11-16 are st(0..5). Not sure why we stop at 5. // These have size 12, which is sizeof(long double) on // platforms with 4-byte alignment for that type. llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); AssignToArrayRange(Builder, Address, Twelve8, 11, 16); } return false; } //===----------------------------------------------------------------------===// // X86-64 ABI Implementation //===----------------------------------------------------------------------===// namespace { /// X86_64ABIInfo - The X86_64 ABI information. class X86_64ABIInfo : public ABIInfo { enum Class { Integer = 0, SSE, SSEUp, X87, X87Up, ComplexX87, NoClass, Memory }; /// merge - Implement the X86_64 ABI merging algorithm. /// /// Merge an accumulating classification \arg Accum with a field /// classification \arg Field. /// /// \param Accum - The accumulating classification. This should /// always be either NoClass or the result of a previous merge /// call. In addition, this should never be Memory (the caller /// should just return Memory for the aggregate). static Class merge(Class Accum, Class Field); /// postMerge - Implement the X86_64 ABI post merging algorithm. /// /// Post merger cleanup, reduces a malformed Hi and Lo pair to /// final MEMORY or SSE classes when necessary. /// /// \param AggregateSize - The size of the current aggregate in /// the classification process. /// /// \param Lo - The classification for the parts of the type /// residing in the low word of the containing object. /// /// \param Hi - The classification for the parts of the type /// residing in the higher words of the containing object. /// void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; /// classify - Determine the x86_64 register classes in which the /// given type T should be passed. /// /// \param Lo - The classification for the parts of the type /// residing in the low word of the containing object. /// /// \param Hi - The classification for the parts of the type /// residing in the high word of the containing object. /// /// \param OffsetBase - The bit offset of this type in the /// containing object. Some parameters are classified different /// depending on whether they straddle an eightbyte boundary. /// /// \param isNamedArg - Whether the argument in question is a "named" /// argument, as used in AMD64-ABI 3.5.7. /// /// If a word is unused its result will be NoClass; if a type should /// be passed in Memory then at least the classification of \arg Lo /// will be Memory. /// /// The \arg Lo class will be NoClass iff the argument is ignored. /// /// If the \arg Lo class is ComplexX87, then the \arg Hi class will /// also be ComplexX87. void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, bool isNamedArg) const; llvm::Type *GetByteVectorType(QualType Ty) const; llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, QualType SourceTy, unsigned SourceOffset) const; llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, QualType SourceTy, unsigned SourceOffset) const; /// getIndirectResult - Give a source type \arg Ty, return a suitable result /// such that the argument will be returned in memory. ABIArgInfo getIndirectReturnResult(QualType Ty) const; /// getIndirectResult - Give a source type \arg Ty, return a suitable result /// such that the argument will be passed in memory. /// /// \param freeIntRegs - The number of free integer registers remaining /// available. ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, bool isNamedArg) const; bool IsIllegalVectorType(QualType Ty) const; /// The 0.98 ABI revision clarified a lot of ambiguities, /// unfortunately in ways that were not always consistent with /// certain previous compilers. In particular, platforms which /// required strict binary compatibility with older versions of GCC /// may need to exempt themselves. bool honorsRevision0_98() const { return !getTarget().getTriple().isOSDarwin(); } bool HasAVX; // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on // 64-bit hardware. bool Has64BitPointers; public: X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) : ABIInfo(CGT), HasAVX(hasavx), Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { } bool isPassedUsingAVXType(QualType type) const { unsigned neededInt, neededSSE; // The freeIntRegs argument doesn't matter here. ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, /*isNamedArg*/true); if (info.isDirect()) { llvm::Type *ty = info.getCoerceToType(); if (llvm::VectorType *vectorTy = dyn_cast_or_null(ty)) return (vectorTy->getBitWidth() > 128); } return false; } virtual void computeInfo(CGFunctionInfo &FI) const; virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; }; /// WinX86_64ABIInfo - The Windows X86_64 ABI information. class WinX86_64ABIInfo : public ABIInfo { ABIArgInfo classify(QualType Ty, bool IsReturnType) const; public: WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} virtual void computeInfo(CGFunctionInfo &FI) const; virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; }; class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { public: X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {} const X86_64ABIInfo &getABIInfo() const { return static_cast(TargetCodeGenInfo::getABIInfo()); } int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { return 7; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); // 0-15 are the 16 integer registers. // 16 is %rip. AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); return false; } llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, StringRef Constraint, llvm::Type* Ty) const { return X86AdjustInlineAsmType(CGF, Constraint, Ty); } bool isNoProtoCallVariadic(const CallArgList &args, const FunctionNoProtoType *fnType) const { // The default CC on x86-64 sets %al to the number of SSA // registers used, and GCC sets this when calling an unprototyped // function, so we override the default behavior. However, don't do // that when AVX types are involved: the ABI explicitly states it is // undefined, and it doesn't work in practice because of how the ABI // defines varargs anyway. if (fnType->getCallConv() == CC_C) { bool HasAVXType = false; for (CallArgList::const_iterator it = args.begin(), ie = args.end(); it != ie; ++it) { if (getABIInfo().isPassedUsingAVXType(it->Ty)) { HasAVXType = true; break; } } if (!HasAVXType) return true; } return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); } llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const { unsigned Sig = (0xeb << 0) | // jmp rel8 (0x0a << 8) | // .+0x0c ('F' << 16) | ('T' << 24); return llvm::ConstantInt::get(CGM.Int32Ty, Sig); } }; static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { // If the argument does not end in .lib, automatically add the suffix. This // matches the behavior of MSVC. std::string ArgStr = Lib; if (!Lib.endswith_lower(".lib")) ArgStr += ".lib"; return ArgStr; } class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { public: WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, unsigned RegParms) : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} void getDependentLibraryOption(llvm::StringRef Lib, llvm::SmallString<24> &Opt) const { Opt = "/DEFAULTLIB:"; Opt += qualifyWindowsLibrary(Lib); } void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, llvm::SmallString<32> &Opt) const { Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; } }; class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { public: WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { return 7; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); // 0-15 are the 16 integer registers. // 16 is %rip. AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); return false; } void getDependentLibraryOption(llvm::StringRef Lib, llvm::SmallString<24> &Opt) const { Opt = "/DEFAULTLIB:"; Opt += qualifyWindowsLibrary(Lib); } void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, llvm::SmallString<32> &Opt) const { Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; } }; } void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const { // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: // // (a) If one of the classes is Memory, the whole argument is passed in // memory. // // (b) If X87UP is not preceded by X87, the whole argument is passed in // memory. // // (c) If the size of the aggregate exceeds two eightbytes and the first // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole // argument is passed in memory. NOTE: This is necessary to keep the // ABI working for processors that don't support the __m256 type. // // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. // // Some of these are enforced by the merging logic. Others can arise // only with unions; for example: // union { _Complex double; unsigned; } // // Note that clauses (b) and (c) were added in 0.98. // if (Hi == Memory) Lo = Memory; if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) Lo = Memory; if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) Lo = Memory; if (Hi == SSEUp && Lo != SSE) Hi = SSE; } X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is // classified recursively so that always two fields are // considered. The resulting class is calculated according to // the classes of the fields in the eightbyte: // // (a) If both classes are equal, this is the resulting class. // // (b) If one of the classes is NO_CLASS, the resulting class is // the other class. // // (c) If one of the classes is MEMORY, the result is the MEMORY // class. // // (d) If one of the classes is INTEGER, the result is the // INTEGER. // // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, // MEMORY is used as class. // // (f) Otherwise class SSE is used. // Accum should never be memory (we should have returned) or // ComplexX87 (because this cannot be passed in a structure). assert((Accum != Memory && Accum != ComplexX87) && "Invalid accumulated classification during merge."); if (Accum == Field || Field == NoClass) return Accum; if (Field == Memory) return Memory; if (Accum == NoClass) return Field; if (Accum == Integer || Field == Integer) return Integer; if (Field == X87 || Field == X87Up || Field == ComplexX87 || Accum == X87 || Accum == X87Up) return Memory; return SSE; } void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo, Class &Hi, bool isNamedArg) const { // FIXME: This code can be simplified by introducing a simple value class for // Class pairs with appropriate constructor methods for the various // situations. // FIXME: Some of the split computations are wrong; unaligned vectors // shouldn't be passed in registers for example, so there is no chance they // can straddle an eightbyte. Verify & simplify. Lo = Hi = NoClass; Class &Current = OffsetBase < 64 ? Lo : Hi; Current = Memory; if (const BuiltinType *BT = Ty->getAs()) { BuiltinType::Kind k = BT->getKind(); if (k == BuiltinType::Void) { Current = NoClass; } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { Lo = Integer; Hi = Integer; } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { Current = Integer; } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || (k == BuiltinType::LongDouble && getTarget().getTriple().isOSNaCl())) { Current = SSE; } else if (k == BuiltinType::LongDouble) { Lo = X87; Hi = X87Up; } // FIXME: _Decimal32 and _Decimal64 are SSE. // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). return; } if (const EnumType *ET = Ty->getAs()) { // Classify the underlying integer type. classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); return; } if (Ty->hasPointerRepresentation()) { Current = Integer; return; } if (Ty->isMemberPointerType()) { if (Ty->isMemberFunctionPointerType() && Has64BitPointers) Lo = Hi = Integer; else Current = Integer; return; } if (const VectorType *VT = Ty->getAs()) { uint64_t Size = getContext().getTypeSize(VT); if (Size == 32) { // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x // float> as integer. Current = Integer; // If this type crosses an eightbyte boundary, it should be // split. uint64_t EB_Real = (OffsetBase) / 64; uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; if (EB_Real != EB_Imag) Hi = Lo; } else if (Size == 64) { // gcc passes <1 x double> in memory. :( if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) return; // gcc passes <1 x long long> as INTEGER. if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) Current = Integer; else Current = SSE; // If this type crosses an eightbyte boundary, it should be // split. if (OffsetBase && OffsetBase != 64) Hi = Lo; } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) { // Arguments of 256-bits are split into four eightbyte chunks. The // least significant one belongs to class SSE and all the others to class // SSEUP. The original Lo and Hi design considers that types can't be // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. // This design isn't correct for 256-bits, but since there're no cases // where the upper parts would need to be inspected, avoid adding // complexity and just consider Hi to match the 64-256 part. // // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in // registers if they are "named", i.e. not part of the "..." of a // variadic function. Lo = SSE; Hi = SSEUp; } return; } if (const ComplexType *CT = Ty->getAs()) { QualType ET = getContext().getCanonicalType(CT->getElementType()); uint64_t Size = getContext().getTypeSize(Ty); if (ET->isIntegralOrEnumerationType()) { if (Size <= 64) Current = Integer; else if (Size <= 128) Lo = Hi = Integer; } else if (ET == getContext().FloatTy) Current = SSE; else if (ET == getContext().DoubleTy || (ET == getContext().LongDoubleTy && getTarget().getTriple().isOSNaCl())) Lo = Hi = SSE; else if (ET == getContext().LongDoubleTy) Current = ComplexX87; // If this complex type crosses an eightbyte boundary then it // should be split. uint64_t EB_Real = (OffsetBase) / 64; uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; if (Hi == NoClass && EB_Real != EB_Imag) Hi = Lo; return; } if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { // Arrays are treated like structures. uint64_t Size = getContext().getTypeSize(Ty); // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger // than four eightbytes, ..., it has class MEMORY. if (Size > 256) return; // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned // fields, it has class MEMORY. // // Only need to check alignment of array base. if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) return; // Otherwise implement simplified merge. We could be smarter about // this, but it isn't worth it and would be harder to verify. Current = NoClass; uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); uint64_t ArraySize = AT->getSize().getZExtValue(); // The only case a 256-bit wide vector could be used is when the array // contains a single 256-bit element. Since Lo and Hi logic isn't extended // to work for sizes wider than 128, early check and fallback to memory. if (Size > 128 && EltSize != 256) return; for (uint64_t i=0, Offset=OffsetBase; igetElementType(), Offset, FieldLo, FieldHi, isNamedArg); Lo = merge(Lo, FieldLo); Hi = merge(Hi, FieldHi); if (Lo == Memory || Hi == Memory) break; } postMerge(Size, Lo, Hi); assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); return; } if (const RecordType *RT = Ty->getAs()) { uint64_t Size = getContext().getTypeSize(Ty); // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger // than four eightbytes, ..., it has class MEMORY. if (Size > 256) return; // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial // copy constructor or a non-trivial destructor, it is passed by invisible // reference. if (getRecordArgABI(RT, getCXXABI())) return; const RecordDecl *RD = RT->getDecl(); // Assume variable sized types are passed in memory. if (RD->hasFlexibleArrayMember()) return; const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); // Reset Lo class, this will be recomputed. Current = NoClass; // If this is a C++ record, classify the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) { for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), e = CXXRD->bases_end(); i != e; ++i) { assert(!i->isVirtual() && !i->getType()->isDependentType() && "Unexpected base class!"); const CXXRecordDecl *Base = cast(i->getType()->getAs()->getDecl()); // Classify this field. // // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a // single eightbyte, each is classified separately. Each eightbyte gets // initialized to class NO_CLASS. Class FieldLo, FieldHi; uint64_t Offset = OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); Lo = merge(Lo, FieldLo); Hi = merge(Hi, FieldHi); if (Lo == Memory || Hi == Memory) break; } } // Classify the fields one at a time, merging the results. unsigned idx = 0; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i, ++idx) { uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); bool BitField = i->isBitField(); // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than // four eightbytes, or it contains unaligned fields, it has class MEMORY. // // The only case a 256-bit wide vector could be used is when the struct // contains a single 256-bit element. Since Lo and Hi logic isn't extended // to work for sizes wider than 128, early check and fallback to memory. // if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { Lo = Memory; return; } // Note, skip this test for bit-fields, see below. if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { Lo = Memory; return; } // Classify this field. // // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate // exceeds a single eightbyte, each is classified // separately. Each eightbyte gets initialized to class // NO_CLASS. Class FieldLo, FieldHi; // Bit-fields require special handling, they do not force the // structure to be passed in memory even if unaligned, and // therefore they can straddle an eightbyte. if (BitField) { // Ignore padding bit-fields. if (i->isUnnamedBitfield()) continue; uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); uint64_t Size = i->getBitWidthValue(getContext()); uint64_t EB_Lo = Offset / 64; uint64_t EB_Hi = (Offset + Size - 1) / 64; if (EB_Lo) { assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); FieldLo = NoClass; FieldHi = Integer; } else { FieldLo = Integer; FieldHi = EB_Hi ? Integer : NoClass; } } else classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); Lo = merge(Lo, FieldLo); Hi = merge(Hi, FieldHi); if (Lo == Memory || Hi == Memory) break; } postMerge(Size, Lo, Hi); } } ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { // If this is a scalar LLVM value then assume LLVM will pass it in the right // place naturally. if (!isAggregateTypeForABI(Ty)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } return ABIArgInfo::getIndirect(0); } bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { if (const VectorType *VecTy = Ty->getAs()) { uint64_t Size = getContext().getTypeSize(VecTy); unsigned LargestVector = HasAVX ? 256 : 128; if (Size <= 64 || Size > LargestVector) return true; } return false; } ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, unsigned freeIntRegs) const { // If this is a scalar LLVM value then assume LLVM will pass it in the right // place naturally. // // This assumption is optimistic, as there could be free registers available // when we need to pass this argument in memory, and LLVM could try to pass // the argument in the free register. This does not seem to happen currently, // but this code would be much safer if we could mark the argument with // 'onstack'. See PR12193. if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); // Compute the byval alignment. We specify the alignment of the byval in all // cases so that the mid-level optimizer knows the alignment of the byval. unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); // Attempt to avoid passing indirect results using byval when possible. This // is important for good codegen. // // We do this by coercing the value into a scalar type which the backend can // handle naturally (i.e., without using byval). // // For simplicity, we currently only do this when we have exhausted all of the // free integer registers. Doing this when there are free integer registers // would require more care, as we would have to ensure that the coerced value // did not claim the unused register. That would require either reording the // arguments to the function (so that any subsequent inreg values came first), // or only doing this optimization when there were no following arguments that // might be inreg. // // We currently expect it to be rare (particularly in well written code) for // arguments to be passed on the stack when there are still free integer // registers available (this would typically imply large structs being passed // by value), so this seems like a fair tradeoff for now. // // We can revisit this if the backend grows support for 'onstack' parameter // attributes. See PR12193. if (freeIntRegs == 0) { uint64_t Size = getContext().getTypeSize(Ty); // If this type fits in an eightbyte, coerce it into the matching integral // type, which will end up on the stack (with alignment 8). if (Align == 8 && Size <= 64) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); } return ABIArgInfo::getIndirect(Align); } /// GetByteVectorType - The ABI specifies that a value should be passed in an /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a /// vector register. llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { llvm::Type *IRType = CGT.ConvertType(Ty); // Wrapper structs that just contain vectors are passed just like vectors, // strip them off if present. llvm::StructType *STy = dyn_cast(IRType); while (STy && STy->getNumElements() == 1) { IRType = STy->getElementType(0); STy = dyn_cast(IRType); } // If the preferred type is a 16-byte vector, prefer to pass it. if (llvm::VectorType *VT = dyn_cast(IRType)){ llvm::Type *EltTy = VT->getElementType(); unsigned BitWidth = VT->getBitWidth(); if ((BitWidth >= 128 && BitWidth <= 256) && (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) || EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) || EltTy->isIntegerTy(128))) return VT; } return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2); } /// BitsContainNoUserData - Return true if the specified [start,end) bit range /// is known to either be off the end of the specified type or being in /// alignment padding. The user type specified is known to be at most 128 bits /// in size, and have passed through X86_64ABIInfo::classify with a successful /// classification that put one of the two halves in the INTEGER class. /// /// It is conservatively correct to return false. static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, unsigned EndBit, ASTContext &Context) { // If the bytes being queried are off the end of the type, there is no user // data hiding here. This handles analysis of builtins, vectors and other // types that don't contain interesting padding. unsigned TySize = (unsigned)Context.getTypeSize(Ty); if (TySize <= StartBit) return true; if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); // Check each element to see if the element overlaps with the queried range. for (unsigned i = 0; i != NumElts; ++i) { // If the element is after the span we care about, then we're done.. unsigned EltOffset = i*EltSize; if (EltOffset >= EndBit) break; unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; if (!BitsContainNoUserData(AT->getElementType(), EltStart, EndBit-EltOffset, Context)) return false; } // If it overlaps no elements, then it is safe to process as padding. return true; } if (const RecordType *RT = Ty->getAs()) { const RecordDecl *RD = RT->getDecl(); const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) { for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), e = CXXRD->bases_end(); i != e; ++i) { assert(!i->isVirtual() && !i->getType()->isDependentType() && "Unexpected base class!"); const CXXRecordDecl *Base = cast(i->getType()->getAs()->getDecl()); // If the base is after the span we care about, ignore it. unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); if (BaseOffset >= EndBit) continue; unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; if (!BitsContainNoUserData(i->getType(), BaseStart, EndBit-BaseOffset, Context)) return false; } } // Verify that no field has data that overlaps the region of interest. Yes // this could be sped up a lot by being smarter about queried fields, // however we're only looking at structs up to 16 bytes, so we don't care // much. unsigned idx = 0; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i, ++idx) { unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); // If we found a field after the region we care about, then we're done. if (FieldOffset >= EndBit) break; unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, Context)) return false; } // If nothing in this record overlapped the area of interest, then we're // clean. return true; } return false; } /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a /// float member at the specified offset. For example, {int,{float}} has a /// float at offset 4. It is conservatively correct for this routine to return /// false. static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, const llvm::DataLayout &TD) { // Base case if we find a float. if (IROffset == 0 && IRType->isFloatTy()) return true; // If this is a struct, recurse into the field at the specified offset. if (llvm::StructType *STy = dyn_cast(IRType)) { const llvm::StructLayout *SL = TD.getStructLayout(STy); unsigned Elt = SL->getElementContainingOffset(IROffset); IROffset -= SL->getElementOffset(Elt); return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); } // If this is an array, recurse into the field at the specified offset. if (llvm::ArrayType *ATy = dyn_cast(IRType)) { llvm::Type *EltTy = ATy->getElementType(); unsigned EltSize = TD.getTypeAllocSize(EltTy); IROffset -= IROffset/EltSize*EltSize; return ContainsFloatAtOffset(EltTy, IROffset, TD); } return false; } /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the /// low 8 bytes of an XMM register, corresponding to the SSE class. llvm::Type *X86_64ABIInfo:: GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, QualType SourceTy, unsigned SourceOffset) const { // The only three choices we have are either double, <2 x float>, or float. We // pass as float if the last 4 bytes is just padding. This happens for // structs that contain 3 floats. if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, SourceOffset*8+64, getContext())) return llvm::Type::getFloatTy(getVMContext()); // We want to pass as <2 x float> if the LLVM IR type contains a float at // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the // case. if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); return llvm::Type::getDoubleTy(getVMContext()); } /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in /// an 8-byte GPR. This means that we either have a scalar or we are talking /// about the high or low part of an up-to-16-byte struct. This routine picks /// the best LLVM IR type to represent this, which may be i64 or may be anything /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, /// etc). /// /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for /// the source type. IROffset is an offset in bytes into the LLVM IR type that /// the 8-byte value references. PrefType may be null. /// /// SourceTy is the source level type for the entire argument. SourceOffset is /// an offset into this that we're processing (which is always either 0 or 8). /// llvm::Type *X86_64ABIInfo:: GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, QualType SourceTy, unsigned SourceOffset) const { // If we're dealing with an un-offset LLVM IR type, then it means that we're // returning an 8-byte unit starting with it. See if we can safely use it. if (IROffset == 0) { // Pointers and int64's always fill the 8-byte unit. if ((isa(IRType) && Has64BitPointers) || IRType->isIntegerTy(64)) return IRType; // If we have a 1/2/4-byte integer, we can use it only if the rest of the // goodness in the source type is just tail padding. This is allowed to // kick in for struct {double,int} on the int, but not on // struct{double,int,int} because we wouldn't return the second int. We // have to do this analysis on the source type because we can't depend on // unions being lowered a specific way etc. if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || IRType->isIntegerTy(32) || (isa(IRType) && !Has64BitPointers)) { unsigned BitWidth = isa(IRType) ? 32 : cast(IRType)->getBitWidth(); if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, SourceOffset*8+64, getContext())) return IRType; } } if (llvm::StructType *STy = dyn_cast(IRType)) { // If this is a struct, recurse into the field at the specified offset. const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); if (IROffset < SL->getSizeInBytes()) { unsigned FieldIdx = SL->getElementContainingOffset(IROffset); IROffset -= SL->getElementOffset(FieldIdx); return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, SourceTy, SourceOffset); } } if (llvm::ArrayType *ATy = dyn_cast(IRType)) { llvm::Type *EltTy = ATy->getElementType(); unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); unsigned EltOffset = IROffset/EltSize*EltSize; return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, SourceOffset); } // Okay, we don't have any better idea of what to pass, so we pass this in an // integer register that isn't too big to fit the rest of the struct. unsigned TySizeInBytes = (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); assert(TySizeInBytes != SourceOffset && "Empty field?"); // It is always safe to classify this as an integer type up to i64 that // isn't larger than the structure. return llvm::IntegerType::get(getVMContext(), std::min(TySizeInBytes-SourceOffset, 8U)*8); } /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally /// be used as elements of a two register pair to pass or return, return a /// first class aggregate to represent them. For example, if the low part of /// a by-value argument should be passed as i32* and the high part as float, /// return {i32*, float}. static llvm::Type * GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, const llvm::DataLayout &TD) { // In order to correctly satisfy the ABI, we need to the high part to start // at offset 8. If the high and low parts we inferred are both 4-byte types // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have // the second element at offset 8. Check for this: unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); unsigned HiAlign = TD.getABITypeAlignment(Hi); unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign); assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); // To handle this, we have to increase the size of the low part so that the // second element will start at an 8 byte offset. We can't increase the size // of the second element because it might make us access off the end of the // struct. if (HiStart != 8) { // There are only two sorts of types the ABI generation code can produce for // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. // Promote these to a larger type. if (Lo->isFloatTy()) Lo = llvm::Type::getDoubleTy(Lo->getContext()); else { assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); Lo = llvm::Type::getInt64Ty(Lo->getContext()); } } llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL); // Verify that the second element is at an 8-byte