#include "fs.h" #include #include #include #include #include #include "buf.h" #include "inode.h" #include "super.h" #include #include FORWARD _PROTOTYPE( struct buf *rahead, (struct inode *rip, block_t baseblock, u64_t position, unsigned bytes_ahead) ); FORWARD _PROTOTYPE( int rw_chunk, (struct inode *rip, u64_t position, unsigned off, size_t chunk, unsigned left, int rw_flag, cp_grant_id_t gid, unsigned buf_off, unsigned int block_size, int *completed) ); PRIVATE char getdents_buf[GETDENTS_BUFSIZ]; PRIVATE off_t rdahedpos; /* position to read ahead */ PRIVATE struct inode *rdahed_inode; /* pointer to inode to read ahead */ /*===========================================================================* * fs_readwrite * *===========================================================================*/ PUBLIC int fs_readwrite(void) { int r, rw_flag, block_spec; int regular; cp_grant_id_t gid; off_t position, f_size, bytes_left; unsigned int off, cum_io, block_size, chunk; mode_t mode_word; int completed; struct inode *rip; size_t nrbytes; r = OK; /* Find the inode referred */ if ((rip = find_inode(fs_dev, (ino_t) fs_m_in.REQ_INODE_NR)) == NULL) return(EINVAL); mode_word = rip->i_mode & I_TYPE; regular = (mode_word == I_REGULAR || mode_word == I_NAMED_PIPE); block_spec = (mode_word == I_BLOCK_SPECIAL ? 1 : 0); /* Determine blocksize */ if (block_spec) { block_size = get_block_size( (dev_t) rip->i_zone[0]); f_size = MAX_FILE_POS; } else { block_size = rip->i_sp->s_block_size; f_size = rip->i_size; } /* Get the values from the request message */ rw_flag = (fs_m_in.m_type == REQ_READ ? READING : WRITING); gid = (cp_grant_id_t) fs_m_in.REQ_GRANT; position = (off_t) fs_m_in.REQ_SEEK_POS_LO; nrbytes = (size_t) fs_m_in.REQ_NBYTES; rdwt_err = OK; /* set to EIO if disk error occurs */ if (rw_flag == WRITING && !block_spec) { /* Check in advance to see if file will grow too big. */ if (position > (off_t) (rip->i_sp->s_max_size - nrbytes)) return(EFBIG); /* Clear the zone containing present EOF if hole about * to be created. This is necessary because all unwritten * blocks prior to the EOF must read as zeros. */ if(position > f_size) clear_zone(rip, f_size, 0); } cum_io = 0; /* Split the transfer into chunks that don't span two blocks. */ while (nrbytes > 0) { off = ((unsigned int) position) % block_size; /* offset in blk*/ chunk = min(nrbytes, block_size - off); if (rw_flag == READING) { bytes_left = f_size - position; if (position >= f_size) break; /* we are beyond EOF */ if (chunk > (unsigned int) bytes_left) chunk = bytes_left; } /* Read or write 'chunk' bytes. */ r = rw_chunk(rip, cvul64((unsigned long) position), off, chunk, nrbytes, rw_flag, gid, cum_io, block_size, &completed); if (r != OK) break; /* EOF reached */ if (rdwt_err < 0) break; /* Update counters and pointers. */ nrbytes -= chunk; /* bytes yet to be read */ cum_io += chunk; /* bytes read so far */ position += (off_t) chunk; /* position within the file */ } fs_m_out.RES_SEEK_POS_LO = position; /* It might change later and the VFS has to know this value */ /* On write, update file size and access time. */ if (rw_flag == WRITING) { if (regular || mode_word == I_DIRECTORY) { if (position > f_size) rip->i_size = position; } } /* Check to see if read-ahead is called for, and if so, set it up. */ if(rw_flag == READING && rip->i_seek == NO_SEEK && (unsigned int) position % block_size == 0 && (regular || mode_word == I_DIRECTORY)) { rdahed_inode = rip; rdahedpos = position; } rip->i_seek = NO_SEEK; if (rdwt_err != OK) r = rdwt_err; /* check for disk error */ if (rdwt_err == END_OF_FILE) r = OK; if (r == OK) { if (rw_flag == READING) rip->i_update |= ATIME; if (rw_flag == WRITING) rip->i_update |= CTIME | MTIME; rip->i_dirt = DIRTY; /* inode is thus now dirty */ } fs_m_out.RES_NBYTES = cum_io; return(r); } /*===========================================================================* * fs_breadwrite * *===========================================================================*/ PUBLIC int fs_breadwrite(void) { int