//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for statements. // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTDiagnostic.h" #include "clang/AST/CharUnits.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/EvaluatedExprVisitor.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtObjC.h" #include "clang/AST/TypeLoc.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" using namespace clang; using namespace sema; StmtResult Sema::ActOnExprStmt(ExprResult FE) { if (FE.isInvalid()) return StmtError(); FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), /*DiscardedValue*/ true); if (FE.isInvalid()) return StmtError(); // C99 6.8.3p2: The expression in an expression statement is evaluated as a // void expression for its side effects. Conversion to void allows any // operand, even incomplete types. // Same thing in for stmt first clause (when expr) and third clause. return Owned(static_cast(FE.take())); } StmtResult Sema::ActOnExprStmtError() { DiscardCleanupsInEvaluationContext(); return StmtError(); } StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc, bool HasLeadingEmptyMacro) { return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro)); } StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc, SourceLocation EndLoc) { DeclGroupRef DG = dg.get(); // If we have an invalid decl, just return an error. if (DG.isNull()) return StmtError(); return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc)); } void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) { DeclGroupRef DG = dg.get(); // If we don't have a declaration, or we have an invalid declaration, // just return. if (DG.isNull() || !DG.isSingleDecl()) return; Decl *decl = DG.getSingleDecl(); if (!decl || decl->isInvalidDecl()) return; // Only variable declarations are permitted. VarDecl *var = dyn_cast(decl); if (!var) { Diag(decl->getLocation(), diag::err_non_variable_decl_in_for); decl->setInvalidDecl(); return; } // foreach variables are never actually initialized in the way that // the parser came up with. var->setInit(0); // In ARC, we don't need to retain the iteration variable of a fast // enumeration loop. Rather than actually trying to catch that // during declaration processing, we remove the consequences here. if (getLangOpts().ObjCAutoRefCount) { QualType type = var->getType(); // Only do this if we inferred the lifetime. Inferred lifetime // will show up as a local qualifier because explicit lifetime // should have shown up as an AttributedType instead. if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) { // Add 'const' and mark the variable as pseudo-strong. var->setType(type.withConst()); var->setARCPseudoStrong(true); } } } /// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='. /// /// Adding a cast to void (or other expression wrappers) will prevent the /// warning from firing. static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) { SourceLocation Loc; bool IsNotEqual, CanAssign; if (const BinaryOperator *Op = dyn_cast(E)) { if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE) return false; Loc = Op->getOperatorLoc(); IsNotEqual = Op->getOpcode() == BO_NE; CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue(); } else if (const CXXOperatorCallExpr *Op = dyn_cast(E)) { if (Op->getOperator() != OO_EqualEqual && Op->getOperator() != OO_ExclaimEqual) return false; Loc = Op->getOperatorLoc(); IsNotEqual = Op->getOperator() == OO_ExclaimEqual; CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue(); } else { // Not a typo-prone comparison. return false; } // Suppress warnings when the operator, suspicious as it may be, comes from // a macro expansion. if (S.SourceMgr.isMacroBodyExpansion(Loc)) return false; S.Diag(Loc, diag::warn_unused_comparison) << (unsigned)IsNotEqual << E->getSourceRange(); // If the LHS is a plausible entity to assign to, provide a fixit hint to // correct common typos. if (CanAssign) { if (IsNotEqual) S.Diag(Loc, diag::note_inequality_comparison_to_or_assign) << FixItHint::CreateReplacement(Loc, "|="); else S.Diag(Loc, diag::note_equality_comparison_to_assign) << FixItHint::CreateReplacement(Loc, "="); } return true; } void Sema::DiagnoseUnusedExprResult(const Stmt *S) { if (const LabelStmt *Label = dyn_cast_or_null(S)) return DiagnoseUnusedExprResult(Label->getSubStmt()); const Expr *E = dyn_cast_or_null(S); if (!E) return; SourceLocation ExprLoc = E->IgnoreParens()->getExprLoc(); // In most cases, we don't want to warn if the expression is written in a // macro body, or if the macro comes from a system header. If the offending // expression is a call to a function with the warn_unused_result attribute, // we warn no matter the location. Because of the order in which the various // checks need to happen, we factor out the macro-related test here. bool ShouldSuppress = SourceMgr.isMacroBodyExpansion(ExprLoc) || SourceMgr.isInSystemMacro(ExprLoc); const Expr *WarnExpr; SourceLocation Loc; SourceRange R1, R2; if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context)) return; // If this is a GNU statement expression expanded from a macro, it is probably // unused because it is a function-like macro that can be used as either an // expression or statement. Don't warn, because it is almost certainly a // false positive. if (isa(E) && Loc.isMacroID()) return; // Okay, we have an unused result. Depending on what the base expression is, // we might want to make a more specific diagnostic. Check for one of these // cases now. unsigned DiagID = diag::warn_unused_expr; if (const ExprWithCleanups *Temps = dyn_cast(E)) E = Temps->getSubExpr(); if (const CXXBindTemporaryExpr *TempExpr = dyn_cast(E)) E = TempExpr->getSubExpr(); if (DiagnoseUnusedComparison(*this, E)) return; E = WarnExpr; if (const CallExpr *CE = dyn_cast(E)) { if (E->getType()->isVoidType()) return; // If the callee has attribute pure, const, or warn_unused_result, warn with // a more specific message to make it clear what is happening. If the call // is written in a macro body, only warn if it has the warn_unused_result // attribute. if (const Decl *FD = CE->getCalleeDecl()) { if (FD->getAttr()) { Diag(Loc, diag::warn_unused_result) << R1 << R2; return; } if (ShouldSuppress) return; if (FD->getAttr()) { Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure"; return; } if (FD->getAttr()) { Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const"; return; } } } else if (ShouldSuppress) return; if (const ObjCMessageExpr *ME = dyn_cast(E)) { if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) { Diag(Loc, diag::err_arc_unused_init_message) << R1; return; } const ObjCMethodDecl *MD = ME->getMethodDecl(); if (MD && MD->getAttr()) { Diag(Loc, diag::warn_unused_result) << R1 << R2; return; } } else if (const PseudoObjectExpr *POE = dyn_cast(E)) { const Expr *Source = POE->getSyntacticForm(); if (isa(Source)) DiagID = diag::warn_unused_container_subscript_expr; else DiagID = diag::warn_unused_property_expr; } else if (const CXXFunctionalCastExpr *FC = dyn_cast(E)) { if (isa(FC->getSubExpr()) || isa(FC->getSubExpr())) return; } // Diagnose "(void*) blah" as a typo for "(void) blah". else if (const CStyleCastExpr *CE = dyn_cast(E)) { TypeSourceInfo *TI = CE->getTypeInfoAsWritten(); QualType T = TI->getType(); // We really do want to use the non-canonical type here. if (T == Context.VoidPtrTy) { PointerTypeLoc TL = TI->getTypeLoc().castAs(); Diag(Loc, diag::warn_unused_voidptr) << FixItHint::CreateRemoval(TL.getStarLoc()); return; } } if (E->isGLValue() && E->getType().isVolatileQualified()) { Diag(Loc, diag::warn_unused_volatile) << R1 << R2; return; } DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2); } void Sema::ActOnStartOfCompoundStmt() { PushCompoundScope(); } void Sema::ActOnFinishOfCompoundStmt() { PopCompoundScope(); } sema::CompoundScopeInfo &Sema::getCurCompoundScope() const { return getCurFunction()->CompoundScopes.back(); } StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R, ArrayRef Elts, bool isStmtExpr) { const unsigned NumElts = Elts.size(); // If we're in C89 mode, check that we don't have any decls after stmts. If // so, emit an extension diagnostic. if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) { // Note that __extension__ can be around a decl. unsigned i = 0; // Skip over all declarations. for (; i != NumElts && isa(Elts[i]); ++i) /*empty*/; // We found the end of the list or a statement. Scan for another declstmt. for (; i != NumElts && !isa(Elts[i]); ++i) /*empty*/; if (i != NumElts) { Decl *D = *cast(Elts[i])->decl_begin(); Diag(D->getLocation(), diag::ext_mixed_decls_code); } } // Warn about unused expressions in statements. for (unsigned i = 0; i != NumElts; ++i) { // Ignore statements that are last in a statement expression. if (isStmtExpr && i == NumElts - 1) continue; DiagnoseUnusedExprResult(Elts[i]); } // Check for suspicious empty body (null statement) in `for' and `while' // statements. Don't do anything for template instantiations, this just adds // noise. if (NumElts != 0 && !CurrentInstantiationScope && getCurCompoundScope().HasEmptyLoopBodies) { for (unsigned i = 0; i != NumElts - 1; ++i) DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]); } return Owned(new (Context) CompoundStmt(Context, Elts, L, R)); } StmtResult Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal, SourceLocation DotDotDotLoc, Expr *RHSVal, SourceLocation ColonLoc) { assert((LHSVal != 0) && "missing expression in case statement"); if (getCurFunction()->SwitchStack.empty()) { Diag(CaseLoc, diag::err_case_not_in_switch); return StmtError(); } if (!getLangOpts().CPlusPlus11) { // C99 6.8.4.2p3: The expression shall be an integer constant. // However, GCC allows any evaluatable integer expression. if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) { LHSVal = VerifyIntegerConstantExpression(LHSVal).take(); if (!LHSVal) return StmtError(); } // GCC extension: The expression shall be an integer constant. if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) { RHSVal = VerifyIntegerConstantExpression(RHSVal).take(); // Recover from an error by just forgetting about it. } } LHSVal = ActOnFinishFullExpr(LHSVal, LHSVal->getExprLoc(), false, getLangOpts().CPlusPlus11).take(); if (RHSVal) RHSVal = ActOnFinishFullExpr(RHSVal, RHSVal->getExprLoc(), false, getLangOpts().CPlusPlus11).take(); CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc, ColonLoc); getCurFunction()->SwitchStack.back()->addSwitchCase(CS); return Owned(CS); } /// ActOnCaseStmtBody - This installs a statement as the body of a case. void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) { DiagnoseUnusedExprResult(SubStmt); CaseStmt *CS = static_cast(caseStmt); CS->setSubStmt(SubStmt); } StmtResult Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, Stmt *SubStmt, Scope *CurScope) { DiagnoseUnusedExprResult(SubStmt); if (getCurFunction()->SwitchStack.empty()) { Diag(DefaultLoc, diag::err_default_not_in_switch); return Owned(SubStmt); } DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt); getCurFunction()->SwitchStack.back()->addSwitchCase(DS); return Owned(DS); } StmtResult Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, SourceLocation ColonLoc, Stmt *SubStmt) { // If the label was multiply defined, reject it now. if (TheDecl->getStmt()) { Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName(); Diag(TheDecl->getLocation(), diag::note_previous_definition); return Owned(SubStmt); } // Otherwise, things are good. Fill in the declaration and return it. LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt); TheDecl->setStmt(LS); if (!TheDecl->isGnuLocal()) { TheDecl->setLocStart(IdentLoc); TheDecl->setLocation(IdentLoc); } return Owned(LS); } StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc, ArrayRef Attrs, Stmt *SubStmt) { // Fill in the declaration and return it. AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt); return Owned(LS); } StmtResult Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar, Stmt *thenStmt, SourceLocation ElseLoc, Stmt *elseStmt) { // If the condition was invalid, discard the if statement. We could recover // better by replacing it with a valid expr, but don't do that yet. if (!CondVal.get() && !CondVar) { getCurFunction()->setHasDroppedStmt(); return StmtError(); } ExprResult