offset. assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && "Invalid x86-64 argument pair!"); return Result; } ABIArgInfo X86_64ABIInfo:: classifyReturnType(QualType RetTy) const { // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the // classification algorithm. X86_64ABIInfo::Class Lo, Hi; classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); // Check some invariants. assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); llvm::Type *ResType = 0; switch (Lo) { case NoClass: if (Hi == NoClass) return ABIArgInfo::getIgnore(); // If the low part is just padding, it takes no register, leave ResType // null. assert((Hi == SSE || Hi == Integer || Hi == X87Up) && "Unknown missing lo part"); break; case SSEUp: case X87Up: llvm_unreachable("Invalid classification for lo word."); // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via // hidden argument. case Memory: return getIndirectReturnResult(RetTy); // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next // available register of the sequence %rax, %rdx is used. case Integer: ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); // If we have a sign or zero extended integer, make sure to return Extend // so that the parameter gets the right LLVM IR attributes. if (Hi == NoClass && isa(ResType)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); if (RetTy->isIntegralOrEnumerationType() && RetTy->isPromotableIntegerType()) return ABIArgInfo::getExtend(); } break; // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next // available SSE register of the sequence %xmm0, %xmm1 is used. case SSE: ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); break; // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is // returned on the X87 stack in %st0 as 80-bit x87 number. case X87: ResType = llvm::Type::getX86_FP80Ty(getVMContext()); break; // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real // part of the value is returned in %st0 and the imaginary part in // %st1. case ComplexX87: assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), llvm::Type::getX86_FP80Ty(getVMContext()), NULL); break; } llvm::Type *HighPart = 0; switch (Hi) { // Memory was handled previously and X87 should // never occur as a hi class. case Memory: case X87: llvm_unreachable("Invalid classification for hi word."); case ComplexX87: // Previously handled. case NoClass: break; case Integer: HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); if (Lo == NoClass) // Return HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); break; case SSE: HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); if (Lo == NoClass) // Return HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); break; // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte // is passed in the next available eightbyte chunk if the last used // vector register. // // SSEUP should always be preceded by SSE, just widen. case SSEUp: assert(Lo == SSE && "Unexpected SSEUp classification."); ResType = GetByteVectorType(RetTy); break; // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is // returned together with the previous X87 value in %st0. case X87Up: // If X87Up is preceded by X87, we don't need to do // anything. However, in some cases with unions it may not be // preceded by X87. In such situations we follow gcc and pass the // extra bits in an SSE reg. if (Lo != X87) { HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); if (Lo == NoClass) // Return HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); } break; } // If a high part was specified, merge it together with the low part. It is // known to pass in the high eightbyte of the result. We do this by forming a // first class struct aggregate with the high and low part: {low, high} if (HighPart) ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); return ABIArgInfo::getDirect(ResType); } ABIArgInfo X86_64ABIInfo::classifyArgumentType( QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, bool isNamedArg) const { X86_64ABIInfo::Class Lo, Hi; classify(Ty, 0, Lo, Hi, isNamedArg); // Check some invariants. // FIXME: Enforce these by construction. assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); neededInt = 0; neededSSE = 0; llvm::Type *ResType = 0; switch (Lo) { case NoClass: if (Hi == NoClass) return ABIArgInfo::getIgnore(); // If the low part is just padding, it takes no register, leave ResType // null. assert((Hi == SSE || Hi == Integer || Hi == X87Up) && "Unknown missing lo part"); break; // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument // on the stack. case Memory: // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or // COMPLEX_X87, it is passed in memory. case X87: case ComplexX87: if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) ++neededInt; return getIndirectResult(Ty, freeIntRegs); case SSEUp: case X87Up: llvm_unreachable("Invalid classification for lo word."); // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 // and %r9 is used. case Integer: ++neededInt; // Pick an 8-byte type based on the preferred type. ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); // If we have a sign or zero extended integer, make sure to return Extend // so that the parameter gets the right LLVM IR attributes. if (Hi == NoClass && isa(ResType)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); if (Ty->isIntegralOrEnumerationType() && Ty->isPromotableIntegerType()) return ABIArgInfo::getExtend(); } break; // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next // available SSE register is used, the registers are taken in the // order from %xmm0 to %xmm7. case SSE: { llvm::Type *IRType = CGT.ConvertType(Ty); ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); ++neededSSE; break; } } llvm::Type *HighPart = 0; switch (Hi) { // Memory was handled previously, ComplexX87 and X87 should // never occur as hi classes, and X87Up must be preceded by X87, // which is passed in memory. case Memory: case X87: case ComplexX87: llvm_unreachable("Invalid classification for hi word."); case NoClass: break; case Integer: ++neededInt; // Pick an 8-byte type based on the preferred type. HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); if (Lo == NoClass) // Pass HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); break; // X87Up generally doesn't occur here (long double is passed in // memory), except in situations involving unions. case X87Up: case SSE: HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); if (Lo == NoClass) // Pass HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); ++neededSSE; break; // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the // eightbyte is passed in the upper half of the last used SSE // register. This only happens when 128-bit vectors are passed. case SSEUp: assert(Lo == SSE && "Unexpected SSEUp classification"); ResType = GetByteVectorType(Ty); break; } // If a high part was specified, merge it together with the low part. It is // known to pass in the high eightbyte of the result. We do this by forming a // first class struct aggregate with the high and low part: {low, high} if (HighPart) ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); return ABIArgInfo::getDirect(ResType); } void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); // Keep track of the number of assigned registers. unsigned freeIntRegs = 6, freeSSERegs = 8; // If the return value is indirect, then the hidden argument is consuming one // integer register. if (FI.getReturnInfo().isIndirect()) --freeIntRegs; bool isVariadic = FI.isVariadic(); unsigned numRequiredArgs = 0; if (isVariadic) numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs(); // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers // get assigned (in left-to-right order) for passing as follows... for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) { bool isNamedArg = true; if (isVariadic) isNamedArg = (it - FI.arg_begin()) < static_cast(numRequiredArgs); unsigned neededInt, neededSSE; it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, neededSSE, isNamedArg); // AMD64-ABI 3.2.3p3: If there are no registers available for any // eightbyte of an argument, the whole argument is passed on the // stack. If registers have already been assigned for some // eightbytes of such an argument, the assignments get reverted. if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { freeIntRegs -= neededInt; freeSSERegs -= neededSSE; } else { it->info = getIndirectResult(it->type, freeIntRegs); } } } static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) { llvm::Value *overflow_arg_area_p = CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); llvm::Value *overflow_arg_area = CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 // byte boundary if alignment needed by type exceeds 8 byte boundary. // It isn't stated explicitly in the standard, but in practice we use // alignment greater than 16 where necessary. uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; if (Align > 8) { // overflow_arg_area = (overflow_arg_area + align - 1) & -align; llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, CGF.Int64Ty); llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); overflow_arg_area = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), overflow_arg_area->getType(), "overflow_arg_area.align"); } // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); llvm::Value *Res = CGF.Builder.CreateBitCast(overflow_arg_area, llvm::PointerType::getUnqual(LTy)); // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: // l->overflow_arg_area + sizeof(type). // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to // an 8 byte boundary. uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, "overflow_arg_area.next"); CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. return Res; } llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { // Assume that va_list type is correct; should be pointer to LLVM type: // struct { // i32 gp_offset; // i32 fp_offset; // i8* overflow_arg_area; // i8* reg_save_area; // }; unsigned neededInt, neededSSE; Ty = CGF.getContext().getCanonicalType(Ty); ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, /*isNamedArg*/false); // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed // in the registers. If not go to step 7. if (!neededInt && !neededSSE) return EmitVAArgFromMemory(VAListAddr, Ty, CGF); // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of // general purpose registers needed to pass type and num_fp to hold // the number of floating point registers needed. // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into // registers. In the case: l->gp_offset > 48 - num_gp * 8 or // l->fp_offset > 304 - num_fp * 16 go to step 7. // // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of // register save space). llvm::Value *InRegs = 0; llvm::Value *gp_offset_p = 0, *gp_offset = 0; llvm::Value *fp_offset_p = 0, *fp_offset = 0; if (neededInt) { gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); } if (neededSSE) { fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); llvm::Value *FitsInFP = llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; } llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); // Emit code to load the value if it was passed in registers. CGF.EmitBlock(InRegBlock); // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with // an offset of l->gp_offset and/or l->fp_offset. This may require // copying to a temporary location in case the parameter is passed // in different register classes or requires an alignment greater // than 8 for general purpose registers and 16 for XMM registers. // // FIXME: This really results in shameful code when we end up needing to // collect arguments from different places; often what should result in a // simple assembling of a structure from scattered addresses has many more // loads than necessary. Can we clean this up? llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); llvm::Value *RegAddr = CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); if (neededInt && neededSSE) { // FIXME: Cleanup. assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); llvm::StructType *ST = cast(AI.getCoerceToType()); llvm::Value *Tmp = CGF.CreateMemTemp(Ty); Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); llvm::Type *TyLo = ST->getElementType(0); llvm::Type *TyHi = ST->getElementType(1); assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && "Unexpected ABI info for mixed regs"); llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr; llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr; llvm::Value *V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); RegAddr = CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(LTy)); } else if (neededInt) { RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); RegAddr = CGF.Builder.CreateBitCast(RegAddr, llvm::PointerType::getUnqual(LTy)); // Copy to a temporary if necessary to ensure the appropriate alignment. std::pair SizeAlign = CGF.getContext().getTypeInfoInChars(Ty); uint64_t TySize = SizeAlign.first.getQuantity(); unsigned TyAlign = SizeAlign.second.getQuantity(); if (TyAlign > 8) { llvm::Value *Tmp = CGF.CreateMemTemp(Ty); CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); RegAddr = Tmp; } } else if (neededSSE == 1) { RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); RegAddr = CGF.Builder.CreateBitCast(RegAddr, llvm::PointerType::getUnqual(LTy)); } else { assert(neededSSE == 2 && "Invalid number of needed registers!"); // SSE registers are spaced 16 bytes apart in the register save // area, we need to collect the two eightbytes together. llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); llvm::Type *DoubleTy = CGF.DoubleTy; llvm::Type *DblPtrTy = llvm::PointerType::getUnqual(DoubleTy); llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL); llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, DblPtrTy)); CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, DblPtrTy)); CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); RegAddr = CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(LTy)); } // AMD64-ABI 3.5.7p5: Step 5. Set: // l->gp_offset = l->gp_offset + num_gp * 8 // l->fp_offset = l->fp_offset + num_fp * 16. if (neededInt) { llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), gp_offset_p); } if (neededSSE) { llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), fp_offset_p); } CGF.EmitBranch(ContBlock); // Emit code to load the value if it was passed in memory. CGF.EmitBlock(InMemBlock); llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); // Return the appropriate result. CGF.EmitBlock(ContBlock); llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, "vaarg.addr"); ResAddr->addIncoming(RegAddr, InRegBlock); ResAddr->addIncoming(MemAddr, InMemBlock); return ResAddr; } ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const { if (Ty->isVoidType()) return ABIArgInfo::getIgnore(); if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); uint64_t Size = getContext().getTypeSize(Ty); if (const RecordType *RT = Ty->getAs()) { if (IsReturnType) { if (isRecordReturnIndirect(RT, getCXXABI())) return ABIArgInfo::getIndirect(0, false); } else { if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); } if (RT->getDecl()->hasFlexibleArrayMember()) return ABIArgInfo::getIndirect(0, /*ByVal=*/false); // FIXME: mingw-w64-gcc emits 128-bit struct as i128 if (Size == 128 && getTarget().getTriple().getOS() == llvm::Triple::MinGW32) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is // not 1, 2, 4, or 8 bytes, must be passed by reference." if (Size <= 64 && (Size & (Size - 1)) == 0) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); return ABIArgInfo::getIndirect(0, /*ByVal=*/false); } if (Ty->isPromotableIntegerType()) return ABIArgInfo::getExtend(); return