r, rw_flag, completed; cp_grant_id_t gid; u64_t position; unsigned int off, cum_io, chunk, block_size; size_t nrbytes; /* Pseudo inode for rw_chunk */ struct inode rip; r = OK; /* Get the values from the request message */ rw_flag = (fs_m_in.m_type == REQ_BREAD ? READING : WRITING); gid = (cp_grant_id_t) fs_m_in.REQ_GRANT; position = make64((unsigned long) fs_m_in.REQ_SEEK_POS_LO, (unsigned long) fs_m_in.REQ_SEEK_POS_HI); nrbytes = (size_t) fs_m_in.REQ_NBYTES; block_size = get_block_size( (dev_t) fs_m_in.REQ_DEV2); rip.i_zone[0] = (zone_t) fs_m_in.REQ_DEV2; rip.i_mode = I_BLOCK_SPECIAL; rip.i_size = 0; rdwt_err = OK; /* set to EIO if disk error occurs */ cum_io = 0; /* Split the transfer into chunks that don't span two blocks. */ while (nrbytes > 0) { off = rem64u(position, block_size); /* offset in blk*/ chunk = min(nrbytes, block_size - off); /* Read or write 'chunk' bytes. */ r = rw_chunk(&rip, position, off, chunk, nrbytes, rw_flag, gid, cum_io, block_size, &completed); if (r != OK) break; /* EOF reached */ if (rdwt_err < 0) break; /* Update counters and pointers. */ nrbytes -= chunk; /* bytes yet to be read */ cum_io += chunk; /* bytes read so far */ position = add64ul(position, chunk); /* position within the file */ } fs_m_out.RES_SEEK_POS_LO = ex64lo(position); fs_m_out.RES_SEEK_POS_HI = ex64hi(position); if (rdwt_err != OK) r = rdwt_err; /* check for disk error */ if (rdwt_err == END_OF_FILE) r = OK; fs_m_out.RES_NBYTES = cum_io; return(r); } /*===========================================================================* * rw_chunk * *===========================================================================*/ PRIVATE int rw_chunk(rip, position, off, chunk, left, rw_flag, gid, buf_off, block_size, completed) register struct inode *rip; /* pointer to inode for file to be rd/wr */ u64_t position; /* position within file to read or write */ unsigned off; /* off within the current block */ unsigned int chunk; /* number of bytes to read or write */ unsigned left; /* max number of bytes wanted after position */ int rw_flag; /* READING or WRITING */ cp_grant_id_t gid; /* grant */ unsigned buf_off; /* offset in grant */ unsigned int block_size; /* block size of FS operating on */ int *completed; /* number of bytes copied */ { /* Read or write (part of) a block. */ register struct buf *bp; register int r = OK; int n, block_spec; block_t b; dev_t dev; *completed = 0; block_spec = (rip->i_mode & I_TYPE) == I_BLOCK_SPECIAL; if (block_spec) { b = div64u(position, block_size); dev = (dev_t) rip->i_zone[0]; } else { if (ex64hi(position) != 0) panic("rw_chunk: position too high"); b = read_map(rip, (off_t) ex64lo(position)); dev = rip->i_dev; } if (!block_spec && b == NO_BLOCK) { if (rw_flag == READING) { /* Reading from a nonexistent block. Must read as all zeros.*/ bp = get_block(NO_DEV, NO_BLOCK, NORMAL); /* get a buffer */ zero_block(bp); } else { /* Writing to a nonexistent block. Create and enter in inode.*/ if ((bp = new_block(rip, (off_t) ex64lo(position))) == NULL) return(err_code); } } else if (rw_flag == READING) { /* Read and read ahead if convenient. */ bp = rahead(rip, b, position, left); } else { /* Normally an existing block to be partially overwritten is first read * in. However, a full block need not be read in. If it is already in * the cache, acquire it, otherwise just acquire a free buffer. */ n = (chunk == block_size ? NO_READ : NORMAL); if (!block_spec && off == 0 && (off_t) ex64lo(position) >= rip->i_size) n = NO_READ; bp = get_block(dev, b, n); } /* In all cases, bp now points to a valid buffer. */ if (bp == NULL) panic("bp not valid in rw_chunk; this can't happen"); if (rw_flag == WRITING && chunk != block_size && !block_spec && (off_t) ex64lo(position) >= rip->i_size && off == 0) { zero_block(bp); } if (rw_flag == READING) { /* Copy a chunk from the block buffer to user space. */ r = sys_safecopyto(VFS_PROC_NR, gid, (vir_bytes) buf_off, (vir_bytes) (bp->b_data+off), (size_t) chunk, D); } else { /* Copy a chunk from user space to the block