#define _SYSTEM 1 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _MAIN 1 #include "glo.h" #include "proto.h" #include "util.h" #include "vm.h" #include "sanitycheck.h" extern int missing_spares; #include #include #include "kernel/const.h" #include "kernel/config.h" #include "kernel/proc.h" #include #include /* Table of calls and a macro to test for being in range. */ struct { int (*vmc_func)(message *); /* Call handles message. */ const char *vmc_name; /* Human-readable string. */ } vm_calls[NR_VM_CALLS]; /* Macro to verify call range and map 'high' range to 'base' range * (starting at 0) in one. Evaluates to zero-based call number if call * number is valid, returns -1 otherwise. */ #define CALLNUMBER(c) (((c) >= VM_RQ_BASE && \ (c) < VM_RQ_BASE + ELEMENTS(vm_calls)) ? \ ((c) - VM_RQ_BASE) : -1) static int map_service(struct rprocpub *rpub); static int do_rs_init(message *m); /* SEF functions and variables. */ static void sef_cb_signal_handler(int signo); void init_vm(void); /*===========================================================================* * main * *===========================================================================*/ int main(void) { message msg; int result, who_e, rcv_sts; int caller_slot; /* Initialize system so that all processes are runnable */ init_vm(); /* Register init callbacks. */ sef_setcb_init_restart(sef_cb_init_fail); sef_setcb_signal_handler(sef_cb_signal_handler); /* Let SEF perform startup. */ sef_startup(); SANITYCHECK(SCL_TOP); /* This is VM's main loop. */ while (TRUE) { int r, c; int type; int transid = 0; /* VFS transid if any */ SANITYCHECK(SCL_TOP); if(missing_spares > 0) { alloc_cycle(); /* mem alloc code wants to be called */ } if ((r=sef_receive_status(ANY, &msg, &rcv_sts)) != OK) panic("sef_receive_status() error: %d", r); if (is_ipc_notify(rcv_sts)) { /* Unexpected ipc_notify(). */ printf("VM: ignoring ipc_notify() from %d\n", msg.m_source); continue; } who_e = msg.m_source; if(vm_isokendpt(who_e, &caller_slot) != OK) panic("invalid caller %d", who_e); /* We depend on this being false for the initialized value. */ assert(!IS_VFS_FS_TRANSID(transid)); type = msg.m_type; c = CALLNUMBER(type); result = ENOSYS; /* Out of range or restricted calls return this. */ transid = TRNS_GET_ID(msg.m_type); if((msg.m_source == VFS_PROC_NR) && IS_VFS_FS_TRANSID(transid)) { /* If it's a request from VFS, it might have a transaction id. */ msg.m_type = TRNS_DEL_ID(msg.m_type); /* Calls that use the transid */ result = do_procctl(&msg, transid); } else if(msg.m_type == RS_INIT && msg.m_source == RS_PROC_NR) { result = do_rs_init(&msg); } else if (msg.m_type == VM_PAGEFAULT) { if (!IPC_STATUS_FLAGS_TEST(rcv_sts, IPC_FLG_MSG_FROM_KERNEL)) { printf("VM: process %d faked VM_PAGEFAULT " "message!\n", msg.m_source); } do_pagefaults(&msg); /* * do not reply to this call, the caller is unblocked by * a sys_vmctl() call in do_pagefaults if success. VM panics * otherwise */ continue; } else if(c < 0 || !vm_calls[c].vmc_func) { /* out of range or missing callnr */ } else { if (acl_check(&vmproc[caller_slot], c) != OK) { printf("VM: unauthorized %s by %d\n", vm_calls[c].vmc_name, who_e); } else { SANITYCHECK(SCL_FUNCTIONS); result = vm_calls[c].vmc_func(&msg); SANITYCHECK(SCL_FUNCTIONS); } } /* Send reply message, unless the return code is SUSPEND, * which is a pseudo-result suppressing the reply message. */ if(result != SUSPEND) { msg.m_type = result; assert(!IS_VFS_FS_TRANSID(transid)); if((r=ipc_send(who_e, &msg)) != OK) { printf("VM: couldn't send %d to %d (err %d)\n", msg.m_type, who_e, r); panic("ipc_send() error"); } } } return(OK); } static int do_rs_init(message *m) { int s, i; static struct rprocpub rprocpub[NR_BOOT_PROCS]; /* Map all the services in the boot image. */ if((s = sys_safecopyfrom(RS_PROC_NR, m->m_rs_init.rproctab_gid, 0, (vir_bytes) rprocpub, sizeof(rprocpub))) != OK) { panic("vm: sys_safecopyfrom (rs) failed: %d", s); } for(i=0;i < NR_BOOT_PROCS;i++) { if(rprocpub[i].in_use) { if((s = map_service(&rprocpub[i])) != OK) { panic("unable to map service: %d", s); } } } /* RS expects this response that it then again wants to reply to: */ m->m_rs_init.result = OK; ipc_sendrec(RS_PROC_NR, m); return(SUSPEND); } static struct vmproc *init_proc(endpoint_t ep_nr) { static struct boot_image *ip; for (ip = &kernel_boot_info.boot_procs[0]; ip < &kernel_boot_info.boot_procs[NR_BOOT_PROCS]; ip++) { struct vmproc *vmp; if(ip->proc_nr != ep_nr) continue; if(ip->proc_nr >= _NR_PROCS || ip->proc_nr < 0) panic("proc: %d", ip->proc_nr); vmp = &vmproc[ip->proc_nr]; assert(!(vmp->vm_flags & VMF_INUSE)); /* no double procs */ clear_proc(vmp); vmp->vm_flags = VMF_INUSE; vmp->vm_endpoint = ip->endpoint; vmp->vm_boot = ip; return vmp; } panic("no init_proc"); } struct vm_exec_info { struct exec_info execi; struct boot_image *ip; struct vmproc *vmp; }; static int libexec_copy_physcopy(struct exec_info *execi, off_t off, vir_bytes vaddr, size_t len) { vir_bytes end; struct vm_exec_info *ei = execi->opaque; end = ei->ip->start_addr + ei->ip->len; assert(ei->ip->start_addr + off + len <= end); return sys_physcopy(NONE, ei->ip->start_addr + off, execi->proc_e, vaddr, len, 0); } static void boot_alloc(struct exec_info *execi, off_t vaddr, size_t len, int flags) { struct vmproc *vmp = ((struct vm_exec_info *) execi->opaque)->vmp; if(!(map_page_region(vmp, vaddr, 0, len, VR_ANON | VR_WRITABLE | VR_UNINITIALIZED, flags, &mem_type_anon))) { panic("VM: exec: map_page_region for boot process failed"); } } static int libexec_alloc_vm_prealloc(struct exec_info *execi, vir_bytes vaddr, size_t len) { boot_alloc(execi, vaddr, len, MF_PREALLOC); return OK; } static int libexec_alloc_vm_ondemand(struct exec_info *execi, vir_bytes vaddr, size_t len) { boot_alloc(execi, vaddr, len, 0); return OK; } static void exec_bootproc(struct vmproc *vmp, struct boot_image *ip) { struct vm_exec_info vmexeci; struct exec_info *execi = &vmexeci.execi; char hdr[VM_PAGE_SIZE]; size_t frame_size = 0; /* Size of the new initial stack. */ int argc = 0; /* Argument count. */ int envc = 0; /* Environment count */ char overflow = 0; /* No overflow yet. */ struct ps_strings *psp; int vsp = 0; /* (virtual) Stack pointer in new address space. */ char *argv[] = { ip->proc_name, NULL }; char *envp[] = { NULL }; char *path = ip->proc_name; char frame[VM_PAGE_SIZE]; memset(&vmexeci, 0, sizeof(vmexeci)); if(pt_new(&vmp->vm_pt) != OK) panic("VM: no new pagetable"); if(pt_bind(&vmp->vm_pt, vmp) != OK) panic("VM: pt_bind failed"); if(sys_physcopy(NONE, ip->start_addr, SELF, (vir_bytes) hdr, sizeof(hdr), 0) != OK) panic("can't look at boot proc header"); execi->stack_high = kernel_boot_info.user_sp; execi->stack_size = DEFAULT_STACK_LIMIT; execi->proc_e = vmp->vm_endpoint; execi->hdr = hdr; execi->hdr_len = sizeof(hdr); strlcpy(execi->progname, ip->proc_name, sizeof(execi->progname)); execi->frame_len = 0; execi->opaque = &vmexeci; execi->filesize = ip->len; vmexeci.ip = ip; vmexeci.vmp = vmp; /* callback functions and data */ execi->copymem = libexec_copy_physcopy; execi->clearproc = NULL; execi->clearmem = libexec_clear_sys_memset; execi->allocmem_prealloc_junk = libexec_alloc_vm_prealloc; execi->allocmem_prealloc_cleared = libexec_alloc_vm_prealloc; execi->allocmem_ondemand = libexec_alloc_vm_ondemand; if (libexec_load_elf(execi) != OK) panic("vm: boot process load of process %s (ep=%d) failed\n", execi->progname, vmp->vm_endpoint); /* Setup a minimal stack. */ minix_stack_params(path, argv, envp, &frame_size, &overflow, &argc, &envc); /* The party is off if there is an overflow, or it is too big for our * pre-allocated space. */ if(overflow || frame_size > sizeof(frame)) panic("vm: could not alloc stack for boot process %s (ep=%d)\n", execi->progname, vmp->vm_endpoint); minix_stack_fill(path, argc, argv, envc, envp, frame_size, frame, &vsp, &psp); if(handle_memory_once(vmp, vsp, frame_size, 1) != OK) panic("vm: could not map stack for boot process %s (ep=%d)\n", execi->progname, vmp->vm_endpoint); if(sys_datacopy(SELF, (vir_bytes)frame, vmp->vm_endpoint, vsp, frame_size) != OK) panic("vm: could not copy stack for boot process %s (ep=%d)\n", execi->progname, vmp->vm_endpoint); if(sys_exec(vmp->vm_endpoint, (vir_bytes)vsp, (vir_bytes)execi->progname, execi->pc, vsp + ((int)psp - (int)frame)) != OK) panic("vm: boot process exec of process %s (ep=%d) failed\n", execi->progname,vmp->vm_endpoint); /* make it runnable */ if(sys_vmctl(vmp->vm_endpoint, VMCTL_BOOTINHIBIT_CLEAR, 0) != OK) panic("VMCTL_BOOTINHIBIT_CLEAR failed"); } static int do_procctl_notrans(message *msg) { int transid = 0; assert(!IS_VFS_FS_TRANSID(transid)); return do_procctl(msg, transid); } void init_vm(void) { int s, i; static struct memory mem_chunks[NR_MEMS]; static struct boot_image *ip; extern void __minix_init(void); multiboot_module_t *mod; vir_bytes kern_dyn, kern_static; #if SANITYCHECKS incheck = nocheck = 0; #endif /* Retrieve various crucial boot parameters */ if(OK != (s=sys_getkinfo(&kernel_boot_info))) { panic("couldn't get bootinfo: %d", s); } /* Turn file mmap on? */ enable_filemap=1; /* yes by default */ env_parse("filemap", "d", 0, &enable_filemap, 0, 1); /* Sanity check */ assert(kernel_boot_info.mmap_size > 0); assert(kernel_boot_info.mods_with_kernel > 0); /* Get chunks of available memory. */ get_mem_chunks(mem_chunks); /* Set table to 0. This invalidates all slots (clear VMF_INUSE). */ memset(vmproc, 0, sizeof(vmproc)); for(i = 0; i < ELEMENTS(vmproc); i++) { vmproc[i].vm_slot = i; } /* Initialize ACL data structures. */ acl_init(); /* region management initialization. */ map_region_init(); /* Initialize tables to all physical memory. */ mem_init(mem_chunks); /* Architecture-dependent initialization. */ init_proc(VM_PROC_NR); pt_init(); /* Acquire kernel ipc vectors that weren't available * before VM had determined kernel mappings */ __minix_init(); /* The kernel's freelist does not include boot-time modules; let * the allocator know that the total memory is bigger. */ for (mod = &kernel_boot_info.module_list[0]; mod < &kernel_boot_info.module_list[kernel_boot_info.mods_with_kernel-1]; mod++) { phys_bytes len = mod->mod_end-mod->mod_start+1; len = roundup(len, VM_PAGE_SIZE); mem_add_total_pages(len/VM_PAGE_SIZE); } kern_dyn = kernel_boot_info.kernel_allocated_bytes_dynamic; kern_static = kernel_boot_info.kernel_allocated_bytes; kern_static = roundup(kern_static, VM_PAGE_SIZE); mem_add_total_pages((kern_dyn + kern_static)/VM_PAGE_SIZE); /* Give these processes their own page table. */ for (ip = &kernel_boot_info.boot_procs[0]; ip < &kernel_boot_info.boot_procs[NR_BOOT_PROCS]; ip++) { struct vmproc *vmp; if(ip->proc_nr < 0) continue; assert(ip->start_addr); /* VM has already been set up by the kernel and pt_init(). * Any other boot process is already in memory and is set up * here. */ if(ip->proc_nr == VM_PROC_NR) continue; vmp = init_proc(ip->proc_nr); exec_bootproc(vmp, ip); /* Free the file blob */ assert(!