/* This task handles the interface between the kernel and user-level servers. * System services can be accessed by doing a system call. System calls are * transformed into request messages, which are handled by this task. By * convention, a sys_call() is transformed in a SYS_CALL request message that * is handled in a function named do_call(). * * A private call vector is used to map all system calls to the functions that * handle them. The actual handler functions are contained in separate files * to keep this file clean. The call vector is used in the system task's main * loop to handle all incoming requests. * * In addition to the main sys_task() entry point, which starts the main loop, * there are several other minor entry points: * cause_sig: take action to cause a signal to occur * clear_proc: clean up a process in the process table, e.g. on exit * umap_local: map virtual address in LOCAL_SEG to physical * umap_remote: map virtual address in REMOTE_SEG to physical * umap_bios: map virtual address in BIOS_SEG to physical * numap_local: umap_local D segment from proc nr instead of pointer * virtual_copy: copy bytes from one virtual address to another * get_randomness: accumulate randomness in a buffer * generic_handler: interrupt handler for user-level device drivers * * Changes: * Apr 25, 2005 made mapping of call vector explicit (Jorrit N. Herder) * Oct 29, 2004 new clear_proc() function (Jorrit N. Herder) * Oct 17, 2004 generic handler and IRQ policies (Jorrit N. Herder) * Oct 10, 2004 dispatch system calls from call vector (Jorrit N. Herder) * Sep 30, 2004 source code documentation updated (Jorrit N. Herder) * Sep 10, 2004 system call functions in library (Jorrit N. Herder) * 2004 to 2005 various new syscalls (see syslib.h) (Jorrit N. Herder) */ #include "kernel.h" #include "system.h" #include #include #include #include #include #include #include "sendmask.h" #if (CHIP == INTEL) #include #include "protect.h" #endif /* Declaration of the call vector that defines the mapping of system calls * to handler functions. The vector is initialized in sys_init() with map(), * which makes sure the system call numbers are ok. No space is allocated, * because the dummy is declared extern. If an illegal call is given, the * array size will be negative and this won't compile. */ PUBLIC int (*call_vec[NR_SYS_CALLS])(message *m_ptr); #define map(call_nr, handler) \ {extern int dummy[NR_SYS_CALLS > (unsigned) (call_nr) ? 1 : -1];} \ call_vec[(call_nr)] = (handler) FORWARD _PROTOTYPE( void initialize, (void)); /*===========================================================================* * sys_task * *===========================================================================*/ PUBLIC void sys_task() { /* Main entry point of sys_task. Get the message and dispatch on type. */ static message m; register int result, debug; /* Initialize the system task. */ initialize(); while (TRUE) { /* Get work. */ receive(ANY, &m); /* Handle the request. */ if ((unsigned) m.m_type < NR_SYS_CALLS) { result = (*call_vec[m.m_type])(&m); /* do system call */ } else { kprintf("Warning, illegal SYSTASK request from %d.\n", m.m_source); result = EBADREQUEST; /* illegal message type */ } /* Send a reply, unless inhibited by a handler function. Use the kernel * function lock_send() to prevent a system call trap. The destination * is known to be blocked waiting for a message. */ if (result != EDONTREPLY) { debug = m.m_type; m.m_type = result; /* report status of call */ if (OK != lock_send(m.m_source, &m)) { kprintf("Warning, SYSTASK couldn't reply to request %d", debug); kprintf(" from %d\n", m.m_source); } } } } /*===========================================================================* * initialize * *===========================================================================*/ PRIVATE void initialize(void) { register struct proc *rp; int i; /* Initialize IRQ handler hooks. Mark all hooks available. */ for (i=0; ip_alarm_timer)); } /* Initialize