buffer. */ r = sys_safecopyfrom(VFS_PROC_NR, gid, (vir_bytes) buf_off, (vir_bytes) (bp->b_data+off), (size_t) chunk, D); bp->b_dirt = DIRTY; } n = (off + chunk == block_size ? FULL_DATA_BLOCK : PARTIAL_DATA_BLOCK); put_block(bp, n); return(r); } /*===========================================================================* * read_map * *===========================================================================*/ PUBLIC block_t read_map(rip, position) register struct inode *rip; /* ptr to inode to map from */ off_t position; /* position in file whose blk wanted */ { /* Given an inode and a position within the corresponding file, locate the * block (not zone) number in which that position is to be found and return it. */ struct buf *bp; zone_t z; int scale, boff, index, zind, ex; unsigned int dzones, nr_indirects; block_t b; unsigned long excess, zone, block_pos; scale = rip->i_sp->s_log_zone_size; /* for block-zone conversion */ block_pos = position/rip->i_sp->s_block_size; /* relative blk # in file */ zone = block_pos >> scale; /* position's zone */ boff = (int) (block_pos - (zone << scale) ); /* relative blk # within zone */ dzones = rip->i_ndzones; nr_indirects = rip->i_nindirs; /* Is 'position' to be found in the inode itself? */ if (zone < dzones) { zind = (int) zone; /* index should be an int */ z = rip->i_zone[zind]; if (z == NO_ZONE) return(NO_BLOCK); b = (block_t) ((z << scale) + boff); return(b); } /* It is not in the inode, so it must be single or double indirect. */ excess = zone - dzones; /* first Vx_NR_DZONES don't count */ if (excess < nr_indirects) { /* 'position' can be located via the single indirect block. */ z = rip->i_zone[dzones]; } else { /* 'position' can be located via the double indirect block. */ if ( (z = rip->i_zone[dzones+1]) == NO_ZONE) return(NO_BLOCK); excess -= nr_indirects; /* single indir doesn't count*/ b = (block_t) z << scale; ASSERT(rip->i_dev != NO_DEV); bp = get_block(rip->i_dev, b, NORMAL); /* get double indirect block */ index = (int) (excess/nr_indirects); ASSERT(bp->b_dev != NO_DEV); ASSERT(bp->b_dev == rip->i_dev); z = rd_indir(bp, index); /* z= zone for single*/ put_block(bp, INDIRECT_BLOCK); /* release double ind block */ excess = excess % nr_indirects; /* index into single ind blk */ } /* 'z' is zone num for single indirect block; 'excess' is index into it. */ if (z == NO_ZONE) return(NO_BLOCK); b = (block_t) z << scale; /* b is blk # for single ind */ bp = get_block(rip->i_dev, b, NORMAL); /* get single indirect block */ ex = (int) excess; /* need an integer */ z = rd_indir(bp, ex); /* get block pointed to */ put_block(bp, INDIRECT_BLOCK); /* release single indir blk */ if (z == NO_ZONE) return(NO_BLOCK); b = (block_t) ((z << scale) + boff); return(b); } /*===========================================================================* * rd_indir * *===========================================================================*/ PUBLIC zone_t rd_indir(bp, index) struct buf *bp; /* pointer to indirect block */ int index; /* index into *bp */ { /* Given a pointer to an indirect block, read one entry. The reason for * making a separate routine out of this is that there are four cases: * V1 (IBM and 68000), and V2 (IBM and 68000). */ struct super_block *sp; zone_t zone; /* V2 zones are longs (shorts in V1) */ if(bp == NULL) panic("rd_indir() on NULL"); sp = get_super(bp->b_dev); /* need super block to find file sys type */ /* read a zone from an indirect block */ if (sp->s_version == V1) zone = (zone_t) conv2(sp->s_native, (int) bp->b_v1_ind[index]); else zone = (zone_t) conv4(sp->s_native, (long) bp->b_v2_ind[index]); if (zone != NO_ZONE && (zone < (zone_t) sp->s_firstdatazone || zone >= sp->s_zones)) { printf("Illegal zone number %ld in indirect block, index %d\n", (long) zone, index); panic("check file system"); } return(zone); } /*===========================================================================* * read_ahead * *===========================================================================*/ PUBLIC void