(ip->start_addr % VM_PAGE_SIZE)); ip->len = roundup(ip->len, VM_PAGE_SIZE); free_mem(ABS2CLICK(ip->start_addr), ABS2CLICK(ip->len)); } /* Set up table of calls. */ #define CALLMAP(code, func) { int _cmi; \ _cmi=CALLNUMBER(code); \ assert(_cmi >= 0); \ assert(_cmi < NR_VM_CALLS); \ vm_calls[_cmi].vmc_func = (func); \ vm_calls[_cmi].vmc_name = #code; \ } /* Set call table to 0. This invalidates all calls (clear * vmc_func). */ memset(vm_calls, 0, sizeof(vm_calls)); /* Basic VM calls. */ CALLMAP(VM_MMAP, do_mmap); CALLMAP(VM_MUNMAP, do_munmap); CALLMAP(VM_MAP_PHYS, do_map_phys); CALLMAP(VM_UNMAP_PHYS, do_munmap); /* Calls from PM. */ CALLMAP(VM_EXIT, do_exit); CALLMAP(VM_FORK, do_fork); CALLMAP(VM_BRK, do_brk); CALLMAP(VM_WILLEXIT, do_willexit); CALLMAP(VM_NOTIFY_SIG, do_notify_sig); CALLMAP(VM_PROCCTL, do_procctl_notrans); /* Calls from VFS. */ CALLMAP(VM_VFS_REPLY, do_vfs_reply); CALLMAP(VM_VFS_MMAP, do_vfs_mmap); /* Calls from RS */ CALLMAP(VM_RS_SET_PRIV, do_rs_set_priv); CALLMAP(VM_RS_UPDATE, do_rs_update); CALLMAP(VM_RS_MEMCTL, do_rs_memctl); /* Generic calls. */ CALLMAP(VM_REMAP, do_remap); CALLMAP(VM_REMAP_RO, do_remap); CALLMAP(VM_GETPHYS, do_get_phys); CALLMAP(VM_SHM_UNMAP, do_munmap); CALLMAP(VM_GETREF, do_get_refcount); CALLMAP(VM_INFO, do_info); CALLMAP(VM_QUERY_EXIT, do_query_exit); CALLMAP(VM_WATCH_EXIT, do_watch_exit); /* Cache blocks. */ CALLMAP(VM_MAPCACHEPAGE, do_mapcache); CALLMAP(VM_SETCACHEPAGE, do_setcache); CALLMAP(VM_FORGETCACHEPAGE, do_forgetcache); CALLMAP(VM_CLEARCACHE, do_clearcache); /* getrusage */ CALLMAP(VM_GETRUSAGE, do_getrusage); /* Initialize the structures for queryexit */ init_query_exit(); /* Mark VM instances. */ num_vm_instances = 1; vmproc[VM_PROC_NR].vm_flags |= VMF_VM_INSTANCE; /* Let SEF know about VM mmapped regions. */ s = sef_llvm_add_special_mem_region((void*)VM_OWN_HEAPBASE, VM_OWN_MMAPTOP-VM_OWN_HEAPBASE, "%MMAP_ALL"); if(s < 0) { printf("VM: st_add_special_mmapped_region failed %d\n", s); } } /*===========================================================================* * sef_cb_signal_handler * *===========================================================================*/ static void sef_cb_signal_handler(int signo) { /* Check for known kernel signals, ignore anything else. */ switch(signo) { /* There is a pending memory request from the kernel. */ case SIGKMEM: do_memory(); break; } /* It can happen that we get stuck receiving signals * without sef_receive() returning. We could need more memory * though. */ if(missing_spares > 0) { alloc_cycle(); /* pagetable code wants to be called */ } pt_clearmapcache(); } /*===========================================================================* * map_service * *===========================================================================*/ static int map_service(struct rprocpub *rpub) { /* Map a new service by initializing its call mask. */ int r, proc_nr; if ((r = vm_isokendpt(rpub->endpoint, &proc_nr)) != OK) { return r; } /* Copy the call mask. */ acl_set(&vmproc[proc_nr], rpub->vm_call_mask, !IS_RPUB_BOOT_USR(rpub)); return(OK); }