the call vector to a safe default handler. Some system calls * may be disabled or nonexistant. Then explicitely map known calls to their * handler functions. This is done with a macro that gives a compile error * if an illegal call number is used. The ordering is not important here. */ for (i=0; ip_alarm_timer); /* Make sure the exiting process is no longer scheduled. */ if (rc->p_flags == 0) lock_unready(rc); /* If the process being terminated happens to be queued trying to send a * message (e.g., the process was killed by a signal, rather than it doing * an exit or it is forcibly shutdown in the stop sequence), then it must * be removed from the message queues. */ if (rc->p_flags & SENDING) { /* Check all proc slots to see if the exiting process is queued. */ for (rp = BEG_PROC_ADDR; rp < END_PROC_ADDR; rp++) { if (rp->p_caller_q == NIL_PROC) continue; #if DEAD_CODE if (rp->p_caller_q == rc) { /* Exiting process is on front of this queue. */ rp->p_caller_q = rc->p_q_link; break; } else { /* See if exiting process is in middle of queue. */ np = rp->p_caller_q; while ( ( xp = np->p_q_link) != NIL_PROC) { if (xp == rc) { np->p_q_link = xp->p_q_link; break; } else { np = xp; } } } #else /* Make sure that the exiting process is not on the queue. */ xpp = &rp->p_caller_q; while (*xpp != NIL_PROC) { /* check entire queue */ if (*xpp == rc) { /* process is on the queue */ *xpp = (*xpp)->p_q_link; /* replace by next process */ break; } xpp = &(*xpp)->p_q_link; /* proceed to next queued */ } #endif } } /* Check the table with IRQ hooks to see if hooks should be released. */ for (i=0; i < NR_IRQ_HOOKS; i++) { if (irq_hooks[i].proc_nr == proc_nr) irq_hooks[i].proc_nr = NONE; } /* Check if there are pending notifications. Release the buffers. */ while (rc->p_ntf_q != NULL) { i = (int) (rc->p_ntf_q - ¬ify_buffer[0]); free_bit(i, notify_bitmap, NR_NOTIFY_BUFS); rc->p_ntf_q = rc->p_ntf_q->n_next; } /* Now clean up the process table entry. Reset to defaults. */ kstrncpy(rc->p_name, "", P_NAME_LEN); /* unset name */ sigemptyset(&rc->p_pending); /* remove pending signals */ rc->p_pendcount = 0; /* all signals are gone */ rc->p_flags = 0; /* remove all flags */ rc->p_type = P_NONE; /* announce slot empty */ rc->p_sendmask = DENY_ALL_MASK; /* set most restrictive mask */ #if (CHIP == M68000) pmmu_delete(rc); /* we're done, remove tables */ #endif } /*===========================================================================* * get_randomness * *===========================================================================*/ PUBLIC void get_randomness() { /* Gather random information with help of the CPU's cycle counter. Only use * the lowest bytes because the highest bytes won't differ that much. */ unsigned long tsc_high; read_tsc(&tsc_high, &krandom.r_buf[krandom.r_next]); if (krandom.r_size < RANDOM_ELEMENTS) krandom.r_size ++; krandom.r_next = (krandom.r_next + 1 ) % RANDOM_ELEMENTS; } /*===========================================================================* * generic_handler * *===========================================================================*/ PUBLIC int generic_handler(hook) irq_hook_t *hook; { /* This function handles hardware interrupt in a simple and generic way. All * interrupts are transformed into messages to a driver. The IRQ line will be * reenabled if the policy says so. * In addition, the interrupt handler gathers random information in a buffer * by timestamping the interrupts. */ message m; /* Gather random information. */ get_randomness(); /* Build notification message and return. */ m.NOTIFY_TYPE = HARD_INT; m.NOTIFY_ARG = hook->irq; int_notify(hook->proc_nr, &m); return(hook->policy & IRQ_REENABLE); } /*===========================================================================* * cause_sig * *===========================================================================*/ PUBLIC void cause_sig(proc_nr, sig_nr) int proc_nr; /* process to be signalled */ int sig_nr; /* signal to be sent, 1 to _NSIG */ { /* A system process wants to send a signal to a process. Examples are: * TTY wanting to cause SIGINT upon getting a DEL * CLOCK wanting to cause SIGALRM when timer expires * FS wanting to cause SIGPIPE for a broken pipe * Signals are handled by sending a message to PM. This function handles the * signals and makes sure the PM gets them by sending a notification. The * process being signaled is blocked while PM has not finished all signals * for it. These signals are counted in p_pendcount, and the SIG_PENDING * flag is kept nonzero while there are some. It is not sufficient to ready * the process when PM is informed, because PM can block waiting for FS to * do a core dump. */ register struct proc *rp, *mmp; message m; rp = proc_addr(proc_nr); if (sigismember(&rp->p_pending, sig_nr)) return; /* this signal already pending */ sigaddset(&rp->p_pending, sig_nr); ++rp->p_pendcount; /* count new signal pending */ if (rp->p_flags & PENDING) return; /* another signal already pending */ if (rp->p_flags == 0) lock_unready(rp); rp->p_flags |= PENDING | SIG_PENDING; m.NOTIFY_TYPE = KSIG_PENDING; m.NOTIFY_ARG = 0; m.NOTIFY_FLAGS = 0; lock_notify(PM_PROC_NR, &m); } /*===========================================================================* * umap_bios * *===========================================================================*/ PUBLIC phys_bytes umap_bios(rp, vir_addr, bytes) register struct proc *rp; /* pointer to proc table entry for process */ vir_bytes vir_addr; /* virtual address in BIOS segment */ vir_bytes bytes; /* # of bytes to be copied */ { /* Calculate the physical memory address at the BIOS. Note: currently, BIOS * address zero (the first BIOS interrupt vector) is not considered, as an * error here, but since the physical address will be zero as well, the * calling function will think an error occurred. This is not a problem, * since no one uses the first BIOS interrupt vector. */ phys_bytes phys_addr; /* Check all acceptable ranges. */ #if 0 if (vir_addr >= BIOS_MEM_BEGIN && vir_addr + bytes <= BIOS_MEM_END) return (phys_bytes) vir_addr; else if (vir_addr >= UPPER_MEM_BEGIN && vir_addr + bytes <= UPPER_MEM_END) return (phys_bytes) vir_addr; #else if (vir_addr >= BIOS_MEM_BEGIN && vir_addr + bytes <= UPPER_MEM_END) return (phys_bytes) vir_addr; #endif kprintf("Warning, error in umap_bios, virtual address 0x%x\n", vir_addr); return 0; } /*===========================================================================* * umap_local * *===========================================================================*/ PUBLIC phys_bytes umap_local(rp, seg, vir_addr, bytes) register struct proc *rp; /* pointer to proc table entry for process */ int seg; /* T, D, or S segment */ vir_bytes vir_addr; /* virtual address in bytes within the seg */ vir_bytes bytes; /* # of bytes to be copied */ { /* Calculate the physical memory address for a given virtual address. */ vir_clicks vc; /* the virtual address in clicks */ phys_bytes pa; /* intermediate variables as phys_bytes */ #if (CHIP == INTEL) phys_bytes seg_base; #endif /* If 'seg' is D it could really be S and vice versa. T really means T. * If the virtual address falls in the gap, it causes a problem. On the * 8088 it is probably a legal stack reference, since "stackfaults" are * not detected by the hardware. On 8088s, the gap is called S and * accepted, but on other machines it is called D and rejected. * The Atari ST behaves like the 8088 in this respect. */ if (bytes <= 0) return( (phys_bytes) 0); if (vir_addr + bytes <= vir_addr) return 0; /* overflow */ vc = (vir_addr + bytes - 1) >> CLICK_SHIFT; /* last click of data */ #if (CHIP == INTEL) || (CHIP == M68000) if (seg != T) seg = (vc < rp->p_memmap[D].mem_vir + rp->p_memmap[D].mem_len ? D : S); #else if (seg != T) seg = (vc < rp->p_memmap[S].mem_vir ? D : S); #endif if((vir_addr>>CLICK_SHIFT) >= rp->p_memmap[seg].mem_vir + rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 ); if(vc >= rp->p_memmap[seg].mem_vir + rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 ); #if (CHIP == INTEL) seg_base = (phys_bytes) rp->p_memmap[seg].mem_phys; seg_base = seg_base << CLICK_SHIFT; /* segment origin in bytes */ #endif pa = (phys_bytes) vir_addr; #if (CHIP != M68000) pa -= rp->p_memmap[seg].mem_vir << CLICK_SHIFT; return(seg_base + pa); #endif #if (CHIP == M68000) pa -= (phys_bytes)rp->p_memmap[seg].mem_vir << CLICK_SHIFT; pa += (phys_bytes)rp->p_memmap[seg].mem_phys << CLICK_SHIFT; return(pa); #endif } /*==========================================================================* * numap_local * *==========================================================================*/ PUBLIC phys_bytes numap_local(proc_nr, vir_addr, bytes) int proc_nr; /* process number to be mapped */ vir_bytes vir_addr; /* virtual address in bytes within D seg */ vir_bytes bytes; /* # of bytes required in segment */ { /* Do umap_local() starting from a process number instead of a pointer. * This function is used by device drivers, so they need not know about the * process table. To save time, there is no 'seg' parameter. The segment * is always D. */ return(umap_local(proc_addr(proc_nr), D, vir_addr, bytes)); } /*===========================================================================* * umap_remote * *===========================================================================*/ PUBLIC phys_bytes umap_remote(rp, seg, vir_addr, bytes) register struct proc *rp; /* pointer to proc table entry for process */ int seg; /* index of remote segment */ vir_bytes vir_addr; /* virtual address in bytes within the seg */ vir_bytes bytes; /* # of bytes to be copied */ { /* Calculate the physical memory address for a given virtual address. */ struct far_mem *fm; if (bytes <= 0) return( (phys_bytes) 0); if (seg < 0 || seg >= NR_REMOTE_SEGS) return( (phys_bytes) 0); fm = &rp->p_farmem[seg]; if (! fm->in_use) return( (phys_bytes) 0); if (vir_addr + bytes > fm->mem_len) return( (phys_bytes) 0); return(fm->mem_phys + (phys_bytes) vir_addr); } /*==========================================================================* * virtual_copy * *==========================================================================*/ PUBLIC int virtual_copy(src_addr, dst_addr, bytes) struct vir_addr *src_addr; /* source virtual address */ struct vir_addr *dst_addr; /* destination virtual address */ vir_bytes bytes; /* # of bytes to copy */ { /* Copy bytes from virtual address src_addr to virtual address dst_addr. * Virtual addresses can be in ABS, LOCAL_SEG, REMOTE_SEG, or BIOS_SEG. */ struct vir_addr *vir_addr[2]; /* virtual source and destination address */ phys_bytes phys_addr[2]; /* absolute source and destination */ int seg_index; int i; /* Check copy count. */ if (bytes <= 0) { kprintf("v_cp: copy count problem <= 0\n", NO_NUM); return(EDOM); } /* Do some more checks and map virtual addresses to physical addresses. */ vir_addr[_SRC_] = src_addr; vir_addr[_DST_] = dst_addr; for (i=_SRC_; i<=_DST_; i++) { /* Get physical address. */ switch((vir_addr[i]->segment & SEGMENT_TYPE)) { case LOCAL_SEG: seg_index = vir_addr[i]->segment & SEGMENT_INDEX; phys_addr[i] = umap_local( proc_addr(vir_addr[i]->proc_nr), seg_index, vir_addr[i]->offset, bytes ); break; case REMOTE_SEG: seg_index = vir_addr[i]->segment & SEGMENT_INDEX; phys_addr[i] = umap_remote( proc_addr(vir_addr[i]->proc_nr), seg_index, vir_addr[i]->offset, bytes ); break; case BIOS_SEG: phys_addr[i] = umap_bios( proc_addr(vir_addr[i]->proc_nr), vir_addr[i]->offset, bytes ); break; case PHYS_SEG: phys_addr[i] = vir_addr[i]->offset; break; default: kprintf("v_cp: Unknown segment type: %d\n", vir_addr[i]->segment & SEGMENT_TYPE); return(EINVAL); } /* Check if mapping succeeded. */ if (phys_addr[i] <= 0 && vir_addr[i]->segment != PHYS_SEG) { kprintf("v_cp: Mapping failed ... phys <= 0\n", NO_NUM); return(EFAULT); } } /* Now copy bytes between physical addresseses. */ phys_copy(phys_addr[_SRC_], phys_addr[_DST_], (phys_bytes) bytes); return(OK); }