read_ahead() { /* Read a block into the cache before it is needed. */ unsigned int block_size; register struct inode *rip; struct buf *bp; block_t b; if(!rdahed_inode) return; rip = rdahed_inode; /* pointer to inode to read ahead from */ block_size = get_block_size(rip->i_dev); rdahed_inode = NULL; /* turn off read ahead */ if ( (b = read_map(rip, rdahedpos)) == NO_BLOCK) return; /* at EOF */ assert(rdahedpos > 0); /* So we can safely cast it to unsigned below */ bp = rahead(rip, b, cvul64( (unsigned long) rdahedpos), block_size); put_block(bp, PARTIAL_DATA_BLOCK); } /*===========================================================================* * rahead * *===========================================================================*/ PRIVATE struct buf *rahead(rip, baseblock, position, bytes_ahead) register struct inode *rip; /* pointer to inode for file to be read */ block_t baseblock; /* block at current position */ u64_t position; /* position within file */ unsigned bytes_ahead; /* bytes beyond position for immediate use */ { /* Fetch a block from the cache or the device. If a physical read is * required, prefetch as many more blocks as convenient into the cache. * This usually covers bytes_ahead and is at least BLOCKS_MINIMUM. * The device driver may decide it knows better and stop reading at a * cylinder boundary (or after an error). Rw_scattered() puts an optional * flag on all reads to allow this. */ /* Minimum number of blocks to prefetch. */ # define BLOCKS_MINIMUM (nr_bufs < 50 ? 18 : 32) int block_spec, scale, read_q_size; unsigned int blocks_ahead, fragment, block_size; block_t block, blocks_left; off_t ind1_pos; dev_t dev; struct buf *bp; static unsigned int readqsize = 0; static struct buf **read_q; if(readqsize != nr_bufs) { if(readqsize > 0) { assert(read_q != NULL); free(read_q); } if(!(read_q = malloc(sizeof(read_q[0])*nr_bufs))) panic("couldn't allocate read_q"); readqsize = nr_bufs; } block_spec = (rip->i_mode & I_TYPE) == I_BLOCK_SPECIAL; if (block_spec) dev = (dev_t) rip->i_zone[0]; else dev = rip->i_dev; block_size = get_block_size(dev); block = baseblock; bp = get_block(dev, block, PREFETCH); if (bp->b_dev != NO_DEV) return(bp); /* The best guess for the number of blocks to prefetch: A lot. * It is impossible to tell what the device looks like, so we don't even * try to guess the geometry, but leave it to the driver. * * The floppy driver can read a full track with no rotational delay, and it * avoids reading partial tracks if it can, so handing it enough buffers to * read two tracks is perfect. (Two, because some diskette types have * an odd number of sectors per track, so a block may span tracks.) * * The disk drivers don't try to be smart. With todays disks it is * impossible to tell what the real geometry looks like, so it is best to * read as much as you can. With luck the caching on the drive allows * for a little time to start the next read. * * The current solution below is a bit of a hack, it just reads blocks from * the current file position hoping that more of the file can be found. A * better solution must look at the already available zone pointers and * indirect blocks (but don't call read_map!). */ fragment = rem64u(position, block_size); position = sub64u(position, fragment); bytes_ahead += fragment; blocks_ahead = (bytes_ahead + block_size - 1) / block_size; if (block_spec && rip->i_size == 0) { blocks_left = (block_t) NR_IOREQS; } else { blocks_left = (block_t) (rip->i_size-ex64lo(position)+(block_size-1)) / block_size; /* Go for the first indirect block if we are in its neighborhood. */ if (!block_spec) { scale = rip->i_sp->s_log_zone_size; ind1_pos = (off_t) rip->i_ndzones * (block_size << scale); if ((off_t) ex64lo(position) <= ind1_pos && rip->i_size > ind1_pos) { blocks_ahead++; blocks_left++; } } } /* No more than the maximum request. */ if (blocks_ahead > NR_IOREQS) blocks_ahead = NR_IOREQS; /* Read at least the minimum number of blocks, but not after a seek. */ if (blocks_ahead < BLOCKS_MINIMUM && rip->i_seek == NO_SEEK) blocks_ahead = BLOCKS_MINIMUM; /* Can't go past end of file. */ if (blocks_ahead > blocks_left) blocks_ahead = blocks_left; read_q_size = 0; /* Acquire block buffers. */ for (;;) { read_q[read_q_size++] = bp; if (--blocks_ahead == 0) break; /* Don't trash the cache, leave 4 free. */ if (bufs_in_use >= nr_bufs - 4) break; block++; bp = get_block(dev, block, PREFETCH); if (bp->b_dev != NO_DEV) { /* Oops, block already in the cache, get out. */ put_block(bp, FULL_DATA_BLOCK); break; } } rw_scattered(dev, read_q, read_q_size, READING); return(get_block(dev, baseblock, NORMAL)); } /*===========================================================================* * fs_getdents * *===========================================================================*/ PUBLIC int fs_getdents(void) { register struct inode *rip; int o, r, done; unsigned int block_size, len, reclen; ino_t ino; block_t b; cp_grant_id_t gid; size_t size, tmpbuf_off, userbuf_off; off_t pos, off, block_pos, new_pos, ent_pos; struct buf *bp; struct direct *dp; struct dirent *dep; char *cp; ino = (ino_t) fs_m_in.REQ_INODE_NR; gid = (gid_t) fs_m_in.REQ_GRANT; size = (size_t) fs_m_in.REQ_MEM_SIZE; pos = (off_t) fs_m_in.REQ_SEEK_POS_LO; /* Check whether the position is properly aligned */ if( (unsigned int) pos % DIR_ENTRY_SIZE) return(ENOENT); if( (rip = get_inode(fs_dev, ino)) == NULL) return(EINVAL); block_size = rip->i_sp->s_block_size; off = (pos % block_size); /* Offset in block */ block_pos = pos - off; done = FALSE; /* Stop processing directory blocks when done is set */ tmpbuf_off = 0; /* Offset in getdents_buf */ memset(getdents_buf, '\0', GETDENTS_BUFSIZ); /* Avoid leaking any data */ userbuf_off = 0; /* Offset in the user's buffer */ /* The default position for the next request is EOF. If the user's buffer * fills up before EOF, new_pos will be modified. */ new_pos = rip->i_size; for(; block_pos < rip->i_size; block_pos += block_size) { b = read_map(rip, block_pos); /* get block number */ /* Since directories don't have holes, 'b' cannot be NO_BLOCK. */ bp = get_block(rip->i_dev, b, NORMAL); /* get a dir block */ assert(bp != NULL); /* Search a directory block. */ if (block_pos < pos) dp = &bp->b_dir[off / DIR_ENTRY_SIZE]; else dp = &bp->b_dir[0]; for (; dp < &bp->b_dir[NR_DIR_ENTRIES(block_size)]; dp++) { if (dp->d_ino == 0) continue; /* Entry is not in use */ /* Compute the length of the name */ cp = memchr(dp->d_name, '\0', NAME_MAX); if (cp == NULL) len = NAME_MAX; else len = cp - (dp->d_name); /* Compute record length */ reclen = offsetof(struct dirent, d_name) + len + 1; o = (reclen % sizeof(long)); if (o != 0) reclen += sizeof(long) - o; /* Need the position of this entry in the directory */ ent_pos = block_pos + ((char *) dp - (bp->b_data)); if(tmpbuf_off + reclen > GETDENTS_BUFSIZ) { r = sys_safecopyto(VFS_PROC_NR, gid, (vir_bytes) userbuf_off, (vir_bytes) getdents_buf, (size_t) tmpbuf_off, D); if (r != OK) { put_inode(rip); return(r); } userbuf_off += tmpbuf_off; tmpbuf_off = 0; } if(userbuf_off + tmpbuf_off + reclen > size) { /* The user has no space for one more record */ done = TRUE; /* Record the position of this entry, it is the * starting point of the next request (unless the * postion is modified with lseek). */ new_pos = ent_pos; break; } dep = (struct dirent *) &getdents_buf[tmpbuf_off]; dep->d_ino = dp->d_ino; dep->d_off = ent_pos; dep->d_reclen = (unsigned short) reclen; memcpy(dep->d_name, dp->d_name, len); dep->d_name[len] = '\0'; tmpbuf_off += reclen; } put_block(bp, DIRECTORY_BLOCK); if(done) break; } if(tmpbuf_off != 0) { r = sys_safecopyto(VFS_PROC_NR, gid, (vir_bytes) userbuf_off, (vir_bytes) getdents_buf, (size_t) tmpbuf_off, D); if (r != OK) { put_inode(rip); return(r); } userbuf_off += tmpbuf_off; } if(done && userbuf_off == 0) r = EINVAL; /* The user's buffer is too small */ else { fs_m_out.RES_NBYTES = userbuf_off; fs_m_out.RES_SEEK_POS_LO = new_pos; rip->i_update |= ATIME; rip->i_dirt = DIRTY; r = OK; } put_inode(rip); /* release the inode */ return(r); }