CondResult(CondVal.release()); VarDecl *ConditionVar = 0; if (CondVar) { ConditionVar = cast(CondVar); CondResult = CheckConditionVariable(ConditionVar, IfLoc, true); if (CondResult.isInvalid()) return StmtError(); } Expr *ConditionExpr = CondResult.takeAs(); if (!ConditionExpr) return StmtError(); DiagnoseUnusedExprResult(thenStmt); if (!elseStmt) { DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt, diag::warn_empty_if_body); } DiagnoseUnusedExprResult(elseStmt); return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr, thenStmt, ElseLoc, elseStmt)); } /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have /// the specified width and sign. If an overflow occurs, detect it and emit /// the specified diagnostic. void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val, unsigned NewWidth, bool NewSign, SourceLocation Loc, unsigned DiagID) { // Perform a conversion to the promoted condition type if needed. if (NewWidth > Val.getBitWidth()) { // If this is an extension, just do it. Val = Val.extend(NewWidth); Val.setIsSigned(NewSign); // If the input was signed and negative and the output is // unsigned, don't bother to warn: this is implementation-defined // behavior. // FIXME: Introduce a second, default-ignored warning for this case? } else if (NewWidth < Val.getBitWidth()) { // If this is a truncation, check for overflow. llvm::APSInt ConvVal(Val); ConvVal = ConvVal.trunc(NewWidth); ConvVal.setIsSigned(NewSign); ConvVal = ConvVal.extend(Val.getBitWidth()); ConvVal.setIsSigned(Val.isSigned()); if (ConvVal != Val) Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10); // Regardless of whether a diagnostic was emitted, really do the // truncation. Val = Val.trunc(NewWidth); Val.setIsSigned(NewSign); } else if (NewSign != Val.isSigned()) { // Convert the sign to match the sign of the condition. This can cause // overflow as well: unsigned(INTMIN) // We don't diagnose this overflow, because it is implementation-defined // behavior. // FIXME: Introduce a second, default-ignored warning for this case? llvm::APSInt OldVal(Val); Val.setIsSigned(NewSign); } } namespace { struct CaseCompareFunctor { bool operator()(const std::pair &LHS, const llvm::APSInt &RHS) { return LHS.first < RHS; } bool operator()(const std::pair &LHS, const std::pair &RHS) { return LHS.first < RHS.first; } bool operator()(const llvm::APSInt &LHS, const std::pair &RHS) { return LHS < RHS.first; } }; } /// CmpCaseVals - Comparison predicate for sorting case values. /// static bool CmpCaseVals(const std::pair& lhs, const std::pair& rhs) { if (lhs.first < rhs.first) return true; if (lhs.first == rhs.first && lhs.second->getCaseLoc().getRawEncoding() < rhs.second->getCaseLoc().getRawEncoding()) return true; return false; } /// CmpEnumVals - Comparison predicate for sorting enumeration values. /// static bool CmpEnumVals(const std::pair& lhs, const std::pair& rhs) { return lhs.first < rhs.first; } /// EqEnumVals - Comparison preficate for uniqing enumeration values. /// static bool EqEnumVals(const std::pair& lhs, const std::pair& rhs) { return lhs.first == rhs.first; } /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of /// potentially integral-promoted expression @p expr. static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) { if (ExprWithCleanups *cleanups = dyn_cast(expr)) expr = cleanups->getSubExpr(); while (ImplicitCastExpr *impcast = dyn_cast(expr)) { if (impcast->getCastKind() != CK_IntegralCast) break; expr = impcast->getSubExpr(); } return expr->getType(); } StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond, Decl *CondVar) { ExprResult CondResult; VarDecl *ConditionVar = 0; if (CondVar) { ConditionVar = cast(CondVar); CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false); if (CondResult.isInvalid()) return StmtError(); Cond = CondResult.release(); } if (!Cond) return StmtError(); class SwitchConvertDiagnoser : public ICEConvertDiagnoser { Expr *Cond; public: SwitchConvertDiagnoser(Expr *Cond) : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true), Cond(Cond) {} virtual SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, QualType T) { return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T; } virtual SemaDiagnosticBuilder diagnoseIncomplete( Sema &S, SourceLocation Loc, QualType T) { return S.Diag(Loc, diag::err_switch_incomplete_class_type) << T << Cond->getSourceRange(); } virtual SemaDiagnosticBuilder diagnoseExplicitConv( Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) { return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy; } virtual SemaDiagnosticBuilder noteExplicitConv( Sema &S, CXXConversionDecl *Conv, QualType ConvTy) { return S.Diag(Conv->getLocation(), diag::note_switch_conversion) << ConvTy->isEnumeralType() << ConvTy; } virtual SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) { return S.Diag(Loc, diag::err_switch_multiple_conversions) << T; } virtual SemaDiagnosticBuilder noteAmbiguous( Sema &S, CXXConversionDecl *Conv, QualType ConvTy) { return S.Diag(Conv->getLocation(), diag::note_switch_conversion) << ConvTy->isEnumeralType() << ConvTy; } virtual SemaDiagnosticBuilder diagnoseConversion( Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) { llvm_unreachable("conversion functions are permitted"); } } SwitchDiagnoser(Cond); CondResult = PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser); if (CondResult.isInvalid()) return StmtError(); Cond = CondResult.take(); // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr. CondResult = UsualUnaryConversions(Cond); if (CondResult.isInvalid()) return StmtError(); Cond = CondResult.take(); if (!CondVar) { CondResult = ActOnFinishFullExpr(Cond, SwitchLoc); if (CondResult.isInvalid()) return StmtError(); Cond = CondResult.take(); } getCurFunction()->setHasBranchIntoScope(); SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond); getCurFunction()->SwitchStack.push_back(SS); return Owned(SS); } static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) { if (Val.getBitWidth() < BitWidth) Val = Val.extend(BitWidth); else if (Val.getBitWidth() > BitWidth) Val = Val.trunc(BitWidth); Val.setIsSigned(IsSigned); } StmtResult Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch, Stmt *BodyStmt) { SwitchStmt *SS = cast(Switch); assert(SS == getCurFunction()->SwitchStack.back() && "switch stack missing push/pop!"); SS->setBody(BodyStmt, SwitchLoc); getCurFunction()->SwitchStack.pop_back(); Expr *CondExpr = SS->getCond(); if (!CondExpr) return StmtError(); QualType CondType = CondExpr->getType(); Expr *CondExprBeforePromotion = CondExpr; QualType CondTypeBeforePromotion = GetTypeBeforeIntegralPromotion(CondExprBeforePromotion); // C++ 6.4.2.p2: // Integral promotions are performed (on the switch condition). // // A case value unrepresentable by the original switch condition // type (before the promotion) doesn't make sense, even when it can // be represented by the promoted type. Therefore we need to find // the pre-promotion type of the switch condition. if (!CondExpr->isTypeDependent()) { // We have already converted the expression to an integral or enumeration // type, when we started the switch statement. If we don't have an // appropriate type now, just return an error. if (!CondType->isIntegralOrEnumerationType()) return StmtError(); if (CondExpr->isKnownToHaveBooleanValue()) { // switch(bool_expr) {...} is often a programmer error, e.g. // switch(n && mask) { ... } // Doh - should be "n & mask". // One can always use an if statement instead of switch(bool_expr). Diag(SwitchLoc, diag::warn_bool_switch_condition) << CondExpr->getSourceRange(); } } // Get the bitwidth of the switched-on value before promotions. We must // convert the integer case values to this width before comparison. bool HasDependentValue = CondExpr->isTypeDependent() || CondExpr->isValueDependent(); unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion); bool CondIsSigned = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType(); // Accumulate all of the case values in a vector so that we can sort them // and detect duplicates. This vector contains the APInt for the case after // it has been converted to the condition type. typedef SmallVector, 64> CaseValsTy; CaseValsTy CaseVals; // Keep track of any GNU case ranges we see. The APSInt is the low value. typedef std::vector > CaseRangesTy; CaseRangesTy CaseRanges; DefaultStmt *TheDefaultStmt = 0; bool CaseListIsErroneous = false; for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue; SC = SC->getNextSwitchCase()) { if (DefaultStmt *DS = dyn_cast(SC)) { if (TheDefaultStmt) { Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined); Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev); // FIXME: Remove the default statement from the switch block so that // we'll return a valid AST. This requires recursing down the AST and // finding it, not something we are set up to do right now. For now, // just lop the entire switch stmt out of the AST. CaseListIsErroneous = true; } TheDefaultStmt = DS; } else { CaseStmt *CS = cast(SC); Expr *Lo = CS->getLHS(); if (Lo->isTypeDependent() || Lo->isValueDependent()) { HasDependentValue = true; break; } llvm::APSInt LoVal; if (getLangOpts().CPlusPlus11) { // C++11 [stmt.switch]p2: the constant-expression shall be a converted // constant expression of the promoted type of the switch condition. ExprResult ConvLo = CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue); if (ConvLo.isInvalid()) { CaseListIsErroneous = true; continue; } Lo = ConvLo.take(); } else { // We already verified that the expression has a i-c-e value (C99 // 6.8.4.2p3) - get that value now. LoVal = Lo->EvaluateKnownConstInt(Context); // If the LHS is not the same type as the condition, insert an implicit // cast. Lo = DefaultLvalueConversion(Lo).take(); Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take(); } // Convert the value to the same width/sign as the condition had prior to // integral promotions. // // FIXME: This causes us to reject valid code: // switch ((char)c) { case 256: case 0: return 0; } // Here we claim there is a duplicated condition value, but there is not. ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned, Lo->getLocStart(), diag::warn_case_value_overflow); CS->setLHS(Lo); // If this is a case range, remember it in CaseRanges, otherwise CaseVals. if (CS->getRHS()) { if (CS->getRHS()->isTypeDependent() || CS->getRHS()->isValueDependent()) { HasDependentValue = true; break; } CaseRanges.push_back(std::make_pair(LoVal, CS)); } else CaseVals.push_back(std::make_pair(LoVal, CS)); } } if (!HasDependentValue) { // If we don't have a default statement, check whether the // condition is constant. llvm::APSInt ConstantCondValue; bool HasConstantCond = false; if (!HasDependentValue && !TheDefaultStmt) { HasConstantCond = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context, Expr::SE_AllowSideEffects); assert(!HasConstantCond || (ConstantCondValue.getBitWidth() == CondWidth && ConstantCondValue.isSigned() == CondIsSigned)); } bool ShouldCheckConstantCond = HasConstantCond; // Sort all the scalar case values so we can easily detect duplicates. std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals); if (!CaseVals.empty()) { for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) { if (ShouldCheckConstantCond && CaseVals[i].first == ConstantCondValue) ShouldCheckConstantCond = false; if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) { // If we have a duplicate, report it. // First, determine if either case value has a name StringRef PrevString, CurrString; Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts(); Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts(); if (DeclRefExpr *DeclRef = dyn_cast(PrevCase)) { PrevString = DeclRef->getDecl()->getName(); } if (DeclRefExpr *DeclRef = dyn_cast(CurrCase)) { CurrString = DeclRef->getDecl()->getName(); } SmallString<16> CaseValStr; CaseVals[i-1].first.toString(CaseValStr); if (PrevString == CurrString) Diag(CaseVals[i].second->getLHS()->getLocStart(), diag::err_duplicate_case) << (PrevString.empty() ? CaseValStr.str() : PrevString); else Diag(CaseVals[i].second->getLHS()->getLocStart(), diag::err_duplicate_case_differing_expr) << (PrevString.empty() ? CaseValStr.str() : PrevString) << (CurrString.empty() ? CaseValStr.str() : CurrString) << CaseValStr; Diag(CaseVals[i-1].second->getLHS()->getLocStart(), diag::note_duplicate_case_prev); // FIXME: We really want to remove the bogus case stmt from the // substmt, but we have no way to do this right now. CaseListIsErroneous = true; } } } // Detect duplicate case ranges, which usually don't exist at all in // the first place. if (!CaseRanges.empty()) { // Sort all the case ranges by their low value so we can easily detect // overlaps between ranges. std::stable_sort(CaseRanges.begin(), CaseRanges.end()); // Scan the ranges, computing the high values and removing empty ranges. std::vector HiVals; for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { llvm::APSInt &LoVal = CaseRanges[i].first; CaseStmt *CR = CaseRanges[i].second; Expr *Hi = CR->getRHS(); llvm::APSInt HiVal; if (getLangOpts().CPlusPlus11) { // C++11 [stmt.switch]p2: the constant-expression shall be a converted // constant expression of the promoted type of the switch condition. ExprResult ConvHi = CheckConvertedConstantExpression(Hi, CondType, HiVal, CCEK_CaseValue); if (ConvHi.isInvalid()) { CaseListIsErroneous = true; continue; } Hi = ConvHi.take(); } else { HiVal = Hi->EvaluateKnownConstInt(Context); // If the RHS is not the same type as the condition, insert an // implicit cast. Hi = DefaultLvalueConversion(Hi).take(); Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take(); } // Convert the value to the same width/sign as the condition. ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned, Hi->getLocStart(), diag::warn_case_value_overflow); CR->setRHS(Hi); // If the low value is bigger than the high value, the case is empty. if (LoVal > HiVal) { Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range) << SourceRange(CR->getLHS()->getLocStart(), Hi->getLocEnd()); CaseRanges.erase(CaseRanges.begin()+i); --i, --e; continue; } if (ShouldCheckConstantCond && LoVal <= ConstantCondValue && ConstantCondValue <= HiVal) ShouldCheckConstantCond = false; HiVals.push_back(HiVal); } // Rescan the ranges, looking for overlap with singleton values and other // ranges. Since the range list is sorted, we only need to compare case // ranges with their neighbors. for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { llvm::APSInt &CRLo = CaseRanges[i].first; llvm::APSInt &CRHi = HiVals[i]; CaseStmt *CR = CaseRanges[i].second; // Check to see whether the case range overlaps with any // singleton cases. CaseStmt *OverlapStmt = 0; llvm::APSInt OverlapVal(32); // Find the smallest value >= the lower bound. If I is in the // case range, then we have overlap. CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(), CaseVals.end(), CRLo, CaseCompareFunctor()); if (I != CaseVals.end() && I->first < CRHi) { OverlapVal = I->first; // Found overlap with scalar. OverlapStmt = I->second; } // Find the smallest value bigger than the upper bound. I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor()); if (I != CaseVals.begin() && (I-1)->first >= CRLo) { OverlapVal = (I-1)->first; // Found overlap with scalar. OverlapStmt = (I-1)->second; } // Check to see if this case stmt overlaps with the subsequent // case range. if (i && CRLo <= HiVals[i-1]) { OverlapVal = HiVals[i-1]; // Found overlap with range. OverlapStmt = CaseRanges[i-1].second; } if (OverlapStmt) { // If we have a duplicate, report it. Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case) << OverlapVal.toString(10); Diag(OverlapStmt->getLHS()->getLocStart(), diag::note_duplicate_case_prev); // FIXME: We really want to remove the bogus case stmt from the // substmt, but we have no way to do this right now. CaseListIsErroneous = true; } } } // Complain if we have a constant condition and we didn't find a match. if (!CaseListIsErroneous && ShouldCheckConstantCond) { // TODO: it would be nice if we printed enums as enums, chars as // chars, etc. Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition) << ConstantCondValue.toString(10) << CondExpr->getSourceRange(); } // Check to see if switch is over an Enum and handles all of its // values. We only issue a warning if there is not 'default:', but // we still do the analysis to preserve this information in the AST // (which can be used by flow-based analyes). // const EnumType *ET = CondTypeBeforePromotion->getAs(); // If switch has default case, then ignore it. if (!CaseListIsErroneous && !HasConstantCond && ET) { const EnumDecl *ED = ET->getDecl(); typedef SmallVector, 64> EnumValsTy; EnumValsTy EnumVals; // Gather all enum values, set their type and sort them, // allowing easier comparison with CaseVals. for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin(); EDI != ED->enumerator_end(); ++EDI) { llvm::APSInt Val = EDI->getInitVal(); AdjustAPSInt(Val, CondWidth, CondIsSigned); EnumVals.push_back(std::make_pair(Val, *EDI)); } std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals); EnumValsTy::iterator EIend = std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals); // See which case values aren't in enum. EnumValsTy::const_iterator EI = EnumVals.begin(); for (CaseValsTy::const_iterator CI = CaseVals.begin(); CI != CaseVals.end(); CI++) { while (EI != EIend && EI->first < CI->first) EI++; if (EI == EIend || EI->first > CI->first) Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum) << CondTypeBeforePromotion; } // See which of case ranges aren't in enum EI = EnumVals.begin(); for (CaseRangesTy::const_iterator RI = CaseRanges.begin(); RI != CaseRanges.end() && EI != EIend; RI++) { while (EI != EIend && EI->first < RI->first) EI++; if (EI == EIend || EI->first != RI->first) { Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum) << CondTypeBeforePromotion; } llvm::APSInt Hi = RI->second->getRHS()->EvaluateKnownConstInt(Context); AdjustAPSInt(Hi, CondWidth, CondIsSigned); while (EI != EIend && EI->first < Hi) EI++; if (EI == EIend || EI->first != Hi) Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum) << CondTypeBeforePromotion; } // Check which enum vals aren't in switch CaseValsTy::const_iterator CI = CaseVals.begin(); CaseRangesTy::const_iterator RI = CaseRanges.begin(); bool hasCasesNotInSwitch = false; SmallVector UnhandledNames; for (EI = EnumVals.begin(); EI != EIend; EI++){ // Drop unneeded case values llvm::APSInt CIVal; while (CI != CaseVals.end() && CI->first < EI->first) CI++; if (CI != CaseVals.end() && CI->first == EI->first) continue; // Drop unneeded case ranges for (; RI != CaseRanges.end(); RI++) { llvm::APSInt Hi = RI->second->getRHS()->EvaluateKnownConstInt(Context); AdjustAPSInt(Hi, CondWidth, CondIsSigned); if (EI->first <= Hi) break; } if (RI == CaseRanges.end() || EI->first < RI->first) { hasCasesNotInSwitch = true; UnhandledNames.push_back(EI->second->getDeclName()); } } if (TheDefaultStmt && UnhandledNames.empty()) Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default); // Produce a nice diagnostic if multiple values aren't handled. switch (UnhandledNames.size()) { case 0: break; case 1: Diag(CondExpr->getExprLoc(), TheDefaultStmt ? diag::warn_def_missing_case1 : diag::warn_missing_case1) << UnhandledNames[0]; break; case 2: Diag(CondExpr->getExprLoc(), TheDefaultStmt ? diag::warn_def_missing_case2 : diag::warn_missing_case2) << UnhandledNames[0] << UnhandledNames[1]; break; case 3: Diag(CondExpr->getExprLoc(), TheDefaultStmt ? diag::warn_def_missing_case3 : diag::warn_missing_case3) << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2]; break; default: Diag(CondExpr->getExprLoc(), TheDefaultStmt ? diag::warn_def_missing_cases : diag::warn_missing_cases) << (unsigned)UnhandledNames.size() << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2]; break; } if (!hasCasesNotInSwitch) SS->setAllEnumCasesCovered(); } } DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt, diag::warn_empty_switch_body); // FIXME: If the case list was broken is some way, we don't have a good system // to patch it up. Instead, just return the whole substmt as broken. if (CaseListIsErroneous) return StmtError(); return Owned(SS); } void Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType, Expr *SrcExpr) { if (Diags.getDiagnosticLevel(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()) == DiagnosticsEngine::Ignored) return; if (const EnumType *ET = DstType->getAs()) if (!Context.hasSameType(SrcType, DstType) && SrcType->isIntegerType()) { if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() && SrcExpr->isIntegerConstantExpr(Context)) { // Get the bitwidth of the enum value before promotions. unsigned DstWidth = Context.getIntWidth(DstType); bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType(); llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context); AdjustAPSInt(RhsVal, DstWidth, DstIsSigned); const EnumDecl *ED = ET->getDecl(); typedef SmallVector, 64> EnumValsTy; EnumValsTy EnumVals; // Gather all enum values, set their type and sort them, // allowing easier comparison with rhs constant. for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin(); EDI != ED->enumerator_end(); ++EDI) { llvm::APSInt Val = EDI->getInitVal(); AdjustAPSInt(Val, DstWidth, DstIsSigned); EnumVals.push_back(std::make_pair(Val, *EDI)); } if (EnumVals.empty()) return; std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals); EnumValsTy::iterator EIend = std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals); // See which values aren't in the enum. EnumValsTy::const_iterator EI = EnumVals.begin(); while (EI != EIend && EI->first < RhsVal) EI++; if (EI == EIend || EI->first != RhsVal) { Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment) << DstType; } } } } StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond, Decl *CondVar, Stmt *Body) { ExprResult CondResult(Cond.release()); VarDecl *ConditionVar = 0; if (CondVar) { ConditionVar = cast(CondVar); CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true); if (CondResult.isInvalid()) return StmtError(); } Expr *ConditionExpr = CondResult.take(); if (!ConditionExpr) return StmtError(); DiagnoseUnusedExprResult(Body); if (isa(Body)) getCurCompoundScope().setHasEmptyLoopBodies(); return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr, Body, WhileLoc)); } StmtResult Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, SourceLocation WhileLoc, SourceLocation CondLParen, Expr *Cond, SourceLocation CondRParen) { assert(Cond && "ActOnDoStmt(): missing expression"); ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc); if (CondResult.isInvalid()) return StmtError(); Cond = CondResult.take(); CondResult = ActOnFinishFullExpr(Cond, DoLoc); if (CondResult.isInvalid()) return StmtError(); Cond = CondResult.take(); DiagnoseUnusedExprResult(Body); return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen)); } namespace { // This visitor will traverse a conditional statement and store all // the evaluated decls into a vector. Simple is set to true if none // of the excluded constructs are used. class DeclExtractor : public EvaluatedExprVisitor { llvm::SmallPtrSet &Decls; SmallVectorImpl &Ranges; bool Simple; public: typedef EvaluatedExprVisitor Inherited; DeclExtractor(Sema &S, llvm::SmallPtrSet &Decls, SmallVectorImpl &Ranges) : Inherited(S.Context), Decls(Decls), Ranges(Ranges), Simple(true) {} bool isSimple() { return Simple; } // Replaces the method in EvaluatedExprVisitor. void VisitMemberExpr(MemberExpr* E) { Simple = false; } // Any Stmt not whitelisted will cause the condition to be marked complex. void VisitStmt(Stmt *S) { Simple = false; } void VisitBinaryOperator(BinaryOperator *E) { Visit(E->getLHS()); Visit(E->getRHS()); } void VisitCastExpr(CastExpr *E) { Visit(E->getSubExpr()); } void VisitUnaryOperator(UnaryOperator *E) { // Skip checking conditionals with derefernces. if (E->getOpcode() == UO_Deref) Simple = false; else Visit(E->getSubExpr()); } void VisitConditionalOperator(ConditionalOperator *E) { Visit(E->getCond()); Visit(E->getTrueExpr()); Visit(E->getFalseExpr()); } void VisitParenExpr(ParenExpr *E) { Visit(E->getSubExpr()); } void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { Visit(E->getOpaqueValue()->getSourceExpr()); Visit(E->getFalseExpr()); } void VisitIntegerLiteral(IntegerLiteral *E) { } void VisitFloatingLiteral(FloatingLiteral *E) { } void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { } void VisitCharacterLiteral(CharacterLiteral *E) { } void VisitGNUNullExpr(GNUNullExpr *E) { } void VisitImaginaryLiteral(ImaginaryLiteral *E) { } void VisitDeclRefExpr(DeclRefExpr *E) { VarDecl *VD = dyn_cast(E->getDecl()); if (!VD) return; Ranges.push_back(E->getSourceRange()); Decls.insert(VD); } }; // end class DeclExtractor // DeclMatcher checks to see if the decls are used in a non-evauluated // context. class DeclMatcher : public EvaluatedExprVisitor { llvm::SmallPtrSet &Decls; bool FoundDecl; public: typedef EvaluatedExprVisitor Inherited; DeclMatcher(Sema &S, llvm::SmallPtrSet &Decls, Stmt *Statement) : Inherited(S.Context), Decls(Decls), FoundDecl(false) { if (!Statement) return; Visit(Statement); } void VisitReturnStmt(ReturnStmt *S) { FoundDecl = true; } void VisitBreakStmt(BreakStmt *S) { FoundDecl = true; } void VisitGotoStmt(GotoStmt *S) { FoundDecl = true; } void VisitCastExpr(CastExpr *E) { if (E->getCastKind() == CK_LValueToRValue) CheckLValueToRValueCast(E->getSubExpr()); else Visit(E->getSubExpr()); } void CheckLValueToRValueCast(Expr *E) { E = E->IgnoreParenImpCasts(); if (isa(E)) { return; } if (ConditionalOperator *CO = dyn_cast(E)) { Visit(CO->getCond()); CheckLValueToRValueCast(CO->getTrueExpr()); CheckLValueToRValueCast(CO->getFalseExpr()); return; } if (BinaryConditionalOperator *BCO = dyn_cast(E)) { CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr()); CheckLValueToRValueCast(BCO->getFalseExpr()); return; } Visit(E); } void VisitDeclRefExpr(DeclRefExpr *E) { if (VarDecl *VD = dyn_cast(E->getDecl())) if (Decls.count(VD)) FoundDecl = true; } bool FoundDeclInUse() { return FoundDecl; } }; // end class DeclMatcher void CheckForLoopConditionalStatement(Sema &S, Expr *Second, Expr *Third, Stmt *Body) { // Condition is empty if (!Second) return; if (S.Diags.getDiagnosticLevel(diag::warn_variables_not_in_loop_body, Second->getLocStart()) == DiagnosticsEngine::Ignored) return; PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body); llvm::SmallPtrSet Decls; SmallVector Ranges; DeclExtractor DE(S, Decls, Ranges); DE.Visit(Second); // Don't analyze complex conditionals. if (!DE.isSimple()) return; // No decls found. if (Decls.size() == 0) return; // Don't warn on volatile, static, or global variables. for (llvm::SmallPtrSet::iterator I = Decls.begin(), E = Decls.end(); I != E; ++I) if ((*I)->getType().isVolatileQualified() || (*I)->hasGlobalStorage()) return; if (DeclMatcher(S, Decls, Second).FoundDeclInUse() || DeclMatcher(S, Decls, Third).FoundDeclInUse() || DeclMatcher(S, Decls, Body).FoundDeclInUse()) return; // Load decl names into diagnostic. if (Decls.size() > 4) PDiag << 0; else { PDiag << Decls.size(); for (llvm::SmallPtrSet::iterator I = Decls.begin(), E = Decls.end(); I != E; ++I) PDiag << (*I)->getDeclName(); } // Load SourceRanges into diagnostic if there is room. // Otherwise, load the SourceRange of the conditional expression. if (Ranges.size() <= PartialDiagnostic::MaxArguments) for (SmallVectorImpl::iterator I = Ranges.begin(), E = Ranges.end(); I != E; ++I) PDiag << *I; else PDiag << Second->getSourceRange(); S.Diag(Ranges.begin()->getBegin(), PDiag); } // If Statement is an incemement or decrement, return true and sets the // variables Increment and DRE. bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment, DeclRefExpr *&DRE) { if (UnaryOperator *UO = dyn_cast(Statement)) { switch (UO->getOpcode()) { default: return false; case UO_PostInc: case UO_PreInc: Increment = true; break; case UO_PostDec: case UO_PreDec: Increment = false; break; } DRE = dyn_cast(UO->getSubExpr()); return DRE; } if (CXXOperatorCallExpr *Call = dyn_cast(Statement)) { FunctionDecl *FD = Call->getDirectCallee(); if (!FD || !FD->isOverloadedOperator()) return false; switch (FD->getOverloadedOperator()) { default: return false; case OO_PlusPlus: Increment = true; break; case OO_MinusMinus: Increment = false; break; } DRE = dyn_cast(Call->getArg(0)); return DRE; } return false; } // A visitor to determine if a continue statement is a subexpression. class ContinueFinder : public EvaluatedExprVisitor { bool Found; public: ContinueFinder(Sema &S, Stmt* Body) : Inherited(S.Context), Found(false) { Visit(Body); } typedef EvaluatedExprVisitor Inherited; void VisitContinueStmt(ContinueStmt* E) { Found = true; } bool ContinueFound() { return Found; } }; // end class ContinueFinder // Emit a warning when a loop increment/decrement appears twice per loop // iteration. The conditions which trigger this warning are: // 1) The last statement in the loop body and the third expression in the // for loop are both increment or both decrement of the same variable // 2) No continue statements in the loop body. void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) { // Return when there is nothing to check. if (!Body || !Third) return; if (S.Diags.getDiagnosticLevel(diag::warn_redundant_loop_iteration, Third->getLocStart()) == DiagnosticsEngine::Ignored) return; // Get the last statement from the loop body. CompoundStmt *CS = dyn_cast(Body); if (!CS || CS->body_empty()) return; Stmt *LastStmt = CS->body_back(); if (!LastStmt) return; bool LoopIncrement, LastIncrement; DeclRefExpr *LoopDRE, *LastDRE; if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return; if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return; // Check that the two statements are both increments or both decrements // on the same varaible. if (LoopIncrement != LastIncrement || LoopDRE->getDecl() != LastDRE->getDecl()) return; if (ContinueFinder(S, Body).ContinueFound()) return; S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration) << LastDRE->getDecl() << LastIncrement; S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here) << LoopIncrement; } } // end namespace StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, Stmt *First, FullExprArg second, Decl *secondVar, FullExprArg third, SourceLocation RParenLoc, Stmt *Body) { if (!getLangOpts().CPlusPlus) { if (DeclStmt *DS = dyn_cast_or_null(First)) { // C99 6.8.5p3: The declaration part of a 'for' statement shall only // declare identifiers for objects having storage class 'auto' or // 'register'. for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end(); DI!=DE; ++DI) { VarDecl *VD = dyn_cast(*DI); if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage()) VD = 0; if (VD == 0) { Diag((*DI)->getLocation(), diag::err_non_local_variable_decl_in_for); (*DI)->setInvalidDecl(); } } } } CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body); CheckForRedundantIteration(*this, third.get(), Body); ExprResult SecondResult(second.release()); VarDecl *ConditionVar = 0; if (secondVar) { ConditionVar = cast(secondVar); SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true); if (SecondResult.isInvalid()) return StmtError(); } Expr *Third = third.release().takeAs(); DiagnoseUnusedExprResult(First); DiagnoseUnusedExprResult(Third); DiagnoseUnusedExprResult(Body); if (isa(Body)) getCurCompoundScope().setHasEmptyLoopBodies(); return Owned(new (Context) ForStmt(Context, First, SecondResult.take(), ConditionVar, Third, Body, ForLoc, LParenLoc, RParenLoc)); } /// In an Objective C collection iteration statement: /// for (x in y) /// x can be an arbitrary l-value expression. Bind it up as a /// full-expression. StmtResult Sema::ActOnForEachLValueExpr(Expr *E) { // Reduce placeholder expressions here. Note that this rejects the // use of pseudo-object l-values in this position. ExprResult result = CheckPlaceholderExpr(E); if (result.isInvalid()) return StmtError(); E = result.take(); ExprResult FullExpr = ActOnFinishFullExpr(E); if (FullExpr.isInvalid()) return StmtError(); return StmtResult(static_cast(FullExpr.take())); } ExprResult Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) { if (!collection) return ExprError(); // Bail out early if we've got a type-dependent expression. if (collection->isTypeDependent()) return Owned(collection); // Perform normal l-value conversion. ExprResult result = DefaultFunctionArrayLvalueConversion(collection); if (result.isInvalid()) return ExprError(); collection = result.take(); // The operand needs to have object-pointer type. // TODO: should we do a contextual conversion? const ObjCObjectPointerType *pointerType = collection->getType()->getAs(); if (!pointerType) return Diag(forLoc, diag::err_collection_expr_type) << collection->getType() << collection->getSourceRange(); // Check that the operand provides // - countByEnumeratingWithState:objects:count: const ObjCObjectType *objectType = pointerType->getObjectType(); ObjCInterfaceDecl *iface = objectType->getInterface(); // If we have a forward-declared type, we can't do this check. // Under ARC, it is an error not to have a forward-declared class. if (iface && RequireCompleteType(forLoc, QualType(objectType, 0), getLangOpts().ObjCAutoRefCount ? diag::err_arc_collection_forward : 0, collection)) { // Otherwise, if we have any useful type information, check that // the type declares the appropriate method. } else if (iface || !objectType->qual_empty()) { IdentifierInfo *selectorIdents[] = { &Context.Idents.get("countByEnumeratingWithState"), &Context.Idents.get("objects"), &Context.Idents.get("count") }; Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]); ObjCMethodDecl *method = 0; // If there's an interface, look in both the public and private APIs. if (iface) { method = iface->lookupInstanceMethod(selector); if (!method) method = iface->lookupPrivateMethod(selector); } // Also check protocol qualifiers. if (!method) method = LookupMethodInQualifiedType(selector, pointerType, /*instance*/ true); // If we didn't find it anywhere, give up. if (!method) { Diag(forLoc, diag::warn_collection_expr_type) << collection->getType() << selector << collection->getSourceRange(); } // TODO: check for an incompatible signature? } // Wrap up any cleanups in the expression. return Owned(collection); } StmtResult Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc, Stmt *First, Expr *collection, SourceLocation RParenLoc) { ExprResult CollectionExprResult = CheckObjCForCollectionOperand(ForLoc, collection); if (First) { QualType FirstType; if (DeclStmt *DS = dyn_cast(First)) { if (!DS->isSingleDecl()) return StmtError(Diag((*DS->decl_begin())->getLocation(), diag::err_toomany_element_decls)); VarDecl *D = dyn_cast(DS->getSingleDecl()); if (!D || D->isInvalidDecl()) return StmtError(); FirstType = D->getType(); // C99 6.8.5p3: The declaration part of a 'for' statement shall only // declare identifiers for objects having storage class 'auto' or // 'register'. if (!D->hasLocalStorage()) return StmtError(Diag(D->getLocation(), diag::err_non_local_variable_decl_in_for)); // If the type contained 'auto', deduce the 'auto' to 'id'. if (FirstType->getContainedAutoType()) { OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(), VK_RValue); Expr *DeducedInit = &OpaqueId; if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) == DAR_Failed) DiagnoseAutoDeductionFailure(D, DeducedInit); if (FirstType.isNull()) { D->setInvalidDecl(); return StmtError(); } D->setType(FirstType); if (ActiveTemplateInstantiations.empty()) { SourceLocation Loc = D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(); Diag(Loc, diag::warn_auto_var_is_id) << D->getDeclName(); } } } else { Expr *FirstE = cast(First); if (!FirstE->isTypeDependent() && !FirstE->isLValue()) return StmtError(Diag(First->getLocStart(), diag::err_selector_element_not_lvalue) << First->getSourceRange()); FirstType = static_cast(First)->getType(); if (FirstType.isConstQualified()) Diag(ForLoc, diag::err_selector_element_const_type) << FirstType << First->getSourceRange(); } if (!FirstType->isDependentType() && !FirstType->isObjCObjectPointerType() && !FirstType->isBlockPointerType()) return StmtError(Diag(ForLoc, diag::err_selector_element_type) << FirstType << First->getSourceRange()); } if (CollectionExprResult.isInvalid()) return StmtError(); CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.take()); if (CollectionExprResult.isInvalid()) return StmtError(); return Owned(new (Context) ObjCForCollectionStmt(First, CollectionExprResult.take(), 0, ForLoc, RParenLoc)); } /// Finish building a variable declaration for a for-range statement. /// \return true if an error