ABIArgInfo::getDirect(); } void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { QualType RetTy = FI.getReturnType(); FI.getReturnInfo() = classify(RetTy, true); for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) it->info = classify(it->type, false); } llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { llvm::Type *BPP = CGF.Int8PtrPtrTy; CGBuilderTy &Builder = CGF.Builder; llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); uint64_t Offset = llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); llvm::Value *NextAddr = Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); Builder.CreateStore(NextAddr, VAListAddrAsBPP); return AddrTyped; } namespace { class NaClX86_64ABIInfo : public ABIInfo { public: NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {} virtual void computeInfo(CGFunctionInfo &FI) const; virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; private: PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. X86_64ABIInfo NInfo; // Used for everything else. }; class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo { public: NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {} }; } void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { if (FI.getASTCallingConvention() == CC_PnaclCall) PInfo.computeInfo(FI); else NInfo.computeInfo(FI); } llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { // Always use the native convention; calling pnacl-style varargs functions // is unuspported. return NInfo.EmitVAArg(VAListAddr, Ty, CGF); } // PowerPC-32 namespace { class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo { public: PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { // This is recovered from gcc output. return 1; // r1 is the dedicated stack pointer } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const; }; } bool PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { // This is calculated from the LLVM and GCC tables and verified // against gcc output. AFAIK all ABIs use the same encoding. CodeGen::CGBuilderTy &Builder = CGF.Builder; llvm::IntegerType *i8 = CGF.Int8Ty; llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); // 0-31: r0-31, the 4-byte general-purpose registers AssignToArrayRange(Builder, Address, Four8, 0, 31); // 32-63: fp0-31, the 8-byte floating-point registers AssignToArrayRange(Builder, Address, Eight8, 32, 63); // 64-76 are various 4-byte special-purpose registers: // 64: mq // 65: lr // 66: ctr // 67: ap // 68-75 cr0-7 // 76: xer AssignToArrayRange(Builder, Address, Four8, 64, 76); // 77-108: v0-31, the 16-byte vector registers AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); // 109: vrsave // 110: vscr // 111: spe_acc // 112: spefscr // 113: sfp AssignToArrayRange(Builder, Address, Four8, 109, 113); return false; } // PowerPC-64 namespace { /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. class PPC64_SVR4_ABIInfo : public DefaultABIInfo { public: PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} bool isPromotableTypeForABI(QualType Ty) const; ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType Ty) const; // TODO: We can add more logic to computeInfo to improve performance. // Example: For aggregate arguments that fit in a register, we could // use getDirectInReg (as is done below for structs containing a single // floating-point value) to avoid pushing them to memory on function // entry. This would require changing the logic in PPCISelLowering // when lowering the parameters in the caller and args in the callee. virtual void computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) { // We rely on the default argument classification for the most part. // One exception: An aggregate containing a single floating-point // or vector item must be passed in a register if one is available. const Type *T = isSingleElementStruct(it->type, getContext()); if (T) { const BuiltinType *BT = T->getAs(); if (T->isVectorType() || (BT && BT->isFloatingPoint())) { QualType QT(T, 0); it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); continue; } } it->info = classifyArgumentType(it->type); } } virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; }; class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { public: PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { // This is recovered from gcc output. return 1; // r1 is the dedicated stack pointer } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const; }; class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { public: PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { // This is recovered from gcc output. return 1; // r1 is the dedicated stack pointer } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const; }; } // Return true if the ABI requires Ty to be passed sign- or zero- // extended to 64 bits. bool PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); // Promotable integer types are required to be promoted by the ABI. if (Ty->isPromotableIntegerType()) return true; // In addition to the usual promotable integer types, we also need to // extend all 32-bit types, since the ABI requires promotion to 64 bits. if (const BuiltinType *BT = Ty->getAs()) switch (BT->getKind()) { case BuiltinType::Int: case BuiltinType::UInt: return true; default: break; } return false; } ABIArgInfo PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { if (Ty->isAnyComplexType()) return ABIArgInfo::getDirect(); if (isAggregateTypeForABI(Ty)) { if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); return ABIArgInfo::getIndirect(0); } return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } ABIArgInfo PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (RetTy->isAnyComplexType()) return ABIArgInfo::getDirect(); if (isAggregateTypeForABI(RetTy)) return ABIArgInfo::getIndirect(0); return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { llvm::Type *BP = CGF.Int8PtrTy; llvm::Type *BPP = CGF.Int8PtrPtrTy; CGBuilderTy &Builder = CGF.Builder; llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); // Update the va_list pointer. The pointer should be bumped by the // size of the object. We can trust getTypeSize() except for a complex // type whose base type is smaller than a doubleword. For these, the // size of the object is 16 bytes; see below for further explanation. unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; QualType BaseTy; unsigned CplxBaseSize = 0; if (const ComplexType *CTy = Ty->getAs()) { BaseTy = CTy->getElementType(); CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; if (CplxBaseSize < 8) SizeInBytes = 16; } unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); llvm::Value *NextAddr = Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "ap.next"); Builder.CreateStore(NextAddr, VAListAddrAsBPP); // If we have a complex type and the base type is smaller than 8 bytes, // the ABI calls for the real and imaginary parts to be right-adjusted // in separate doublewords. However, Clang expects us to produce a // pointer to a structure with the two parts packed tightly. So generate // loads of the real and imaginary parts relative to the va_list pointer, // and store them to a temporary structure. if (CplxBaseSize && CplxBaseSize < 8) { llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); llvm::Value *ImagAddr = RealAddr; RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), "vacplx"); llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real"); llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag"); Builder.CreateStore(Real, RealPtr, false); Builder.CreateStore(Imag, ImagPtr, false); return Ptr; } // If the argument is smaller than 8 bytes, it is right-adjusted in // its doubleword slot. Adjust the pointer to pick it up from the // correct offset. if (SizeInBytes < 8) { llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); Addr = Builder.CreateIntToPtr(AddrAsInt, BP); } llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); return Builder.CreateBitCast(Addr, PTy); } static bool PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) { // This is calculated from the LLVM and GCC tables and verified // against gcc output. AFAIK all ABIs use the same encoding. CodeGen::CGBuilderTy &Builder = CGF.Builder; llvm::IntegerType *i8 = CGF.Int8Ty; llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); // 0-31: r0-31, the 8-byte general-purpose registers AssignToArrayRange(Builder, Address, Eight8, 0, 31); // 32-63: fp0-31, the 8-byte floating-point registers AssignToArrayRange(Builder, Address, Eight8, 32, 63); // 64-76 are various 4-byte special-purpose registers: // 64: mq // 65: lr // 66: ctr // 67: ap // 68-75 cr0-7 // 76: xer AssignToArrayRange(Builder, Address, Four8, 64, 76); // 77-108: v0-31, the 16-byte vector registers AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); // 109: vrsave // 110: vscr // 111: spe_acc // 112: spefscr // 113: sfp AssignToArrayRange(Builder, Address, Four8, 109, 113); return false; } bool PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { return PPC64_initDwarfEHRegSizeTable(CGF, Address); } bool PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { return PPC64_initDwarfEHRegSizeTable(CGF, Address); } //===----------------------------------------------------------------------===// // ARM ABI Implementation //===----------------------------------------------------------------------===// namespace { class ARMABIInfo : public ABIInfo { public: enum ABIKind { APCS = 0, AAPCS = 1, AAPCS_VFP }; private: ABIKind Kind; public: ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) { setRuntimeCC(); } bool isEABI() const { StringRef Env = getTarget().getTriple().getEnvironmentName(); return (Env == "gnueabi" || Env == "eabi" || Env == "android" || Env == "androideabi"); } ABIKind getABIKind() const { return Kind; } private: ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy, int *VFPRegs, unsigned &AllocatedVFP, bool &IsHA) const; bool isIllegalVectorType(QualType Ty) const; virtual void computeInfo(CGFunctionInfo &FI) const; virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; llvm::CallingConv::ID getLLVMDefaultCC() const; llvm::CallingConv::ID getABIDefaultCC() const; void setRuntimeCC(); }; class ARMTargetCodeGenInfo : public TargetCodeGenInfo { public: ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} const ARMABIInfo &getABIInfo() const { return static_cast(TargetCodeGenInfo::getABIInfo()); } int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 13; } StringRef getARCRetainAutoreleasedReturnValueMarker() const { return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); // 0-15 are the 16 integer registers. AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); return false; } unsigned getSizeOfUnwindException() const { if (getABIInfo().isEABI()) return 88; return TargetCodeGenInfo::getSizeOfUnwindException(); } void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { const FunctionDecl *FD = dyn_cast(D); if (!FD) return; const ARMInterruptAttr *Attr = FD->getAttr(); if (!Attr) return; const char *Kind; switch (Attr->getInterrupt()) { case ARMInterruptAttr::Generic: Kind = ""; break; case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; case ARMInterruptAttr::SWI: Kind = "SWI"; break; case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; } llvm::Function *Fn = cast(GV); Fn->addFnAttr("interrupt", Kind); if (cast(getABIInfo()).getABIKind() == ARMABIInfo::APCS) return; // AAPCS guarantees that sp will be 8-byte aligned on any public interface, // however this is not necessarily true on taking any interrupt. Instruct // the backend to perform a realignment as part of the function prologue. llvm::AttrBuilder B; B.addStackAlignmentAttr(8); Fn->addAttributes(llvm::AttributeSet::FunctionIndex, llvm::AttributeSet::get(CGM.getLLVMContext(), llvm::AttributeSet::FunctionIndex, B)); } }; } void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { // To correctly handle Homogeneous Aggregate, we need to keep track of the // VFP registers allocated so far. // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive // VFP registers of the appropriate type unallocated then the argument is // allocated to the lowest-numbered sequence of such registers. // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are // unallocated are marked as unavailable. unsigned AllocatedVFP = 0; int VFPRegs[16] = { 0 }; FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) { unsigned PreAllocation = AllocatedVFP; bool IsHA = false; // 6.1.2.3 There is one VFP co-processor register class using registers // s0-s15 (d0-d7) for passing arguments. const unsigned NumVFPs = 16; it->info = classifyArgumentType(it->type, VFPRegs, AllocatedVFP, IsHA); // If we do not have enough VFP registers for the HA, any VFP registers // that are unallocated are marked as unavailable. To achieve this, we add // padding of (NumVFPs - PreAllocation) floats. if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) { llvm::Type *PaddingTy = llvm::ArrayType::get( llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation); it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy); } } // Always honor user-specified calling convention. if (FI.getCallingConvention() != llvm::CallingConv::C) return; llvm::CallingConv::ID cc = getRuntimeCC(); if (cc != llvm::CallingConv::C) FI.setEffectiveCallingConvention(cc); } /// Return the default calling convention that LLVM will use. llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { // The default calling convention that LLVM will infer. if (getTarget().getTriple().getEnvironmentName()=="gnueabihf") return llvm::CallingConv::ARM_AAPCS_VFP; else if (isEABI()) return llvm::CallingConv::ARM_AAPCS; else return llvm::CallingConv::ARM_APCS; } /// Return the calling convention that our ABI would like us to use /// as the C calling convention. llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { switch (getABIKind()) { case APCS: return llvm::CallingConv::ARM_APCS; case AAPCS: return llvm::CallingConv::ARM_AAPCS; case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; } llvm_unreachable("bad ABI kind"); } void ARMABIInfo::setRuntimeCC() { assert(getRuntimeCC() == llvm::CallingConv::C); // Don't muddy up the IR with a ton of explicit annotations if // they'd just match what LLVM will infer from the triple. llvm::CallingConv::ID abiCC = getABIDefaultCC(); if (abiCC != getLLVMDefaultCC()) RuntimeCC = abiCC; } /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous /// aggregate. If HAMembers is non-null, the number of base elements /// contained in the type is returned through it; this is used for the /// recursive calls that check aggregate component types. static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, ASTContext &Context, uint64_t *HAMembers = 0) { uint64_t Members = 0; if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members)) return false; Members *= AT->getSize().getZExtValue(); } else if (const RecordType *RT = Ty->getAs()) { const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return false; Members = 0; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i) { const FieldDecl *FD = *i; uint64_t FldMembers; if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers)) return false; Members = (RD->isUnion() ? std::max(Members, FldMembers) : Members + FldMembers); } } else { Members = 1; if (const ComplexType *CT = Ty->getAs()) { Members = 2; Ty = CT->getElementType(); } // Homogeneous aggregates for AAPCS-VFP must have base types of float, // double, or 64-bit or 128-bit vectors. if (const BuiltinType *BT = Ty->getAs()) { if (BT->getKind() != BuiltinType::Float && BT->getKind() != BuiltinType::Double && BT->getKind() != BuiltinType::LongDouble) return false; } else if (const VectorType *VT = Ty->getAs()) { unsigned VecSize = Context.getTypeSize(VT); if (VecSize != 64 && VecSize != 128) return false; } else { return false; } // The base type must be the same for all members. Vector types of the // same total size are treated as being equivalent here. const Type *TyPtr = Ty.getTypePtr(); if (!Base) Base = TyPtr; if (Base != TyPtr && (!Base->isVectorType() || !TyPtr->isVectorType() || Context.getTypeSize(Base) != Context.getTypeSize(TyPtr))) return false; } // Homogeneous Aggregates can have at most 4 members of the base type. if (HAMembers) *HAMembers = Members; return (Members > 0 && Members <= 4); } /// markAllocatedVFPs - update VFPRegs according to the alignment and /// number of VFP registers (unit is S register) requested. static void markAllocatedVFPs(int *VFPRegs, unsigned &AllocatedVFP, unsigned Alignment, unsigned NumRequired) { // Early Exit. if (AllocatedVFP >= 16) return; // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive // VFP registers of the appropriate type unallocated then the argument is // allocated to the lowest-numbered sequence of such registers. for (unsigned I = 0; I < 16; I += Alignment) { bool FoundSlot = true; for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) if (J >= 16 || VFPRegs[J]) { FoundSlot = false; break; } if (FoundSlot) { for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) VFPRegs[J] = 1; AllocatedVFP += NumRequired; return; } } // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are // unallocated are marked as unavailable. for (unsigned I = 0; I < 16; I++) VFPRegs[I] = 1; AllocatedVFP = 17; // We do not have enough VFP registers. } ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, int *VFPRegs, unsigned &AllocatedVFP, bool &IsHA) const { // We update number of allocated VFPs according to // 6.1.2.1 The following argument types are VFP CPRCs: // A single-precision floating-point type (including promoted // half-precision types); A double-precision floating-point type; // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate // with a Base Type of a single- or double-precision floating-point type, // 64-bit containerized vectors or 128-bit containerized vectors with one // to four Elements. // Handle illegal vector types here. if (isIllegalVectorType(Ty)) { uint64_t Size = getContext().getTypeSize(Ty); if (Size <= 32) { llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); return ABIArgInfo::getDirect(ResType); } if (Size == 64) { llvm::Type *ResType = llvm::VectorType::get( llvm::Type::getInt32Ty(getVMContext()), 2); markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2); return ABIArgInfo::getDirect(ResType); } if (Size == 128) { llvm::Type *ResType = llvm::VectorType::get( llvm::Type::getInt32Ty(getVMContext()), 4); markAllocatedVFPs(VFPRegs, AllocatedVFP, 4, 4); return ABIArgInfo::getDirect(ResType); } return ABIArgInfo::getIndirect(0, /*ByVal=*/false); } // Update VFPRegs for legal vector types. if (const VectorType *VT = Ty->getAs()) { uint64_t Size = getContext().getTypeSize(VT); // Size of a legal vector should be power of 2 and above 64. markAllocatedVFPs(VFPRegs, AllocatedVFP, Size >= 128 ? 4 : 2, Size / 32); } // Update VFPRegs for floating point types. if (const BuiltinType *BT = Ty->getAs()) { if (BT->getKind() == BuiltinType::Half || BT->getKind() == BuiltinType::Float) markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, 1); if (BT->getKind() == BuiltinType::Double || BT->getKind() == BuiltinType::LongDouble) markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2); } if (!isAggregateTypeForABI(Ty)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); // Ignore empty records. if (isEmptyRecord(getContext(), Ty, true)) return ABIArgInfo::getIgnore(); if (getABIKind() == ARMABIInfo::AAPCS_VFP) { // Homogeneous Aggregates need to be expanded when we can fit the aggregate // into VFP registers. const Type *Base = 0; uint64_t Members = 0; if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { assert(Base && "Base class should be set for homogeneous aggregate"); // Base can be a floating-point or a vector. if (Base->isVectorType()) { // ElementSize is in number of floats. unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4; markAllocatedVFPs(VFPRegs, AllocatedVFP, ElementSize, Members * ElementSize); } else if (Base->isSpecificBuiltinType(BuiltinType::Float)) markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, Members); else { assert(Base->isSpecificBuiltinType(BuiltinType::Double) || Base->isSpecificBuiltinType(BuiltinType::LongDouble)); markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, Members * 2); } IsHA = true; return ABIArgInfo::getExpand(); } } // Support byval for ARM. // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at // most 8-byte. We realign the indirect argument if type alignment is bigger // than ABI alignment. uint64_t ABIAlign = 4; uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; if (getABIKind() == ARMABIInfo::AAPCS_VFP || getABIKind() == ARMABIInfo::AAPCS) ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { return ABIArgInfo::getIndirect(0, /*ByVal=*/true, /*Realign=*/TyAlign > ABIAlign); } // Otherwise, pass by coercing to a structure of the appropriate size. llvm::Type* ElemTy; unsigned SizeRegs; // FIXME: Try to match the types of the arguments more accurately where // we can. if (getContext().getTypeAlign(Ty) <= 32) { ElemTy = llvm::Type::getInt32Ty(getVMContext()); SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; } else { ElemTy = llvm::Type::getInt64Ty(getVMContext()); SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; } llvm::Type *STy = llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL); return ABIArgInfo::getDirect(STy); } static bool isIntegerLikeType(QualType Ty, ASTContext &Context, llvm::LLVMContext &VMContext) { // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure // is called integer-like if its size is less than or equal to one word, and // the offset of each of its addressable sub-fields is zero. uint64_t Size = Context.getTypeSize(Ty); // Check that the type fits in a word. if (Size > 32) return false; // FIXME: Handle vector types! if (Ty->isVectorType()) return false; // Float types are never treated as "integer like". if (Ty->isRealFloatingType()) return false; // If this is a builtin or pointer type then it is ok. if (Ty->getAs() || Ty->isPointerType()) return true; // Small complex integer types are "integer like". if (const ComplexType *CT = Ty->getAs()) return isIntegerLikeType(CT->getElementType(), Context, VMContext); // Single element and zero sized arrays should be allowed, by the definition // above, but they are not. // Otherwise, it must be a record type. const RecordType *RT = Ty->getAs(); if (!RT) return false; // Ignore records with flexible arrays. const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return false; // Check that all sub-fields are at offset 0, and are themselves "integer // like". const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); bool HadField = false; unsigned idx = 0; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i, ++idx) { const FieldDecl *FD = *i; // Bit-fields are not addressable, we only need to verify they are "integer // like". We still have to disallow a subsequent non-bitfield, for example: // struct { int : 0; int x } // is non-integer like according to gcc. if (FD->isBitField()) { if (!RD->isUnion()) HadField = true; if (!isIntegerLikeType(FD->getType(), Context, VMContext)) return false; continue; } // Check if this field is at offset 0. if (Layout.getFieldOffset(idx) != 0) return false; if (!isIntegerLikeType(FD->getType(), Context, VMContext)) return false; // Only allow at most one field in a structure. This doesn't match the // wording above, but follows gcc in situations with a field following an // empty structure. if (!RD->isUnion()) { if (HadField) return false; HadField = true; } } return true; } ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); // Large vector types should be returned via memory. if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) return ABIArgInfo::getIndirect(0); if (!isAggregateTypeForABI(RetTy)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } // Structures with either a non-trivial destructor or a non-trivial // copy constructor are always indirect. if (isRecordReturnIndirect(RetTy, getCXXABI())) return ABIArgInfo::getIndirect(0, /*ByVal=*/false); // Are we following APCS? if (getABIKind() == APCS) { if (isEmptyRecord(getContext(), RetTy, false)) return ABIArgInfo::getIgnore(); // Complex types are all returned as packed integers. // // FIXME: Consider using 2 x vector types if the back end handles them // correctly. if (RetTy->isAnyComplexType()) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), getContext().getTypeSize(RetTy))); // Integer like structures are returned in r0. if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { // Return in the smallest viable integer type. uint64_t Size = getContext().getTypeSize(RetTy); if (Size <= 8) return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); if (Size <= 16) return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); } // Otherwise return in memory. return ABIArgInfo::getIndirect(0); } // Otherwise this is an AAPCS variant. if (isEmptyRecord(getContext(), RetTy, true)) return ABIArgInfo::getIgnore(); // Check for homogeneous aggregates with AAPCS-VFP. if (getABIKind() == AAPCS_VFP) { const Type *Base = 0; if (isHomogeneousAggregate(RetTy, Base, getContext())) { assert(Base && "Base class should be set for homogeneous aggregate"); // Homogeneous Aggregates are returned directly. return ABIArgInfo::getDirect(); } } // Aggregates <= 4 bytes are returned in r0; other aggregates // are returned indirectly. uint64_t Size = getContext().getTypeSize(RetTy); if (Size <= 32) { // Return in the smallest viable integer type. if (Size <= 8) return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); if (Size <= 16) return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); } return ABIArgInfo::getIndirect(0); } /// isIllegalVector - check whether Ty is an illegal vector type. bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { if (const VectorType *VT = Ty->getAs()) { // Check whether VT is legal. unsigned NumElements = VT->getNumElements(); uint64_t Size = getContext().getTypeSize(VT); // NumElements should be power of 2. if ((NumElements & (NumElements - 1)) != 0) return true; // Size should be greater than 32 bits. return Size <= 32; } return false; } llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { llvm::Type *BP = CGF.Int8PtrTy; llvm::Type *BPP = CGF.Int8PtrPtrTy; CGBuilderTy &Builder = CGF.Builder; llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); if (isEmptyRecord(getContext(), Ty, true)) { // These are ignored for parameter passing purposes. llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); return Builder.CreateBitCast(Addr, PTy); } uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; bool IsIndirect = false; // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. if (getABIKind() == ARMABIInfo::AAPCS_VFP || getABIKind() == ARMABIInfo::AAPCS) TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); else TyAlign = 4; // Use indirect if size of the illegal vector is bigger than 16 bytes. if (isIllegalVectorType(Ty) && Size > 16) { IsIndirect = true; Size = 4; TyAlign = 4; } // Handle address alignment for ABI alignment > 4 bytes. if (TyAlign > 4) { assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); } uint64_t Offset = llvm::RoundUpToAlignment(Size, 4); llvm::Value *NextAddr = Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); Builder.CreateStore(NextAddr, VAListAddrAsBPP); if (IsIndirect) Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { // We can't directly cast ap.cur to pointer to a vector type, since ap.cur // may not be correctly aligned for the vector type. We create an aligned // temporary space and copy the content over from ap.cur to the temporary // space. This is necessary if the natural alignment of the type is greater // than the ABI alignment. llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); CharUnits CharSize = getContext().getTypeSizeInChars(Ty); llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), "var.align"); llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); Builder.CreateMemCpy(Dst, Src, llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), TyAlign, false); Addr = AlignedTemp; //The content is in aligned location. } llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); return AddrTyped; } namespace { class NaClARMABIInfo : public ABIInfo { public: NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {} virtual void computeInfo(CGFunctionInfo &FI) const; virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; private: PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. ARMABIInfo NInfo; // Used for everything else. }; class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo { public: NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {} }; } void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const { if (FI.getASTCallingConvention() == CC_PnaclCall) PInfo.computeInfo(FI); else static_cast(NInfo).computeInfo(FI); } llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { // Always use the native convention; calling pnacl-style varargs functions // is unsupported. return static_cast(NInfo).EmitVAArg(VAListAddr, Ty, CGF); } //===----------------------------------------------------------------------===// // AArch64 ABI Implementation //===----------------------------------------------------------------------===// namespace { class AArch64ABIInfo : public ABIInfo { public: AArch64ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} private: // The AArch64 PCS is explicit about return types and argument types being // handled identically, so we don't need to draw a distinction between // Argument and Return classification. ABIArgInfo classifyGenericType(QualType Ty, int &FreeIntRegs, int &FreeVFPRegs) const; ABIArgInfo tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, bool IsInt, llvm::Type *DirectTy = 0) const; virtual void computeInfo(CGFunctionInfo &FI) const; virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; }; class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { public: AArch64TargetCodeGenInfo(CodeGenTypes &CGT) :TargetCodeGenInfo(new AArch64ABIInfo(CGT)) {} const AArch64ABIInfo &getABIInfo() const { return static_cast(TargetCodeGenInfo::getABIInfo()); } int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { // 0-31 are x0-x30 and sp: 8 bytes each llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 31); // 64-95 are v0-v31: 16 bytes each llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); AssignToArrayRange(CGF.Builder, Address, Sixteen8, 64, 95); return false; } }; } void AArch64ABIInfo::computeInfo(CGFunctionInfo &FI) const { int FreeIntRegs = 8, FreeVFPRegs = 8; FI.getReturnInfo() = classifyGenericType(FI.getReturnType(), FreeIntRegs, FreeVFPRegs); FreeIntRegs = FreeVFPRegs = 8; for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) { it->info = classifyGenericType(it->type, FreeIntRegs, FreeVFPRegs); } } ABIArgInfo AArch64ABIInfo::tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, bool IsInt, llvm::Type *DirectTy) const { if (FreeRegs >= RegsNeeded) { FreeRegs -= RegsNeeded; return ABIArgInfo::getDirect(DirectTy); } llvm::Type *Padding = 0; // We need padding so that later arguments don't get filled in anyway. That // wouldn't happen if only ByVal arguments followed in the same category, but // a large structure will simply seem to be a pointer as far as LLVM is // concerned. if (FreeRegs > 0) { if (IsInt) Padding = llvm::Type::getInt64Ty(getVMContext()); else Padding = llvm::Type::getFloatTy(getVMContext()); // Either [N x i64] or [N x float]. Padding = llvm::ArrayType::get(Padding, FreeRegs); FreeRegs = 0; } return ABIArgInfo::getIndirect(getContext().getTypeAlign(Ty) / 8, /*IsByVal=*/ true, /*Realign=*/ false, Padding); } ABIArgInfo AArch64ABIInfo::classifyGenericType(QualType Ty, int &FreeIntRegs, int &FreeVFPRegs) const { // Can only occurs for return, but harmless otherwise. if (Ty->isVoidType()) return ABIArgInfo::getIgnore(); // Large vector types should be returned via memory. There's no such concept // in the ABI, but they'd be over 16 bytes anyway so no matter how they're // classified they'd go into memory (see B.3). if (Ty->isVectorType() && getContext().getTypeSize(Ty) > 128) { if (FreeIntRegs > 0) --FreeIntRegs; return ABIArgInfo::getIndirect(0, /*ByVal=*/false); } // All non-aggregate LLVM types have a concrete ABI representation so they can // be passed directly. After this block we're guaranteed to be in a // complicated case. if (!isAggregateTypeForABI(Ty)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); if (Ty->isFloatingType() || Ty->isVectorType()) return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ false); assert(getContext().getTypeSize(Ty) <= 128 && "unexpectedly large scalar type"); int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1; // If the type may need padding registers to ensure "alignment", we must be // careful when this is accounted for. Increasing the effective size covers // all cases. if (getContext().getTypeAlign(Ty) == 128) RegsNeeded += FreeIntRegs % 2 != 0; return tryUseRegs(Ty, FreeIntRegs, RegsNeeded, /*IsInt=*/ true); } if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { if (FreeIntRegs > 0 && RAA == CGCXXABI::RAA_Indirect) --FreeIntRegs; return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); } if (isEmptyRecord(getContext(), Ty, true)) { if (!getContext().getLangOpts().CPlusPlus) { // Empty structs outside C++ mode are a GNU extension, so no ABI can // possibly tell us what to do. It turns out (I believe) that GCC ignores // the object for parameter-passsing purposes. return ABIArgInfo::getIgnore(); } // The combination of C++98 9p5 (sizeof(struct) != 0) and the pseudocode // description of va_arg in the PCS require that an empty struct does // actually occupy space for parameter-passing. I'm hoping for a // clarification giving an explicit paragraph to point to in future. return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ true, llvm::Type::getInt8Ty(getVMContext())); } // Homogeneous vector aggregates get passed in registers or on the stack. const Type *Base = 0; uint64_t NumMembers = 0; if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)) { assert(Base && "Base class should be set for homogeneous aggregate"); // Homogeneous aggregates are passed and returned directly. return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ NumMembers, /*IsInt=*/ false); } uint64_t Size = getContext().getTypeSize(Ty); if (Size <= 128) { // Small structs can use the same direct type whether they're in registers // or on the stack. llvm::Type *BaseTy; unsigned NumBases; int SizeInRegs = (Size + 63) / 64; if (getContext().getTypeAlign(Ty) == 128) { BaseTy = llvm::Type::getIntNTy(getVMContext(), 128); NumBases = 1; // If the type may need padding registers to ensure "alignment", we must // be careful when this is accounted for. Increasing the effective size // covers all cases. SizeInRegs += FreeIntRegs % 2 != 0; } else { BaseTy = llvm::Type::getInt64Ty(getVMContext()); NumBases = SizeInRegs; } llvm::Type *DirectTy = llvm::ArrayType::get(BaseTy, NumBases); return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ SizeInRegs, /*IsInt=*/ true, DirectTy); } // If the aggregate is > 16 bytes, it's passed and returned indirectly. In // LLVM terms the return uses an "sret" pointer, but that's handled elsewhere. --FreeIntRegs; return ABIArgInfo::getIndirect(0, /* byVal = */ false); } llvm::Value *AArch64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { // The AArch64 va_list type and handling is specified in the Procedure Call // Standard, section B.4: // // struct { // void *__stack; // void *__gr_top; // void *__vr_top; // int __gr_offs; // int __vr_offs; // }; assert(!CGF.CGM.getDataLayout().isBigEndian() && "va_arg not implemented for big-endian AArch64"); int FreeIntRegs = 8, FreeVFPRegs = 8; Ty = CGF.getContext().getCanonicalType(Ty); ABIArgInfo AI = classifyGenericType(Ty, FreeIntRegs, FreeVFPRegs); llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); llvm::Value *reg_offs_p = 0, *reg_offs = 0; int reg_top_index; int RegSize; if (FreeIntRegs < 8) { assert(FreeVFPRegs == 8 && "Arguments never split between int & VFP regs"); // 3 is the field number of __gr_offs reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); reg_top_index = 1; // field number for __gr_top RegSize = 8 * (8 - FreeIntRegs); } else { assert(FreeVFPRegs < 8 && "Argument must go in VFP or int regs"); // 4 is the field number of __vr_offs. reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); reg_top_index = 2; // field number for __vr_top RegSize = 16 * (8 - FreeVFPRegs); } //======================================= // Find out where argument was passed //======================================= // If reg_offs >= 0 we're already using the stack for this type of // argument. We don't want to keep updating reg_offs (in case it overflows, // though anyone passing 2GB of arguments, each at most 16 bytes, deserves // whatever they get). llvm::Value *UsingStack = 0; UsingStack = CGF.Builder.CreateICmpSGE(reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); // Otherwise, at least some kind of argument could go in these registers, the // quesiton is whether this particular type is too big. CGF.EmitBlock(MaybeRegBlock); // Integer arguments may need to correct register alignment (for example a // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we // align __gr_offs to calculate the potential address. if (FreeIntRegs < 8 && AI.isDirect() && getContext().getTypeAlign(Ty) > 64) { int Align = getContext().getTypeAlign(Ty) / 8; reg_offs = CGF.Builder.CreateAdd(reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), "align_regoffs"); reg_offs = CGF.Builder.CreateAnd(reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), "aligned_regoffs"); } // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. llvm::Value *NewOffset = 0; NewOffset = CGF.Builder.CreateAdd(reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); CGF.Builder.CreateStore(NewOffset, reg_offs_p); // Now we're in a position to decide whether this argument really was in // registers or not. llvm::Value *InRegs = 0; InRegs = CGF.Builder.CreateICmpSLE(NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); //======================================= // Argument was in registers //======================================= // Now we emit the code for if the argument was originally passed in // registers. First start the appropriate block: CGF.EmitBlock(InRegBlock); llvm::Value *reg_top_p = 0, *reg_top = 0; reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); llvm::Value *RegAddr = 0; llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); if (!AI.isDirect()) { // If it's been passed indirectly (actually a struct), whatever we find from // stored registers or on the stack will actually be a struct **. MemTy = llvm::PointerType::getUnqual(MemTy); } const Type *Base = 0; uint64_t NumMembers; if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers) && NumMembers > 1) { // Homogeneous aggregates passed in registers will have their elements split // and stored 16-bytes apart regardless of size (they're notionally in qN, // qN+1, ...). We reload and store into a temporary local variable // contiguously. assert(AI.isDirect() && "Homogeneous aggregates should be passed directly"); llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy); for (unsigned i = 0; i < NumMembers; ++i) { llvm::Value *BaseOffset = llvm::ConstantInt::get(CGF.Int32Ty, 16 * i); llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); LoadAddr = CGF.Builder.CreateBitCast(LoadAddr, llvm::PointerType::getUnqual(BaseTy)); llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i); llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); CGF.Builder.CreateStore(Elem, StoreAddr); } RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); } else { // Otherwise the object is contiguous in memory RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); } CGF.EmitBranch(ContBlock); //======================================= // Argument was on the stack //======================================= CGF.EmitBlock(OnStackBlock); llvm::Value *stack_p = 0, *OnStackAddr = 0; stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); // Again, stack arguments may need realigmnent. In this case both integer and // floating-point ones might be affected. if (AI.isDirect() && getContext().getTypeAlign(Ty) > 64) { int Align = getContext().getTypeAlign(Ty) / 8; OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); OnStackAddr = CGF.Builder.CreateAdd(OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), "align_stack"); OnStackAddr = CGF.Builder.CreateAnd(OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), "align_stack"); OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); } uint64_t StackSize; if (AI.isDirect()) StackSize = getContext().getTypeSize(Ty) / 8; else StackSize = 8; // All stack slots are 8 bytes StackSize = llvm::RoundUpToAlignment(StackSize, 8); llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); llvm::Value *NewStack = CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack"); // Write the new value of __stack for the next call to va_arg CGF.Builder.CreateStore(NewStack, stack_p); OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); CGF.EmitBranch(ContBlock); //======================================= // Tidy up //======================================= CGF.EmitBlock(ContBlock); llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); ResAddr->addIncoming(RegAddr, InRegBlock); ResAddr->addIncoming(OnStackAddr, OnStackBlock); if (AI.isDirect()) return ResAddr; return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); } //===----------------------------------------------------------------------===// // NVPTX ABI Implementation //===----------------------------------------------------------------------===// namespace { class NVPTXABIInfo : public ABIInfo { public: NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType Ty) const; virtual void computeInfo(CGFunctionInfo &FI) const; virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CFG) const; }; class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { public: NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const; private: static void addKernelMetadata(llvm::Function *F); }; ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); // note: this is different from default ABI if (!RetTy->isScalarType()) return ABIArgInfo::getDirect(); // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) it->info = classifyArgumentType(it->type); // Always honor user-specified calling convention. if (FI.getCallingConvention() != llvm::CallingConv::C) return; FI.setEffectiveCallingConvention(getRuntimeCC()); } llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CFG) const { llvm_unreachable("NVPTX does not support varargs"); } void NVPTXTargetCodeGenInfo:: SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const{ const FunctionDecl *FD = dyn_cast(D); if (!FD) return; llvm::Function *F = cast(GV); // Perform special handling in OpenCL mode if (M.getLangOpts().OpenCL) { // Use OpenCL function attributes to check for kernel functions // By default, all functions are device functions if (FD->hasAttr()) { // OpenCL __kernel functions get kernel metadata addKernelMetadata(F); // And kernel functions are not subject to inlining F->addFnAttr(llvm::Attribute::NoInline); } } // Perform special handling in CUDA mode. if (M.getLangOpts().CUDA) { // CUDA __global__ functions get a kernel metadata entry. Since // __global__ functions cannot be called from the device, we do not // need to set the noinline attribute. if (FD->getAttr()) addKernelMetadata(F); } } void NVPTXTargetCodeGenInfo::addKernelMetadata(llvm::Function *F) { llvm::Module *M = F->getParent(); llvm::LLVMContext &Ctx = M->getContext(); // Get "nvvm.annotations" metadata node llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); // Create !{, metadata !"kernel", i32 1} node llvm::SmallVector MDVals; MDVals.push_back(F); MDVals.push_back(llvm::MDString::get(Ctx, "kernel")); MDVals.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1)); // Append metadata to nvvm.annotations MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); } } //===----------------------------------------------------------------------===// // SystemZ ABI Implementation //===----------------------------------------------------------------------===// namespace { class SystemZABIInfo : public ABIInfo { public: SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} bool isPromotableIntegerType(QualType Ty) const; bool isCompoundType(QualType Ty) const; bool isFPArgumentType(QualType Ty) const; ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType ArgTy) const; virtual void computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) it->info = classifyArgumentType(it->type); } virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; }; class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { public: SystemZTargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {} }; } bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); // Promotable integer types are required to be promoted by the ABI. if (Ty->isPromotableIntegerType()) return true; // 32-bit values must also be promoted. if (const BuiltinType *BT = Ty->getAs()) switch (BT->getKind()) { case BuiltinType::Int: case BuiltinType::UInt: return true; default: return false; } return false; } bool SystemZABIInfo::isCompoundType(QualType Ty) const { return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty); } bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { if (const BuiltinType *BT = Ty->getAs()) switch (BT->getKind()) { case BuiltinType::Float: case BuiltinType::Double: return true; default: return false; } if (const RecordType *RT = Ty->getAsStructureType()) { const RecordDecl *RD = RT->getDecl(); bool Found = false; // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) for (CXXRecordDecl::base_class_const_iterator I = CXXRD->bases_begin(), E = CXXRD->bases_end(); I != E; ++I) { QualType Base = I->getType(); // Empty bases don't affect things either way. if (isEmptyRecord(getContext(), Base, true)) continue; if (Found) return false; Found = isFPArgumentType(Base); if (!Found) return false; } // Check the fields. for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); I != E; ++I) { const FieldDecl *FD = *I; // Empty bitfields don't affect things either way. // Unlike isSingleElementStruct(), empty structure and array fields // do count. So do anonymous bitfields that aren't zero-sized. if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) return true; // Unlike isSingleElementStruct(), arrays do not count. // Nested isFPArgumentType structures still do though. if (Found) return false; Found = isFPArgumentType(FD->getType()); if (!Found) return false; } // Unlike isSingleElementStruct(), trailing padding is allowed. // An 8-byte aligned struct s { float f; } is passed as a double. return Found; } return false; } llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { // Assume that va_list type is correct; should be pointer to LLVM type: // struct { // i64 __gpr; // i64 __fpr; // i8 *__overflow_arg_area; // i8 *__reg_save_area; // }; // Every argument occupies 8 bytes and is passed by preference in either // GPRs or FPRs. Ty = CGF.getContext().getCanonicalType(Ty); ABIArgInfo AI = classifyArgumentType(Ty); bool InFPRs = isFPArgumentType(Ty); llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); bool IsIndirect = AI.isIndirect(); unsigned UnpaddedBitSize; if (IsIndirect) { APTy = llvm::PointerType::getUnqual(APTy); UnpaddedBitSize = 64; } else UnpaddedBitSize = getContext().getTypeSize(Ty); unsigned PaddedBitSize = 64; assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); unsigned PaddedSize = PaddedBitSize / 8; unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; if (InFPRs) { MaxRegs = 4; // Maximum of 4 FPR arguments RegCountField = 1; // __fpr RegSaveIndex = 16; // save offset for f0 RegPadding = 0; // floats are passed in the high bits of an FPR } else { MaxRegs = 5; // Maximum of 5 GPR arguments RegCountField = 0; // __gpr RegSaveIndex = 2; // save offset for r2 RegPadding = Padding; // values are passed in the low bits of a GPR } llvm::Value *RegCountPtr = CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); llvm::Type *IndexTy = RegCount->getType(); llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, "fits_in_regs"); llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); // Emit code to load the value if it was passed in registers. CGF.EmitBlock(InRegBlock); // Work out the address of an argument register. llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); llvm::Value *ScaledRegCount = CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); llvm::Value *RegBase = llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); llvm::Value *RegOffset = CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); llvm::Value *RegSaveAreaPtr = CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); llvm::Value *RawRegAddr = CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); llvm::Value *RegAddr = CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); // Update the register count llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); llvm::Value *NewRegCount = CGF.Builder.CreateAdd(RegCount, One, "reg_count"); CGF.Builder.CreateStore(NewRegCount, RegCountPtr); CGF.EmitBranch(ContBlock); // Emit code to load the value if it was passed in memory. CGF.EmitBlock(InMemBlock); // Work out the address of a stack argument. llvm::Value *OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); llvm::Value *OverflowArgArea = CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); llvm::Value *RawMemAddr = CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); llvm::Value *MemAddr = CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); // Update overflow_arg_area_ptr pointer llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); CGF.EmitBranch(ContBlock); // Return the appropriate result. CGF.EmitBlock(ContBlock); llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); ResAddr->addIncoming(RegAddr, InRegBlock); ResAddr->addIncoming(MemAddr, InMemBlock); if (IsIndirect) return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); return ResAddr; } bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( const llvm::Triple &Triple, const CodeGenOptions &Opts) { assert(Triple.getArch() == llvm::Triple::x86); switch (Opts.getStructReturnConvention()) { case CodeGenOptions::SRCK_Default: break; case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return return false; case CodeGenOptions::SRCK_InRegs: // -freg-struct-return return true; } if (Triple.isOSDarwin()) return true; switch (Triple.getOS()) { case llvm::Triple::Cygwin: case llvm::Triple::MinGW32: case llvm::Triple::AuroraUX: case llvm::Triple::DragonFly: case llvm::Triple::FreeBSD: case llvm::Triple::OpenBSD: case llvm::Triple::Bitrig: case llvm::Triple::Win32: return true; default: return false; } } ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) return ABIArgInfo::getIndirect(0); return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { // Handle the generic C++ ABI. if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); // Integers and enums are extended to full register width. if (isPromotableIntegerType(Ty)) return ABIArgInfo::getExtend(); // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. uint64_t Size = getContext().getTypeSize(Ty); if (Size != 8 && Size != 16 && Size != 32 && Size != 64) return ABIArgInfo::getIndirect(0); // Handle small structures. if (const RecordType *RT = Ty->getAs()) { // Structures with flexible arrays have variable length, so really // fail the size test above. const RecordDecl *RD = RT->getDecl(); if (RD->hasFlexibleArrayMember()) return ABIArgInfo::getIndirect(0); // The structure is passed as an unextended integer, a float, or a double. llvm::Type *PassTy; if (isFPArgumentType(Ty)) { assert(Size == 32 || Size == 64); if (Size == 32) PassTy = llvm::Type::getFloatTy(getVMContext()); else PassTy = llvm::Type::getDoubleTy(getVMContext()); } else PassTy = llvm::IntegerType::get(getVMContext(), Size); return ABIArgInfo::getDirect(PassTy); } // Non-structure compounds are passed indirectly. if (isCompoundType(Ty)) return ABIArgInfo::getIndirect(0); return ABIArgInfo::getDirect(0); } //===----------------------------------------------------------------------===// // MSP430 ABI Implementation //===----------------------------------------------------------------------===// namespace { class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { public: MSP430TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const; }; } void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { if (const FunctionDecl *FD = dyn_cast(D)) { if (const MSP430InterruptAttr *attr = FD->getAttr()) { // Handle 'interrupt' attribute: llvm::Function *F = cast(GV); // Step 1: Set ISR calling convention. F->setCallingConv(llvm::CallingConv::MSP430_INTR); // Step 2: Add attributes goodness. F->addFnAttr(llvm::Attribute::NoInline); // Step 3: Emit ISR vector alias. unsigned Num = attr->getNumber() / 2; new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage, "__isr_" + Twine(Num), GV, &M.getModule()); } } } //===----------------------------------------------------------------------===// // MIPS ABI Implementation. This works for both little-endian and // big-endian variants. //===----------------------------------------------------------------------===// namespace { class MipsABIInfo : public ABIInfo { bool IsO32; unsigned MinABIStackAlignInBytes, StackAlignInBytes; void CoerceToIntArgs(uint64_t TySize, SmallVectorImpl &ArgList) const; llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; public: MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), StackAlignInBytes(IsO32 ? 8 : 16) {} ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; virtual void computeInfo(CGFunctionInfo &FI) const; virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; }; class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { unsigned SizeOfUnwindException; public: MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), SizeOfUnwindException(IsO32 ? 24 : 32) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { return 29; } void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { const FunctionDecl *FD = dyn_cast(D); if (!FD) return; llvm::Function *Fn = cast(GV); if (FD->hasAttr()) { Fn->addFnAttr("mips16"); } else if (FD->hasAttr()) { Fn->addFnAttr("nomips16"); } } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const; unsigned getSizeOfUnwindException() const { return SizeOfUnwindException; } }; } void MipsABIInfo::CoerceToIntArgs(uint64_t TySize, SmallVectorImpl &ArgList) const { llvm::IntegerType *IntTy = llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); // Add (TySize / MinABIStackAlignInBytes) args of IntTy. for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) ArgList.push_back(IntTy); // If necessary, add one more integer type to ArgList. unsigned R = TySize % (MinABIStackAlignInBytes * 8); if (R) ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); } // In N32/64, an aligned double precision floating point field is passed in // a register. llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { SmallVector ArgList, IntArgList; if (IsO32) { CoerceToIntArgs(TySize, ArgList); return llvm::StructType::get(getVMContext(), ArgList); } if (Ty->isComplexType()) return CGT.ConvertType(Ty); const RecordType *RT = Ty->getAs(); // Unions/vectors are passed in integer registers. if (!RT || !RT->isStructureOrClassType()) { CoerceToIntArgs(TySize, ArgList); return llvm::StructType::get(getVMContext(), ArgList); } const RecordDecl *RD = RT->getDecl(); const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); assert(!(TySize % 8) && "Size of structure must be multiple of 8."); uint64_t LastOffset = 0; unsigned idx = 0; llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); // Iterate over fields in the struct/class and check if there are any aligned // double fields. for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i, ++idx) { const QualType Ty = i->getType(); const BuiltinType *BT = Ty->getAs(); if (!BT || BT->getKind() != BuiltinType::Double) continue; uint64_t Offset = Layout.getFieldOffset(idx); if (Offset % 64) // Ignore doubles that are not aligned. continue; // Add ((Offset - LastOffset) / 64) args of type i64. for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) ArgList.push_back(I64); // Add double type. ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); LastOffset = Offset + 64; } CoerceToIntArgs(TySize - LastOffset, IntArgList); ArgList.append(IntArgList.begin(), IntArgList.end()); return llvm::StructType::get(getVMContext(), ArgList); } llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, uint64_t Offset) const { if (OrigOffset + MinABIStackAlignInBytes > Offset) return 0; return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); } ABIArgInfo MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { uint64_t OrigOffset = Offset; uint64_t TySize = getContext().getTypeSize(Ty); uint64_t Align = getContext().getTypeAlign(Ty) / 8; Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), (uint64_t)StackAlignInBytes); unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { // Ignore empty aggregates. if (TySize == 0) return ABIArgInfo::getIgnore(); if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { Offset = OrigOffset + MinABIStackAlignInBytes; return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); } // If we have reached here, aggregates are passed directly by coercing to // another structure type. Padding is inserted if the offset of the // aggregate is unaligned. return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, getPaddingType(OrigOffset, CurrOffset)); } // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); if (Ty->isPromotableIntegerType()) return ABIArgInfo::getExtend(); return ABIArgInfo::getDirect( 0, 0, IsO32 ? 0 : getPaddingType(OrigOffset, CurrOffset)); } llvm::Type* MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { const RecordType *RT = RetTy->getAs(); SmallVector RTList; if (RT && RT->isStructureOrClassType()) { const RecordDecl *RD = RT->getDecl(); const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); unsigned FieldCnt = Layout.getFieldCount(); // N32/64 returns struct/classes in floating point registers if the // following conditions are met: // 1. The size of the struct/class is no larger than 128-bit. // 2. The struct/class has one or two fields all of which are floating // point types. // 3. The offset of the first field is zero (this follows what gcc does). // // Any other composite results are returned in integer registers. // if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); for (; b != e; ++b) { const BuiltinType *BT = b->getType()->getAs(); if (!BT || !BT->isFloatingPoint()) break; RTList.push_back(CGT.ConvertType(b->getType())); } if (b == e) return llvm::StructType::get(getVMContext(), RTList, RD->hasAttr()); RTList.clear(); } } CoerceToIntArgs(Size, RTList); return llvm::StructType::get(getVMContext(), RTList); } ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { uint64_t Size = getContext().getTypeSize(RetTy); if (RetTy->isVoidType() || Size == 0) return ABIArgInfo::getIgnore(); if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { if (isRecordReturnIndirect(RetTy, getCXXABI())) return ABIArgInfo::getIndirect(0); if (Size <= 128) { if (RetTy->isAnyComplexType()) return ABIArgInfo::getDirect(); // O32 returns integer vectors in registers. if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation()) return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); if (!IsO32) return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); } return ABIArgInfo::getIndirect(0); } // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { ABIArgInfo &RetInfo = FI.getReturnInfo(); RetInfo = classifyReturnType(FI.getReturnType()); // Check if a pointer to an aggregate is passed as a hidden argument. uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) it->info = classifyArgumentType(it->type, Offset); } llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { llvm::Type *BP = CGF.Int8PtrTy; llvm::Type *BPP = CGF.Int8PtrPtrTy; CGBuilderTy &Builder = CGF.Builder; llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8; llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); llvm::Value *AddrTyped; unsigned PtrWidth = getTarget().getPointerWidth(0); llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; if (TypeAlign > MinABIStackAlignInBytes) { llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); } else AddrTyped = Builder.CreateBitCast(Addr, PTy); llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); uint64_t Offset = llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign); llvm::Value *NextAddr = Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), "ap.next"); Builder.CreateStore(NextAddr, VAListAddrAsBPP); return AddrTyped; } bool MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { // This information comes from gcc's implementation, which seems to // as canonical as it gets. // Everything on MIPS is 4 bytes. Double-precision FP registers // are aliased to pairs of single-precision FP registers. llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); // 0-31 are the general purpose registers, $0 - $31. // 32-63 are the floating-point registers, $f0 - $f31. // 64 and 65 are the multiply/divide registers, $hi and $lo. // 66 is the (notional, I think) register for signal-handler return. AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); // 67-74 are the floating-point status registers, $fcc0 - $fcc7. // They are one bit wide and ignored here. // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. // (coprocessor 1 is the FP unit) // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. // 176-181 are the DSP accumulator registers. AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); return false; } //===----------------------------------------------------------------------===// // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. // Currently subclassed only to implement custom OpenCL C function attribute // handling. //===----------------------------------------------------------------------===// namespace { class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { public: TCETargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const; }; void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { const FunctionDecl *FD = dyn_cast(D); if (!FD) return; llvm::Function *F = cast(GV); if (M.getLangOpts().OpenCL) { if (FD->hasAttr()) { // OpenCL C Kernel functions are not subject to inlining F->addFnAttr(llvm::Attribute::NoInline); if (FD->hasAttr()) { // Convert the reqd_work_group_size() attributes to metadata. llvm::LLVMContext &Context = F->getContext(); llvm::NamedMDNode *OpenCLMetadata = M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info"); SmallVector Operands; Operands.push_back(F); Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, llvm::APInt(32, FD->getAttr()->getXDim()))); Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, llvm::APInt(32, FD->getAttr()->getYDim()))); Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, llvm::APInt(32, FD->getAttr()->getZDim()))); // Add a boolean constant operand for "required" (true) or "hint" (false) // for implementing the work_group_size_hint attr later. Currently // always true as the hint is not yet implemented. Operands.push_back(llvm::ConstantInt::getTrue(Context)); OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); } } } } } //===----------------------------------------------------------------------===// // Hexagon ABI Implementation //===----------------------------------------------------------------------===// namespace { class HexagonABIInfo : public ABIInfo { public: HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} private: ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType RetTy) const; virtual void computeInfo(CGFunctionInfo &FI) const; virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; }; class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { public: HexagonTargetCodeGenInfo(CodeGenTypes &CGT) :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 29; } }; } void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) it->info = classifyArgumentType(it->type); } ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { if (!isAggregateTypeForABI(Ty)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } // Ignore empty records. if (isEmptyRecord(getContext(), Ty, true)) return ABIArgInfo::getIgnore(); if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); uint64_t Size = getContext().getTypeSize(Ty); if (Size > 64) return ABIArgInfo::getIndirect(0, /*ByVal=*/true); // Pass in the smallest viable integer type. else if (Size > 32) return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); else if (Size > 16) return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); else if (Size > 8) return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); else return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); } ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); // Large vector types should be returned via memory. if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) return ABIArgInfo::getIndirect(0); if (!isAggregateTypeForABI(RetTy)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); } // Structures with either a non-trivial destructor or a non-trivial // copy constructor are always indirect. if (isRecordReturnIndirect(RetTy, getCXXABI())) return ABIArgInfo::getIndirect(0, /*ByVal=*/false); if (isEmptyRecord(getContext(), RetTy, true)) return ABIArgInfo::getIgnore(); // Aggregates <= 8 bytes are returned in r0; other aggregates // are returned indirectly. uint64_t Size = getContext().getTypeSize(RetTy); if (Size <= 64) { // Return in the smallest viable integer type. if (Size <= 8) return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); if (Size <= 16) return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); if (Size <= 32) return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); } return ABIArgInfo::getIndirect(0, /*ByVal=*/true); } llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { // FIXME: Need to handle alignment llvm::Type *BPP = CGF.Int8PtrPtrTy; CGBuilderTy &Builder = CGF.Builder; llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); uint64_t Offset = llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); llvm::Value *NextAddr = Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); Builder.CreateStore(NextAddr, VAListAddrAsBPP); return AddrTyped; } //===----------------------------------------------------------------------===// // SPARC v9 ABI Implementation. // Based on the SPARC Compliance Definition version 2.4.1. // // Function arguments a mapped to a nominal "parameter array" and promoted to // registers depending on their type. Each argument occupies 8 or 16 bytes in // the array, structs larger than 16 bytes are passed indirectly. // // One case requires special care: // // struct mixed { // int i; // float f; // }; // // When a struct mixed is passed by value, it only occupies 8 bytes in the // parameter array, but the int is passed in an integer register, and the float // is passed in a floating point register. This is represented as two arguments // with the LLVM IR inreg attribute: // // declare void f(i32 inreg %i, float inreg %f) // // The code generator will only allocate 4 bytes from the parameter array for // the inreg arguments. All other arguments are allocated a multiple of 8 // bytes. // namespace { class SparcV9ABIInfo : public ABIInfo { public: SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} private: ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; virtual void computeInfo(CGFunctionInfo &FI) const; virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; // Coercion type builder for structs passed in registers. The coercion type // serves two purposes: // // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' // in registers. // 2. Expose aligned floating point elements as first-level elements, so the // code generator knows to pass them in floating point registers. // // We also compute the InReg flag which indicates that the struct contains // aligned 32-bit floats. // struct CoerceBuilder { llvm::LLVMContext &Context; const llvm::DataLayout &DL; SmallVector Elems; uint64_t Size; bool InReg; CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) : Context(c), DL(dl), Size(0), InReg(false) {} // Pad Elems with integers until Size is ToSize. void pad(uint64_t ToSize) { assert(ToSize >= Size && "Cannot remove elements"); if (ToSize == Size) return; // Finish the current 64-bit word. uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); if (Aligned > Size && Aligned <= ToSize) { Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); Size = Aligned; } // Add whole 64-bit words. while (Size + 64 <= ToSize) { Elems.push_back(llvm::Type::getInt64Ty(Context)); Size += 64; } // Final in-word padding. if (Size < ToSize) { Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); Size = ToSize; } } // Add a floating point element at Offset. void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { // Unaligned floats are treated as integers. if (Offset % Bits) return; // The InReg flag is only required if there are any floats < 64 bits. if (Bits < 64) InReg = true; pad(Offset); Elems.push_back(Ty); Size = Offset + Bits; } // Add a struct type to the coercion type, starting at Offset (in bits). void addStruct(uint64_t Offset, llvm::StructType *StrTy) { const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { llvm::Type *ElemTy = StrTy->getElementType(i); uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); switch (ElemTy->getTypeID()) { case llvm::Type::StructTyID: addStruct(ElemOffset, cast(ElemTy)); break; case llvm::Type::FloatTyID: addFloat(ElemOffset, ElemTy, 32); break; case llvm::Type::DoubleTyID: addFloat(ElemOffset, ElemTy, 64); break; case llvm::Type::FP128TyID: addFloat(ElemOffset, ElemTy, 128); break; case llvm::Type::PointerTyID: if (ElemOffset % 64 == 0) { pad(ElemOffset); Elems.push_back(ElemTy); Size += 64; } break; default: break; } } } // Check if Ty is a usable substitute for the coercion type. bool isUsableType(llvm::StructType *Ty) const { if (Ty->getNumElements() != Elems.size()) return false; for (unsigned i = 0, e = Elems.size(); i != e; ++i) if (Elems[i] != Ty->getElementType(i)) return false; return true; } // Get the coercion type as a literal struct type. llvm::Type *getType() const { if (Elems.size() == 1) return Elems.front(); else return llvm::StructType::get(Context, Elems); } }; }; } // end anonymous namespace ABIArgInfo SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { if (Ty->isVoidType()) return ABIArgInfo::getIgnore(); uint64_t Size = getContext().getTypeSize(Ty); // Anything too big to fit in registers is passed with an explicit indirect // pointer / sret pointer. if (Size > SizeLimit) return ABIArgInfo::getIndirect(0, /*ByVal=*/false); // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); // Integer types smaller than a register are extended. if (Size < 64 && Ty->isIntegerType()) return ABIArgInfo::getExtend(); // Other non-aggregates go in registers. if (!isAggregateTypeForABI(Ty)) return ABIArgInfo::getDirect(); // This is a small aggregate type that should be passed in registers. // Build a coercion type from the LLVM struct type. llvm::StructType *StrTy = dyn_cast(CGT.ConvertType(Ty)); if (!StrTy) return ABIArgInfo::getDirect(); CoerceBuilder CB(getVMContext(), getDataLayout()); CB.addStruct(0, StrTy); CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); // Try to use the original type for coercion. llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); if (CB.InReg) return ABIArgInfo::getDirectInReg(CoerceTy); else return ABIArgInfo::getDirect(CoerceTy); } llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { ABIArgInfo AI = classifyType(Ty, 16 * 8); llvm::Type *ArgTy = CGT.ConvertType(Ty); if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) AI.setCoerceToType(ArgTy); llvm::Type *BPP = CGF.Int8PtrPtrTy; CGBuilderTy &Builder = CGF.Builder; llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); llvm::Value *ArgAddr; unsigned Stride; switch (AI.getKind()) { case ABIArgInfo::Expand: llvm_unreachable("Unsupported ABI kind for va_arg"); case ABIArgInfo::Extend: Stride = 8; ArgAddr = Builder .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), "extend"); break; case ABIArgInfo::Direct: Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); ArgAddr = Addr; break; case ABIArgInfo::Indirect: Stride = 8; ArgAddr = Builder.CreateBitCast(Addr, llvm::PointerType::getUnqual(ArgPtrTy), "indirect"); ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); break; case ABIArgInfo::Ignore: return llvm::UndefValue::get(ArgPtrTy); } // Update VAList. Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); Builder.CreateStore(Addr, VAListAddrAsBPP); return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); } void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it) it->info = classifyType(it->type, 16 * 8); } namespace { class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { public: SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Xcore ABI Implementation //===----------------------------------------------------------------------===// namespace { class XCoreABIInfo : public DefaultABIInfo { public: XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const; }; class XcoreTargetCodeGenInfo : public TargetCodeGenInfo { public: XcoreTargetCodeGenInfo(CodeGenTypes &CGT) :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} }; } // End anonymous namespace. llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, CodeGenFunction &CGF) const { CGBuilderTy &Builder = CGF.Builder; // Get the VAList. llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, CGF.Int8PtrPtrTy); llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); // Handle the argument. ABIArgInfo AI = classifyArgumentType(Ty); llvm::Type *ArgTy = CGT.ConvertType(Ty); if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) AI.setCoerceToType(ArgTy); llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); llvm::Value *Val; uint64_t ArgSize = 0; switch (AI.getKind()) { case ABIArgInfo::Expand: llvm_unreachable("Unsupported ABI kind for va_arg"); case ABIArgInfo::Ignore: Val = llvm::UndefValue::get(ArgPtrTy); ArgSize = 0; break; case ABIArgInfo::Extend: case ABIArgInfo::Direct: Val = Builder.CreatePointerCast(AP, ArgPtrTy); ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); if (ArgSize < 4) ArgSize = 4; break; case ABIArgInfo::Indirect: llvm::Value *ArgAddr; ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); ArgAddr = Builder.CreateLoad(ArgAddr); Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); ArgSize = 4; break; } // Increment the VAList. if (ArgSize) { llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); Builder.CreateStore(APN, VAListAddrAsBPP); } return Val; } //===----------------------------------------------------------------------===// // Driver code //===----------------------------------------------------------------------===// const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { if (TheTargetCodeGenInfo) return *TheTargetCodeGenInfo; const llvm::Triple &Triple = getTarget().getTriple(); switch (Triple.getArch()) { default: return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); case llvm::Triple::le32: return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); case llvm::Triple::mips: case llvm::Triple::mipsel: return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); case llvm::Triple::mips64: case llvm::Triple::mips64el: return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); case llvm::Triple::aarch64: return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types)); case llvm::Triple::arm: case llvm::Triple::thumb: { ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; if (strcmp(getTarget().getABI(), "apcs-gnu") == 0) Kind = ARMABIInfo::APCS; else if (CodeGenOpts.FloatABI == "hard" || (CodeGenOpts.FloatABI != "soft" && Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) Kind = ARMABIInfo::AAPCS_VFP; switch (Triple.getOS()) { case llvm::Triple::NaCl: return *(TheTargetCodeGenInfo = new NaClARMTargetCodeGenInfo(Types, Kind)); default: return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind)); } } case llvm::Triple::ppc: return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); case llvm::Triple::ppc64: if (Triple.isOSBinFormatELF()) return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types)); else return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); case llvm::Triple::ppc64le: assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types)); case llvm::Triple::nvptx: case llvm::Triple::nvptx64: return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); case llvm::Triple::msp430: return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); case llvm::Triple::systemz: return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types)); case llvm::Triple::tce: return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); case llvm::Triple::x86: { bool IsDarwinVectorABI = Triple.isOSDarwin(); bool IsSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); bool IsWin32FloatStructABI = (Triple.getOS() == llvm::Triple::Win32); if (Triple.getOS() == llvm::Triple::Win32) { return *(TheTargetCodeGenInfo = new WinX86_32TargetCodeGenInfo(Types, IsDarwinVectorABI, IsSmallStructInRegABI, IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); } else { return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo(Types, IsDarwinVectorABI, IsSmallStructInRegABI, IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); } } case llvm::Triple::x86_64: { bool HasAVX = strcmp(getTarget().getABI(), "avx") == 0; switch (Triple.getOS()) { case llvm::Triple::Win32: case llvm::Triple::MinGW32: case llvm::Triple::Cygwin: return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types)); case llvm::Triple::NaCl: return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, HasAVX)); default: return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types, HasAVX)); } } case llvm::Triple::hexagon: return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); case llvm::Triple::sparcv9: return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); case llvm::Triple::xcore: return *(TheTargetCodeGenInfo = new XcoreTargetCodeGenInfo(Types)); } }