occurs. static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init, SourceLocation Loc, int DiagID) { // Deduce the type for the iterator variable now rather than leaving it to // AddInitializerToDecl, so we can produce a more suitable diagnostic. QualType InitType; if ((!isa(Init) && Init->getType()->isVoidType()) || SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) == Sema::DAR_Failed) SemaRef.Diag(Loc, DiagID) << Init->getType(); if (InitType.isNull()) { Decl->setInvalidDecl(); return true; } Decl->setType(InitType); // In ARC, infer lifetime. // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if // we're doing the equivalent of fast iteration. if (SemaRef.getLangOpts().ObjCAutoRefCount && SemaRef.inferObjCARCLifetime(Decl)) Decl->setInvalidDecl(); SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false, /*TypeMayContainAuto=*/false); SemaRef.FinalizeDeclaration(Decl); SemaRef.CurContext->addHiddenDecl(Decl); return false; } namespace { /// Produce a note indicating which begin/end function was implicitly called /// by a C++11 for-range statement. This is often not obvious from the code, /// nor from the diagnostics produced when analysing the implicit expressions /// required in a for-range statement. void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E, Sema::BeginEndFunction BEF) { CallExpr *CE = dyn_cast(E); if (!CE) return; FunctionDecl *D = dyn_cast(CE->getCalleeDecl()); if (!D) return; SourceLocation Loc = D->getLocation(); std::string Description; bool IsTemplate = false; if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) { Description = SemaRef.getTemplateArgumentBindingsText( FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs()); IsTemplate = true; } SemaRef.Diag(Loc, diag::note_for_range_begin_end) << BEF << IsTemplate << Description << E->getType(); } /// Build a variable declaration for a for-range statement. VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc, QualType Type, const char *Name) { DeclContext *DC = SemaRef.CurContext; IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name); TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc); VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type, TInfo, SC_None); Decl->setImplicit(); return Decl; } } static bool ObjCEnumerationCollection(Expr *Collection) { return !Collection->isTypeDependent() && Collection->getType()->getAs() != 0; } /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement. /// /// C++11 [stmt.ranged]: /// A range-based for statement is equivalent to /// /// { /// auto && __range = range-init; /// for ( auto __begin = begin-expr, /// __end = end-expr; /// __begin != __end; /// ++__begin ) { /// for-range-declaration = *__begin; /// statement /// } /// } /// /// The body of the loop is not available yet, since it cannot be analysed until /// we have determined the type of the for-range-declaration. StmtResult Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, Stmt *First, SourceLocation ColonLoc, Expr *Range, SourceLocation RParenLoc, BuildForRangeKind Kind) { if (!First) return StmtError(); if (Range && ObjCEnumerationCollection(Range)) return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc); DeclStmt *DS = dyn_cast(First); assert(DS && "first part of for range not a decl stmt"); if (!DS->isSingleDecl()) { Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range); return StmtError(); } Decl *LoopVar = DS->getSingleDecl(); if (LoopVar->isInvalidDecl() || !Range || DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) { LoopVar->setInvalidDecl(); return StmtError(); } // Build auto && __range = range-init SourceLocation RangeLoc = Range->getLocStart(); VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc, Context.getAutoRRefDeductType(), "__range"); if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc, diag::err_for_range_deduction_failure)) { LoopVar->setInvalidDecl(); return StmtError(); } // Claim the type doesn't contain auto: we've already done the checking. DeclGroupPtrTy RangeGroup = BuildDeclaratorGroup(llvm::MutableArrayRef((Decl **)&RangeVar, 1), /*TypeMayContainAuto=*/ false); StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc); if (RangeDecl.isInvalid()) { LoopVar->setInvalidDecl(); return StmtError(); } return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(), /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS, RParenLoc, Kind); } /// \brief Create the initialization, compare, and increment steps for /// the range-based for loop expression. /// This function does not handle array-based for loops, /// which are created in Sema::BuildCXXForRangeStmt. /// /// \returns a ForRangeStatus indicating success or what kind of error occurred. /// BeginExpr and EndExpr are set and FRS_Success is returned on success; /// CandidateSet and BEF are set and some non-success value is returned on /// failure. static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef, Scope *S, Expr *BeginRange, Expr *EndRange, QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar, SourceLocation ColonLoc, OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr, ExprResult *EndExpr, Sema::BeginEndFunction *BEF) { DeclarationNameInfo BeginNameInfo( &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc); DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"), ColonLoc); LookupResult BeginMemberLookup(SemaRef, BeginNameInfo, Sema::LookupMemberName); LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName); if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) { // - if _RangeT is a class type, the unqualified-ids begin and end are // looked up in the scope of class _RangeT as if by class member access // lookup (3.4.5), and if either (or both) finds at least one // declaration, begin-expr and end-expr are __range.begin() and // __range.end(), respectively; SemaRef.LookupQualifiedName(BeginMemberLookup, D); SemaRef.LookupQualifiedName(EndMemberLookup, D); if (BeginMemberLookup.empty() != EndMemberLookup.empty()) { SourceLocation RangeLoc = BeginVar->getLocation(); *BEF = BeginMemberLookup.empty() ? Sema::BEF_end : Sema::BEF_begin; SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch) << RangeLoc << BeginRange->getType() << *BEF; return Sema::FRS_DiagnosticIssued; } } else { // - otherwise, begin-expr and end-expr are begin(__range) and // end(__range), respectively, where begin and end are looked up with // argument-dependent lookup (3.4.2). For the purposes of this name // lookup, namespace std is an associated namespace. } *BEF = Sema::BEF_begin; Sema::ForRangeStatus RangeStatus = SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, BeginVar, Sema::BEF_begin, BeginNameInfo, BeginMemberLookup, CandidateSet, BeginRange, BeginExpr); if (RangeStatus != Sema::FRS_Success) return RangeStatus; if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc, diag::err_for_range_iter_deduction_failure)) { NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF); return Sema::FRS_DiagnosticIssued; } *BEF = Sema::BEF_end; RangeStatus = SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, EndVar, Sema::BEF_end, EndNameInfo, EndMemberLookup, CandidateSet, EndRange, EndExpr); if (RangeStatus != Sema::FRS_Success) return RangeStatus; if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc, diag::err_for_range_iter_deduction_failure)) { NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF); return Sema::FRS_DiagnosticIssued; } return Sema::FRS_Success; } /// Speculatively attempt to dereference an invalid range expression. /// If the attempt fails, this function will return a valid, null StmtResult /// and emit no diagnostics. static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S, SourceLocation ForLoc, Stmt *LoopVarDecl, SourceLocation ColonLoc, Expr *Range, SourceLocation RangeLoc, SourceLocation RParenLoc) { // Determine whether we can rebuild the for-range statement with a // dereferenced range expression. ExprResult AdjustedRange; { Sema::SFINAETrap Trap(SemaRef); AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range); if (AdjustedRange.isInvalid()) return StmtResult(); StmtResult SR = SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc, AdjustedRange.get(), RParenLoc, Sema::BFRK_Check); if (SR.isInvalid()) return StmtResult(); } // The attempt to dereference worked well enough that it could produce a valid // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in // case there are any other (non-fatal) problems with it. SemaRef.Diag(RangeLoc, diag::err_for_range_dereference) << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*"); return SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc, AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild); } namespace { /// RAII object to automatically invalidate a declaration if an error occurs. struct InvalidateOnErrorScope { InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled) : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {} ~InvalidateOnErrorScope() { if (Enabled && Trap.hasErrorOccurred()) D->setInvalidDecl(); } DiagnosticErrorTrap Trap; Decl *D; bool Enabled; }; } /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement. StmtResult Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc, Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond, Expr *Inc, Stmt *LoopVarDecl, SourceLocation RParenLoc, BuildForRangeKind Kind) { Scope *S = getCurScope(); DeclStmt *RangeDS = cast(RangeDecl); VarDecl *RangeVar = cast(RangeDS->getSingleDecl()); QualType RangeVarType = RangeVar->getType(); DeclStmt *LoopVarDS = cast(LoopVarDecl); VarDecl *LoopVar = cast(LoopVarDS->getSingleDecl()); // If we hit any errors, mark the loop variable as invalid if its type // contains 'auto'. InvalidateOnErrorScope Invalidate(*this, LoopVar, LoopVar->getType()->isUndeducedType()); StmtResult BeginEndDecl = BeginEnd; ExprResult NotEqExpr = Cond, IncrExpr = Inc; if (RangeVarType->isDependentType()) { // The range is implicitly used as a placeholder when it is dependent. RangeVar->markUsed(Context); // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill // them in properly when we instantiate the loop. if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy)); } else if (!BeginEndDecl.get()) { SourceLocation RangeLoc = RangeVar->getLocation(); const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType(); ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType, VK_LValue, ColonLoc); if (BeginRangeRef.isInvalid()) return StmtError(); ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType, VK_LValue, ColonLoc); if (EndRangeRef.isInvalid()) return StmtError(); QualType AutoType = Context.getAutoDeductType(); Expr *Range = RangeVar->getInit(); if (!Range) return StmtError(); QualType RangeType = Range->getType(); if (RequireCompleteType(RangeLoc, RangeType, diag::err_for_range_incomplete_type)) return StmtError(); // Build auto __begin = begin-expr, __end = end-expr. VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType, "__begin"); VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType, "__end"); // Build begin-expr and end-expr and attach to __begin and __end variables. ExprResult BeginExpr, EndExpr; if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) { // - if _RangeT is an array type, begin-expr and end-expr are __range and // __range + __bound, respectively, where __bound is the array bound. If // _RangeT is an array of unknown size or an array of incomplete type, // the program is ill-formed; // begin-expr is __range. BeginExpr = BeginRangeRef; if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc, diag::err_for_range_iter_deduction_failure)) { NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); return StmtError(); } // Find the array bound. ExprResult BoundExpr; if (const ConstantArrayType *CAT = dyn_cast(UnqAT)) BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc)); else if (const VariableArrayType *VAT = dyn_cast(UnqAT)) BoundExpr = VAT->getSizeExpr(); else { // Can't be a DependentSizedArrayType or an IncompleteArrayType since // UnqAT is not incomplete and Range is not type-dependent. llvm_unreachable("Unexpected array type in for-range"); } // end-expr is __range + __bound. EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(), BoundExpr.get()); if (EndExpr.isInvalid()) return StmtError(); if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc, diag::err_for_range_iter_deduction_failure)) { NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); return StmtError(); } } else { OverloadCandidateSet CandidateSet(RangeLoc); Sema::BeginEndFunction BEFFailure; ForRangeStatus RangeStatus = BuildNonArrayForRange(*this, S, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar, EndVar, ColonLoc, &CandidateSet, &BeginExpr, &EndExpr, &BEFFailure); if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction && BEFFailure == BEF_begin) { // If the range is being built from an array parameter, emit a // a diagnostic that it is being treated as a pointer. if (DeclRefExpr *DRE = dyn_cast(Range)) { if (ParmVarDecl *PVD = dyn_cast(DRE->getDecl())) { QualType ArrayTy = PVD->getOriginalType(); QualType PointerTy = PVD->getType(); if (PointerTy->isPointerType() && ArrayTy->isArrayType()) { Diag(Range->getLocStart(), diag::err_range_on_array_parameter) << RangeLoc << PVD << ArrayTy << PointerTy; Diag(PVD->getLocation(), diag::note_declared_at); return StmtError(); } } } // If building the range failed, try dereferencing the range expression // unless a diagnostic was issued or the end function is problematic. StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc, LoopVarDecl, ColonLoc, Range, RangeLoc, RParenLoc); if (SR.isInvalid() || SR.isUsable()) return SR; } // Otherwise, emit diagnostics if we haven't already. if (RangeStatus == FRS_NoViableFunction) { Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get(); Diag(Range->getLocStart(), diag::err_for_range_invalid) << RangeLoc << Range->getType() << BEFFailure; CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range); } // Return an error if no fix was discovered. if (RangeStatus != FRS_Success) return StmtError(); } assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() && "invalid range expression in for loop"); // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same. QualType BeginType = BeginVar->getType(), EndType = EndVar->getType(); if (!Context.hasSameType(BeginType, EndType)) { Diag(RangeLoc, diag::err_for_range_begin_end_types_differ) << BeginType << EndType; NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); } Decl *BeginEndDecls[] = { BeginVar, EndVar }; // Claim the type doesn't contain auto: we've already done the checking. DeclGroupPtrTy BeginEndGroup = BuildDeclaratorGroup(llvm::MutableArrayRef(BeginEndDecls, 2), /*TypeMayContainAuto=*/ false); BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc); const QualType BeginRefNonRefType = BeginType.getNonReferenceType(); ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, VK_LValue, ColonLoc); if (BeginRef.isInvalid()) return StmtError(); ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(), VK_LValue, ColonLoc); if (EndRef.isInvalid()) return StmtError(); // Build and check __begin != __end expression. NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal, BeginRef.get(), EndRef.get()); NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get()); NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get()); if (NotEqExpr.isInvalid()) { Diag(RangeLoc, diag::note_for_range_invalid_iterator) << RangeLoc << 0 << BeginRangeRef.get()->getType(); NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); if (!Context.hasSameType(BeginType, EndType)) NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); return StmtError(); } // Build and check ++__begin expression. BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, VK_LValue, ColonLoc); if (BeginRef.isInvalid()) return StmtError(); IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get()); IncrExpr = ActOnFinishFullExpr(IncrExpr.get()); if (IncrExpr.isInvalid()) { Diag(RangeLoc, diag::note_for_range_invalid_iterator) << RangeLoc << 2 << BeginRangeRef.get()->getType() ; NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); return StmtError(); } // Build and check *__begin expression. BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, VK_LValue, ColonLoc); if (BeginRef.isInvalid()) return StmtError(); ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get()); if (DerefExpr.isInvalid()) { Diag(RangeLoc, diag::note_for_range_invalid_iterator) << RangeLoc << 1 << BeginRangeRef.get()->getType(); NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); return StmtError(); } // Attach *__begin as initializer for VD. Don't touch it if we're just // trying to determine whether this would be a valid range. if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) { AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false, /*TypeMayContainAuto=*/true); if (LoopVar->isInvalidDecl()) NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); } } // Don't bother to actually allocate the result if we're just trying to // determine whether it would be valid. if (Kind == BFRK_Check) return StmtResult(); return Owned(new (Context) CXXForRangeStmt(RangeDS, cast_or_null(BeginEndDecl.get()), NotEqExpr.take(), IncrExpr.take(), LoopVarDS, /*Body=*/0, ForLoc, ColonLoc, RParenLoc)); } /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach /// statement. StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) { if (!S || !B) return StmtError(); ObjCForCollectionStmt * ForStmt = cast(S); ForStmt->setBody(B); return S; } /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement. /// This is a separate step from ActOnCXXForRangeStmt because analysis of the /// body cannot be performed until after the type of the range variable is /// determined. StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) { if (!S || !B) return StmtError(); if (isa(S)) return FinishObjCForCollectionStmt(S, B); CXXForRangeStmt *ForStmt = cast(S); ForStmt->setBody(B); DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B, diag::warn_empty_range_based_for_body); return S; } StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, LabelDecl *TheDecl) { getCurFunction()->setHasBranchIntoScope(); TheDecl->markUsed(Context); return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc)); } StmtResult Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, Expr *E) { // Convert operand to void* if (!E->isTypeDependent()) { QualType ETy = E->getType(); QualType DestTy = Context.getPointerType(Context.VoidTy.withConst()); ExprResult ExprRes = Owned(E); AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DestTy, ExprRes); if (ExprRes.isInvalid()) return StmtError(); E = ExprRes.take(); if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing)) return StmtError(); } ExprResult ExprRes = ActOnFinishFullExpr(E); if (ExprRes.isInvalid()) return StmtError(); E = ExprRes.take(); getCurFunction()->setHasIndirectGoto(); return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E)); } StmtResult Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) { Scope *S = CurScope->getContinueParent(); if (!S) { // C99 6.8.6.2p1: A break shall appear only in or as a loop body. return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop)); } return Owned(new (Context) ContinueStmt(ContinueLoc)); } StmtResult Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) { Scope *S = CurScope->getBreakParent(); if (!S) { // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body. return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch)); } return Owned(new (Context) BreakStmt(BreakLoc)); } /// \brief Determine whether the given expression is a candidate for /// copy elision in either a return statement or a throw expression. /// /// \param ReturnType If we're determining the copy elision candidate for /// a return statement, this is the return type of the function. If we're /// determining the copy elision candidate for a throw expression, this will /// be a NULL type. /// /// \param E The expression being returned from the function or block, or /// being thrown. /// /// \param AllowFunctionParameter Whether we allow function parameters to /// be considered NRVO candidates. C++ prohibits this for NRVO itself, but /// we re-use this logic to determine whether we should try to move as part of /// a return or throw (which does allow function parameters). /// /// \returns The NRVO candidate variable, if the return statement may use the /// NRVO, or NULL if there is no such candidate. const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType, Expr *E, bool AllowFunctionParameter) { QualType ExprType = E->getType(); // - in a return statement in a function with ... // ... a class return type ... if (!ReturnType.isNull()) { if (!ReturnType->isRecordType()) return 0; // ... the same cv-unqualified type as the function return type ... if (!Context.hasSameUnqualifiedType(ReturnType, ExprType)) return 0; } // ... the expression is the name of a non-volatile automatic object // (other than a function or catch-clause parameter)) ... const DeclRefExpr *DR = dyn_cast(E->IgnoreParens()); if (!DR || DR->refersToEnclosingLocal()) return 0; const VarDecl *VD = dyn_cast(DR->getDecl()); if (!VD) return 0; // ...object (other than a function or catch-clause parameter)... if (VD->getKind() != Decl::Var && !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar)) return 0; if (VD->isExceptionVariable()) return 0; // ...automatic... if (!VD->hasLocalStorage()) return 0; // ...non-volatile... if (VD->getType().isVolatileQualified()) return 0; if (VD->getType()->isReferenceType()) return 0; // __block variables can't be allocated in a way that permits NRVO. if (VD->hasAttr()) return 0; // Variables with higher required alignment than their type's ABI // alignment cannot use NRVO. if (VD->hasAttr() && Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType())) return 0; return VD; } /// \brief Perform the initialization of a potentially-movable value, which /// is the result of return value. /// /// This routine implements C++0x [class.copy]p33, which attempts to treat /// returned lvalues as rvalues in certain cases (to prefer move construction), /// then falls back to treating them as lvalues if that failed. ExprResult Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity, const VarDecl *NRVOCandidate, QualType ResultType, Expr *Value, bool AllowNRVO) { // C++0x [class.copy]p33: // When the criteria for elision of a copy operation are met or would // be met save for the fact that the source object is a function // parameter, and the object to be copied is designated by an lvalue, // overload resolution to select the constructor for the copy is first // performed as if the object were designated by an rvalue. ExprResult Res = ExprError(); if (AllowNRVO && (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) { ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(), CK_NoOp, Value, VK_XValue); Expr *InitExpr = &AsRvalue; InitializationKind Kind = InitializationKind::CreateCopy(Value->getLocStart(), Value->getLocStart()); InitializationSequence Seq(*this, Entity, Kind, InitExpr); // [...] If overload resolution fails, or if the type of the first // parameter of the selected constructor is not an rvalue reference // to the object's type (possibly cv-qualified), overload resolution // is performed again, considering the object as an lvalue. if (Seq) { for (InitializationSequence::step_iterator Step = Seq.step_begin(), StepEnd = Seq.step_end(); Step != StepEnd; ++Step) { if (Step->Kind != InitializationSequence::SK_ConstructorInitialization) continue; CXXConstructorDecl *Constructor = cast(Step->Function.Function); const RValueReferenceType *RRefType = Constructor->getParamDecl(0)->getType() ->getAs(); // If we don't meet the criteria, break out now. if (!RRefType || !Context.hasSameUnqualifiedType(RRefType->getPointeeType(), Context.getTypeDeclType(Constructor->getParent()))) break; // Promote "AsRvalue" to the heap, since we now need this // expression node to persist. Value = ImplicitCastExpr::Create(Context, Value->getType(), CK_NoOp, Value, 0, VK_XValue); // Complete type-checking the initialization of the return type // using the constructor we found. Res = Seq.Perform(*this, Entity, Kind, Value); } } } // Either we didn't meet the criteria for treating an lvalue as an rvalue, // above, or overload resolution failed. Either way, we need to try // (again) now with the return value expression as written. if (Res.isInvalid()) Res = PerformCopyInitialization(Entity, SourceLocation(), Value); return Res; } /// \brief Determine whether the declared return type of the specified function /// contains 'auto'. static bool hasDeducedReturnType(FunctionDecl *FD) { const FunctionProtoType *FPT = FD->getTypeSourceInfo()->getType()->castAs(); return FPT->getResultType()->isUndeducedType(); } /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements /// for capturing scopes. /// StmtResult Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) { // If this is the first return we've seen, infer the return type. // [expr.prim.lambda]p4 in C++11; block literals follow the same rules. CapturingScopeInfo *CurCap = cast(getCurFunction()); QualType FnRetType = CurCap->ReturnType; LambdaScopeInfo *CurLambda = dyn_cast(CurCap); if (CurLambda && hasDeducedReturnType(CurLambda->CallOperator)) { // In C++1y, the return type may involve 'auto'. // FIXME: Blocks might have a return type of 'auto' explicitly specified. FunctionDecl *FD = CurLambda->CallOperator; if (CurCap->ReturnType.isNull()) CurCap->ReturnType = FD->getResultType(); AutoType *AT = CurCap->ReturnType->getContainedAutoType(); assert(AT && "lost auto type from lambda return type"); if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) { FD->setInvalidDecl(); return StmtError(); } CurCap->ReturnType = FnRetType = FD->getResultType(); } else if (CurCap->HasImplicitReturnType) { // For blocks/lambdas with implicit return types, we check each return // statement individually, and deduce the common return type when the block // or lambda is completed. // FIXME: Fold this into the 'auto' codepath above. if (RetValExp && !isa(RetValExp)) { ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp); if (Result.isInvalid()) return StmtError(); RetValExp = Result.take(); if (!CurContext->isDependentContext()) FnRetType = RetValExp->getType(); else FnRetType = CurCap->ReturnType = Context.DependentTy; } else { if (RetValExp) { // C++11 [expr.lambda.prim]p4 bans inferring the result from an // initializer list, because it is not an expression (even // though we represent it as one). We still deduce 'void'. Diag(ReturnLoc, diag::err_lambda_return_init_list) << RetValExp->getSourceRange(); } FnRetType = Context.VoidTy; } // Although we'll properly infer the type of the block once it's completed, // make sure we provide a return type now for better error recovery. if (CurCap->ReturnType.isNull()) CurCap->ReturnType = FnRetType; } assert(!FnRetType.isNull()); if (BlockScopeInfo *CurBlock = dyn_cast(CurCap)) { if (CurBlock->FunctionType->getAs()->getNoReturnAttr()) { Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr); return StmtError(); } } else if (CapturedRegionScopeInfo *CurRegion = dyn_cast(CurCap)) { Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName(); return StmtError(); } else { assert(CurLambda && "unknown kind of captured scope"); if (CurLambda->CallOperator->getType()->getAs() ->getNoReturnAttr()) { Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr); return StmtError(); } } // Otherwise, verify that this result type matches the previous one. We are // pickier with blocks than for normal functions because we don't have GCC // compatibility to worry about here. const VarDecl *NRVOCandidate = 0; if (FnRetType->isDependentType()) { // Delay processing for now. TODO: there are lots of dependent // types we can conclusively prove aren't void. } else if (FnRetType->isVoidType()) { if (RetValExp && !isa(RetValExp) && !(getLangOpts().CPlusPlus && (RetValExp->isTypeDependent() || RetValExp->getType()->isVoidType()))) { if (!getLangOpts().CPlusPlus && RetValExp->getType()->isVoidType()) Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2; else { Diag(ReturnLoc, diag::err_return_block_has_expr); RetValExp = 0; } } } else if (!RetValExp) { return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr)); } else if (!RetValExp->isTypeDependent()) { // we have a non-void block with an expression, continue checking // C99 6.8.6.4p3(136): The return statement is not an assignment. The // overlap restriction of subclause 6.5.16.1 does not apply to the case of // function return. // In C++ the return statement is handled via a copy initialization. // the C version of which boils down to CheckSingleAssignmentConstraints. NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false); InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc, FnRetType, NRVOCandidate != 0); ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate, FnRetType, RetValExp); if (Res.isInvalid()) { // FIXME: Cleanup temporaries here, anyway? return StmtError(); } RetValExp = Res.take(); CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc); } if (RetValExp) { ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc); if (ER.isInvalid()) return StmtError(); RetValExp = ER.take(); } ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate); // If we need to check for the named return value optimization, // or if we need to infer the return type, // save the return statement in our scope for later processing. if (CurCap->HasImplicitReturnType || (getLangOpts().CPlusPlus && FnRetType->isRecordType() && !CurContext->isDependentContext())) FunctionScopes.back()->Returns.push_back(Result); return Owned(Result); } /// Deduce the return type for a function from a returned expression, per /// C++1y [dcl.spec.auto]p6. bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD, SourceLocation ReturnLoc, Expr *&RetExpr, AutoType *AT) { TypeLoc OrigResultType = FD->getTypeSourceInfo()->getTypeLoc(). IgnoreParens().castAs().getResultLoc(); QualType Deduced; if (RetExpr && isa(RetExpr)) { // If the deduction is for a return statement and the initializer is // a braced-init-list, the program is ill-formed. Diag(RetExpr->getExprLoc(), getCurLambda() ? diag::err_lambda_return_init_list : diag::err_auto_fn_return_init_list) << RetExpr->getSourceRange(); return true; } if (FD->isDependentContext()) { // C++1y [dcl.spec.auto]p12: // Return type deduction [...] occurs when the definition is // instantiated even if the function body contains a return // statement with a non-type-dependent operand. assert(AT->isDeduced() && "should have deduced to dependent type"); return false; } else if (RetExpr) { // If the deduction is for a return statement and the initializer is // a braced-init-list, the program is ill-formed. if (isa(RetExpr)) { Diag(RetExpr->getExprLoc(), diag::err_auto_fn_return_init_list); return true; } // Otherwise, [...] deduce a value for U using the rules of template // argument deduction. DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced); if (DAR == DAR_Failed && !FD->isInvalidDecl()) Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure) << OrigResultType.getType() << RetExpr->getType(); if (DAR != DAR_Succeeded) return true; } else { // In the case of a return with no operand, the initializer is considered // to be void(). // // Deduction here can only succeed if the return type is exactly 'cv auto' // or 'decltype(auto)', so just check for that case directly. if (!OrigResultType.getType()->getAs()) { Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto) << OrigResultType.getType(); return true; } // We always deduce U = void in this case. Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy); if (Deduced.isNull()) return true; } // If a function with a declared return type that contains a placeholder type // has multiple return statements, the return type is deduced for each return // statement. [...] if the type deduced is not the same in each deduction, // the program is ill-formed. if (AT->isDeduced() && !FD->isInvalidDecl()) { AutoType *NewAT = Deduced->getContainedAutoType(); if (!FD->isDependentContext() && !Context.hasSameType(AT->getDeducedType(), NewAT->getDeducedType())) { const LambdaScopeInfo *LambdaSI = getCurLambda(); if (LambdaSI && LambdaSI->HasImplicitReturnType) { Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible) << NewAT->getDeducedType() << AT->getDeducedType() << true /*IsLambda*/; } else { Diag(ReturnLoc, diag::err_auto_fn_different_deductions) << (AT->isDecltypeAuto() ? 1 : 0) << NewAT->getDeducedType() << AT->getDeducedType(); } return true; } } else if (!FD->isInvalidDecl()) { // Update all declarations of the function to have the deduced return type. Context.adjustDeducedFunctionResultType(FD, Deduced); } return false; } StmtResult Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) { // Check for unexpanded parameter packs. if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp)) return StmtError(); if (isa(getCurFunction())) return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp); QualType FnRetType; QualType RelatedRetType; if (const FunctionDecl *FD = getCurFunctionDecl()) { FnRetType = FD->getResultType(); if (FD->isNoReturn()) Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) << FD->getDeclName(); } else if (ObjCMethodDecl *MD = getCurMethodDecl()) { FnRetType = MD->getResultType(); if (MD->hasRelatedResultType() && MD->getClassInterface()) { // In the implementation of a method with a related return type, the // type used to type-check the validity of return statements within the // method body is a pointer to the type of the class being implemented. RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface()); RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType); } } else // If we don't have a function/method context, bail. return StmtError(); // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing // deduction. if (getLangOpts().CPlusPlus1y) { if (AutoType *AT = FnRetType->getContainedAutoType()) { FunctionDecl *FD = cast(CurContext); if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) { FD->setInvalidDecl(); return StmtError(); } else { FnRetType = FD->getResultType(); } } } bool HasDependentReturnType = FnRetType->isDependentType(); ReturnStmt *Result = 0; if (FnRetType->isVoidType()) { if (RetValExp) { if (isa(RetValExp)) { // We simply never allow init lists as the return value of void // functions. This is compatible because this was never allowed before, // so there's no legacy code to deal with. NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); int FunctionKind = 0; if (isa(CurDecl)) FunctionKind = 1; else if (isa(CurDecl)) FunctionKind = 2; else if (isa(CurDecl)) FunctionKind = 3; Diag(ReturnLoc, diag::err_return_init_list) << CurDecl->getDeclName() << FunctionKind << RetValExp->getSourceRange(); // Drop the expression. RetValExp = 0; } else if (!RetValExp->isTypeDependent()) { // C99 6.8.6.4p1 (ext_ since GCC warns) unsigned D = diag::ext_return_has_expr; if (RetValExp->getType()->isVoidType()) D = diag::ext_return_has_void_expr; else { ExprResult Result = Owned(RetValExp); Result = IgnoredValueConversions(Result.take()); if (Result.isInvalid()) return StmtError(); RetValExp = Result.take(); RetValExp = ImpCastExprToType(RetValExp, Context.VoidTy, CK_ToVoid).take(); } // return (some void expression); is legal in C++. if (D != diag::ext_return_has_void_expr || !getLangOpts().CPlusPlus) { NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); int FunctionKind = 0; if (isa(CurDecl)) FunctionKind = 1; else if (isa(CurDecl)) FunctionKind = 2; else if (isa(CurDecl)) FunctionKind = 3; Diag(ReturnLoc, D) << CurDecl->getDeclName() << FunctionKind << RetValExp->getSourceRange(); } } if (RetValExp) { ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc); if (ER.isInvalid()) return StmtError(); RetValExp = ER.take(); } } Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0); } else if (!RetValExp && !HasDependentReturnType) { unsigned DiagID = diag::warn_return_missing_expr; // C90 6.6.6.4p4 // C99 6.8.6.4p1 (ext_ since GCC warns) if (getLangOpts().C99) DiagID = diag::ext_return_missing_expr; if (FunctionDecl *FD = getCurFunctionDecl()) Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/; else Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/; Result = new (Context) ReturnStmt(ReturnLoc); } else { assert(RetValExp || HasDependentReturnType); const VarDecl *NRVOCandidate = 0; if (!HasDependentReturnType && !RetValExp->isTypeDependent()) { // we have a non-void function with an expression, continue checking QualType RetType = (RelatedRetType.isNull() ? FnRetType : RelatedRetType); // C99 6.8.6.4p3(136): The return statement is not an assignment. The // overlap restriction of subclause 6.5.16.1 does not apply to the case of // function return. // In C++ the return statement is handled via a copy initialization, // the C version of which boils down to CheckSingleAssignmentConstraints. NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false); InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc, RetType, NRVOCandidate != 0); ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate, RetType, RetValExp); if (Res.isInvalid()) { // FIXME: Clean up temporaries here anyway? return StmtError(); } RetValExp = Res.takeAs(); // If we have a related result type, we need to implicitly // convert back to the formal result type. We can't pretend to // initialize the result again --- we might end double-retaining // --- so instead we initialize a notional temporary. if (!RelatedRetType.isNull()) { Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(), FnRetType); Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp); if (Res.isInvalid()) { // FIXME: Clean up temporaries here anyway? return StmtError(); } RetValExp = Res.takeAs(); } CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc); } if (RetValExp) { ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc); if (ER.isInvalid()) return StmtError(); RetValExp = ER.take(); } Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate); } // If we need to check for the named return value optimization, save the // return statement in our scope for later processing. if (getLangOpts().CPlusPlus && FnRetType->isRecordType() && !CurContext->isDependentContext()) FunctionScopes.back()->Returns.push_back(Result); return Owned(Result); } StmtResult Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen, Decl *Parm, Stmt *Body) { VarDecl *Var = cast_or_null(Parm); if (Var && Var->isInvalidDecl()) return StmtError(); return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body)); } StmtResult Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) { return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body)); } StmtResult Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try, MultiStmtArg CatchStmts, Stmt *Finally) { if (!getLangOpts().ObjCExceptions) Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try"; getCurFunction()->setHasBranchProtectedScope(); unsigned NumCatchStmts = CatchStmts.size(); return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(), NumCatchStmts, Finally)); } StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) { if (Throw) { ExprResult Result = DefaultLvalueConversion(Throw); if (Result.isInvalid()) return StmtError(); Result = ActOnFinishFullExpr(Result.take()); if (Result.isInvalid()) return StmtError(); Throw = Result.take(); QualType ThrowType = Throw->getType(); // Make sure the expression type is an ObjC pointer or "void *". if (!ThrowType->isDependentType() && !ThrowType->isObjCObjectPointerType()) { const PointerType *PT = ThrowType->getAs(); if (!PT || !PT->getPointeeType()->isVoidType()) return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object) << Throw->getType() << Throw->getSourceRange()); } } return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw)); } StmtResult Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw, Scope *CurScope) { if (!getLangOpts().ObjCExceptions) Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw"; if (!Throw) { // @throw without an expression designates a rethrow (which much occur // in the context of an @catch clause). Scope *AtCatchParent = CurScope; while (AtCatchParent && !AtCatchParent->isAtCatchScope()) AtCatchParent = AtCatchParent->getParent(); if (!AtCatchParent) return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch)); } return BuildObjCAtThrowStmt(AtLoc, Throw); } ExprResult Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) { ExprResult result = DefaultLvalueConversion(operand); if (result.isInvalid()) return ExprError(); operand = result.take(); // Make sure the expression type is an ObjC pointer or "void *". QualType type = operand->getType(); if (!type->isDependentType() && !type->isObjCObjectPointerType()) { const PointerType *pointerType = type->getAs(); if (!pointerType || !pointerType->getPointeeType()->isVoidType()) return Diag(atLoc, diag::error_objc_synchronized_expects_object) << type << operand->getSourceRange(); } // The operand to @synchronized is a full-expression. return ActOnFinishFullExpr(operand); } StmtResult Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr, Stmt *SyncBody) { // We can't jump into or indirect-jump out of a @synchronized block. getCurFunction()->setHasBranchProtectedScope(); return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody)); } /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block /// and creates a proper catch handler from them. StmtResult Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl, Stmt *HandlerBlock) { // There's nothing to test that ActOnExceptionDecl didn't already test. return Owned(new (Context) CXXCatchStmt(CatchLoc, cast_or_null(ExDecl), HandlerBlock)); } StmtResult Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) { getCurFunction()->setHasBranchProtectedScope(); return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body)); } namespace { class TypeWithHandler { QualType t; CXXCatchStmt *stmt; public: TypeWithHandler(const QualType &type, CXXCatchStmt *statement) : t(type), stmt(statement) {} // An arbitrary order is fine as long as it places identical // types next to each other. bool operator<(const TypeWithHandler &y) const { if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr()) return true; if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr()) return false; else return getTypeSpecStartLoc() < y.getTypeSpecStartLoc(); } bool operator==(const TypeWithHandler& other) const { return t == other.t; } CXXCatchStmt *getCatchStmt() const { return stmt; } SourceLocation getTypeSpecStartLoc() const { return stmt->getExceptionDecl()->getTypeSpecStartLoc(); } }; } /// ActOnCXXTryBlock - Takes a try compound-statement and a number of /// handlers and creates a try statement from them. StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, ArrayRef Handlers) { // Don't report an error if 'try' is used in system headers. if (!getLangOpts().CXXExceptions && !getSourceManager().isInSystemHeader(TryLoc)) Diag(TryLoc, diag::err_exceptions_disabled) << "try"; const unsigned NumHandlers = Handlers.size(); assert(NumHandlers > 0 && "The parser shouldn't call this if there are no handlers."); SmallVector TypesWithHandlers; for (unsigned i = 0; i < NumHandlers; ++i) { CXXCatchStmt *Handler = cast(Handlers[i]); if (!Handler->getExceptionDecl()) { if (i < NumHandlers - 1) return StmtError(Diag(Handler->getLocStart(), diag::err_early_catch_all)); continue; } const QualType CaughtType = Handler->getCaughtType(); const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType); TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler)); } // Detect handlers for the same type as an earlier one. if (NumHandlers > 1) { llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end()); TypeWithHandler prev = TypesWithHandlers[0]; for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) { TypeWithHandler curr = TypesWithHandlers[i]; if (curr == prev) { Diag(curr.getTypeSpecStartLoc(), diag::warn_exception_caught_by_earlier_handler) << curr.getCatchStmt()->getCaughtType().getAsString(); Diag(prev.getTypeSpecStartLoc(), diag::note_previous_exception_handler) << prev.getCatchStmt()->getCaughtType().getAsString(); } prev = curr; } } getCurFunction()->setHasBranchProtectedScope(); // FIXME: We should detect handlers that cannot catch anything because an // earlier handler catches a superclass. Need to find a method that is not // quadratic for this. // Neither of these are explicitly forbidden, but every compiler detects them // and warns. return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers)); } StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler) { assert(TryBlock && Handler); getCurFunction()->setHasBranchProtectedScope(); return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler)); } StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr, Stmt *Block) { assert(FilterExpr && Block); if(!FilterExpr->getType()->isIntegerType()) { return StmtError(Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral) << FilterExpr->getType()); } return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block)); } StmtResult Sema::ActOnSEHFinallyBlock(SourceLocation Loc, Stmt *Block) { assert(Block); return Owned(SEHFinallyStmt::Create(Context,Loc,Block)); } StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, NestedNameSpecifierLoc QualifierLoc, DeclarationNameInfo NameInfo, Stmt *Nested) { return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists, QualifierLoc, NameInfo, cast(Nested)); } StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, CXXScopeSpec &SS, UnqualifiedId &Name, Stmt *Nested) { return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists, SS.getWithLocInContext(Context), GetNameFromUnqualifiedId(Name), Nested); } RecordDecl* Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc, unsigned NumParams) { DeclContext *DC = CurContext; while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) DC = DC->getParent(); RecordDecl *RD = 0; if (getLangOpts().CPlusPlus) RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/0); else RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/0); DC->addDecl(RD); RD->setImplicit(); RD->startDefinition(); CD = CapturedDecl::Create(Context, CurContext, NumParams); DC->addDecl(CD); // Build the context parameter assert(NumParams > 0 && "CapturedStmt requires context parameter"); DC = CapturedDecl::castToDeclContext(CD); IdentifierInfo *VarName = &Context.Idents.get("__context"); QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)); ImplicitParamDecl *Param = ImplicitParamDecl::Create(Context, DC, Loc, VarName, ParamType); DC->addDecl(Param); CD->setContextParam(Param); return RD; } static void buildCapturedStmtCaptureList( SmallVectorImpl &Captures, SmallVectorImpl &CaptureInits, ArrayRef Candidates) { typedef ArrayRef::const_iterator CaptureIter; for (CaptureIter Cap = Candidates.begin(); Cap != Candidates.end(); ++Cap) { if (Cap->isThisCapture()) { Captures.push_back(CapturedStmt::Capture(Cap->getLocation(), CapturedStmt::VCK_This)); CaptureInits.push_back(Cap->getInitExpr()); continue; } assert(Cap->isReferenceCapture() && "non-reference capture not yet implemented"); Captures.push_back(CapturedStmt::Capture(Cap->getLocation(), CapturedStmt::VCK_ByRef, Cap->getVariable())); CaptureInits.push_back(Cap->getInitExpr()); } } void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, CapturedRegionKind Kind, unsigned NumParams) { CapturedDecl *CD = 0; RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams); // Enter the capturing scope for this captured region. PushCapturedRegionScope(CurScope, CD, RD, Kind); if (CurScope) PushDeclContext(CurScope, CD); else CurContext = CD; PushExpressionEvaluationContext(PotentiallyEvaluated); } void Sema::ActOnCapturedRegionError() { DiscardCleanupsInEvaluationContext(); PopExpressionEvaluationContext(); CapturedRegionScopeInfo *RSI = getCurCapturedRegion(); RecordDecl *Record = RSI->TheRecordDecl; Record->setInvalidDecl(); SmallVector Fields; for (RecordDecl::field_iterator I = Record->field_begin(), E = Record->field_end(); I != E; ++I) Fields.push_back(*I); ActOnFields(/*Scope=*/0, Record->getLocation(), Record, Fields, SourceLocation(), SourceLocation(), /*AttributeList=*/0); PopDeclContext(); PopFunctionScopeInfo(); } StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) { CapturedRegionScopeInfo *RSI = getCurCapturedRegion(); SmallVector Captures; SmallVector CaptureInits; buildCapturedStmtCaptureList(Captures, CaptureInits, RSI->Captures); CapturedDecl *CD = RSI->TheCapturedDecl; RecordDecl *RD = RSI->TheRecordDecl; CapturedStmt *Res = CapturedStmt::Create(getASTContext(), S, RSI->CapRegionKind, Captures, CaptureInits, CD, RD); CD->setBody(Res->getCapturedStmt()); RD->completeDefinition(); DiscardCleanupsInEvaluationContext(); PopExpressionEvaluationContext(); PopDeclContext(); PopFunctionScopeInfo(); return Owned(Res); }