/* This file contains essentially all of the process and message handling. * It has one main entry point from the outside: * * sys_call: a system call, i.e., the kernel is trapped with an INT * * It also has several minor entry points to be used from the task level: * * lock_notify: send a notification to inform a process of a system event * lock_send: send a message to a process * lock_ready: put a process on one of the ready queues so it can be run * lock_unready: remove a process from the ready queues * lock_sched: a process has run too long; schedule another one * lock_pick_proc: pick a process to run (used by system initialization) * * Changes: * May 24, 2005 new, queued NOTIFY system call (Jorrit N. Herder) * Oct 28, 2004 non-blocking SEND and RECEIVE (Jorrit N. Herder) * Oct 28, 2004 rewrite of sys_call() (Jorrit N. Herder) * Oct 10, 2004 require BOTH for kernel sys_call() (Jorrit N. Herder) * (to protect kernel tasks from being blocked) * Aug 19, 2004 generalized ready()/unready() (Jorrit N. Herder) */ #include "kernel.h" #include #include #include "proc.h" #include "sendmask.h" /* Scheduling and message passing functions. The functions are available to * other parts of the kernel through lock_...(). The lock temporarily disables * interrupts to prevent race conditions. */ FORWARD _PROTOTYPE( int mini_send, (struct proc *caller_ptr, int dst, message *m_ptr, int may_block) ); FORWARD _PROTOTYPE( int mini_rec, (struct proc *caller_ptr, int src, message *m_ptr, int may_block) ); FORWARD _PROTOTYPE( int mini_notify, (struct proc *caller_ptr, int dst, message *m_ptr ) ); FORWARD _PROTOTYPE( void ready, (struct proc *rp) ); FORWARD _PROTOTYPE( void sched, (void) ); FORWARD _PROTOTYPE( void unready, (struct proc *rp) ); FORWARD _PROTOTYPE( void pick_proc, (void) ); #if (CHIP == M68000) FORWARD _PROTOTYPE( void cp_mess, (int src, struct proc *src_p, message *src_m, struct proc *dst_p, message *dst_m) ); #endif #if (CHIP == INTEL) #define CopyMess(s,sp,sm,dp,dm) \ cp_mess(s, (sp)->p_memmap[D].mem_phys, (vir_bytes)sm, (dp)->p_memmap[D].mem_phys, (vir_bytes)dm) #endif /* (CHIP == INTEL) */ #if (CHIP == M68000) /* M68000 does not have cp_mess() in assembly like INTEL. Declare prototype * for cp_mess() here and define the function below. Also define CopyMess. */ #endif /* (CHIP == M68000) */ /* Declare buffer space and a bit map for notification messages. */ PRIVATE struct notification notify_buffer[NR_NOTIFY_BUFS]; PRIVATE bitchunk_t notify_bitmap[BITMAP_CHUNKS(NR_NOTIFY_BUFS)]; /*===========================================================================* * sys_call * *===========================================================================*/ PUBLIC int sys_call(call_nr, src_dst, m_ptr) int call_nr; /* (NB_)SEND, (NB_)RECEIVE, BOTH */ int src_dst; /* src to receive from or dst to send to */ message *m_ptr; /* pointer to message in the caller's space */ { /* System calls are done by trapping to the kernel with an INT instruction. * The trap is caught and sys_call() is called to send or receive a message * (or both). The caller is always given by 'proc_ptr'. */ register struct proc *caller_ptr = proc_ptr; /* get pointer to caller */ int function = call_nr & SYSCALL_FUNC; /* get system call function */ int may_block = ! (call_nr & NON_BLOCKING); /* (dis)allow blocking? */ int mask_entry; /* bit to check in send mask */ int result; /* the system call's result */ /* Calls directed to the kernel may only be sendrec(), because tasks always * reply and may not block if the caller doesn't do receive(). Users also * may only use sendrec() to protect the process manager and file system. */ #if DEAD_CODE if ((iskernel(src_dst) || isuserp(caller_ptr)) && function != BOTH) { #else if (iskernel(src_dst) && function != BOTH) { #endif result = ECALLDENIED; /* BOTH was required */ } /* Verify that requested source and/ or destination is a valid process. */ else if (! isoksrc_dst(src_dst)) { result = EBADSRCDST; /* invalid process number */ } /* Now check if the call is known and try to perform the request. The only * system calls that exist in MINIX are sending and receiving messages. * Receiving is straightforward. Sending requires checks to see if sending * is allowed by the caller's send mask and to see if the destination is * alive. */ else { switch(function) { case SEND: /* fall through, SEND is done in BOTH */ case BOTH: if (! isalive(src_dst)) { result = EDEADDST; /* cannot send to the dead */ break; } mask_entry = isuser(src_dst) ? USER_PROC_NR : src_dst; if (! isallowed(caller_ptr->p_sendmask, mask_entry)) { kprintf("WARNING: sys_call denied %d ", caller_ptr->p_nr); kprintf("sending to %d\n", proc_addr(src_dst)->p_nr); result = ECALLDENIED; /* call denied by send mask */ break; } result = mini_send(caller_ptr, src_dst, m_ptr, may_block); if (function == SEND || result != OK) { break; /* done, or SEND failed */ } /* fall through for BOTH */ case RECEIVE: result = mini_rec(caller_ptr, src_dst, m_ptr, may_block); break; case NOTIFY: result = mini_notify(caller_ptr, src_dst, m_ptr); break; default: result = EBADCALL; /* illegal system call */ } } /* Now, return the result of the system call to the caller. */ return(result); } /*===========================================================================* * mini_send * *===========================================================================*/ PRIVATE int mini_send(caller_ptr, dst, m_ptr, may_block) register struct proc *caller_ptr; /* who is trying to send a message? */ int dst; /* to whom is message being sent? */ message *m_ptr; /* pointer to message buffer */ int may_block; /* (dis)allow blocking */ { /* Send a message from 'caller_ptr' to 'dst'. If 'dst' is blocked waiting * for this message, copy the message to it and unblock 'dst'. If 'dst' is * not waiting at all, or is waiting for another source, queue 'caller_ptr'. */ register struct proc *dst_ptr, *next_ptr; vir_bytes vb; /* message buffer pointer as vir_bytes */ vir_clicks vlo, vhi; /* virtual clicks containing message to send */ dst_ptr = proc_addr(dst); /* pointer to destination's proc entry */ #if ALLOW_GAP_MESSAGES /* This check allows a message to be anywhere in data or stack or gap. * It will have to be made more elaborate later for machines which * don't have the gap mapped. */ vb = (vir_bytes) m_ptr; vlo = vb >> CLICK_SHIFT; /* vir click for bottom of message */ vhi = (vb + MESS_SIZE - 1) >> CLICK_SHIFT; /* vir click for top of msg */ if (vlo < caller_ptr->p_memmap[D].mem_vir || vlo > vhi || vhi >= caller_ptr->p_memmap[S].mem_vir + caller_ptr->p_memmap[S].mem_len) return(EFAULT); #else /* Check for messages wrapping around top of memory or outside data seg. */ vb = (vir_bytes) m_ptr; vlo = vb >> CLICK_SHIFT; /* vir click for bottom of message */ vhi = (vb + MESS_SIZE - 1) >> CLICK_SHIFT; /* vir click for top of msg */ if (vhi < vlo || vhi - caller_ptr->p_memmap[D].mem_vir >= caller_ptr->p_memmap[D].mem_len) return(EFAULT); #endif /* Check for deadlock by 'caller_ptr' and 'dst' sending to each other. */ if (dst_ptr->p_flags & SENDING) { next_ptr = proc_addr(dst_ptr->p_sendto); while (TRUE) { if (next_ptr == caller_ptr) return(ELOCKED); if (next_ptr->p_flags & SENDING) next_ptr = proc_addr(next_ptr->p_sendto); else break; } } /* Check to see if 'dst' is blocked waiting for this message. */ if ( (dst_ptr->p_flags & (RECEIVING | SENDING)) == RECEIVING && (dst_ptr->p_getfrom == ANY || dst_ptr->p_getfrom == proc_number(caller_ptr))) { /* Destination is indeed waiting for this message. */ CopyMess(proc_number(caller_ptr), caller_ptr, m_ptr, dst_ptr, dst_ptr->p_messbuf); dst_ptr->p_flags &= ~RECEIVING; /* deblock destination */ if (dst_ptr->p_flags == 0) ready(dst_ptr); } else if (may_block) { /* Destination is not waiting. Block and queue caller. */ caller_ptr->p_messbuf = m_ptr; if (caller_ptr->p_flags == 0) unready(caller_ptr); caller_ptr->p_flags |= SENDING; caller_ptr->p_sendto = dst; /* Process is now blocked. Put in on the destination's queue. */ if ( (next_ptr = dst_ptr->p_caller_q) == NIL_PROC) dst_ptr->p_caller_q = caller_ptr; else { while (next_ptr->p_sendlink != NIL_PROC) next_ptr = next_ptr->p_sendlink; next_ptr->p_sendlink = caller_ptr; } caller_ptr->p_sendlink = NIL_PROC; } else { return(ENOTREADY); } return(OK); } /*===========================================================================* * mini_rec * *===========================================================================*/ PRIVATE int mini_rec(caller_ptr, src, m_ptr, may_block) register struct proc *caller_ptr; /* process trying to get message */ int src; /* which message source is wanted */ message *m_ptr; /* pointer to message buffer */ int may_block; /* (dis)allow blocking */ { /* A process or task wants to get a message. If one is already queued, * acquire it and deblock the sender. If no message from the desired source * is available, block the caller. */ register struct proc *sender_ptr; register struct proc *previous_ptr; register struct notification **ntf_q_pp; message m; int bit_nr, i; /* Check to see if a message from desired source is already available. */ if (!(caller_ptr->p_flags & SENDING)) { /* Check caller queue. */ for (sender_ptr = caller_ptr->p_caller_q; sender_ptr != NIL_PROC; previous_ptr = sender_ptr, sender_ptr = sender_ptr->p_sendlink) { if (src == ANY || src == proc_number(sender_ptr)) { /* An acceptable message has been found. */ CopyMess(proc_number(sender_ptr), sender_ptr, sender_ptr->p_messbuf, caller_ptr, m_ptr); if (sender_ptr == caller_ptr->p_caller_q) caller_ptr->p_caller_q = sender_ptr->p_sendlink; else previous_ptr->p_sendlink = sender_ptr->p_sendlink; if ((sender_ptr->p_flags &= ~SENDING) == 0) ready(sender_ptr); /* deblock sender */ return(OK); } } /* Check if there are pending notifications. */ ntf_q_pp = &caller_ptr->p_ntf_q; /* get pointer pointer */ while (*ntf_q_pp) { if (src == ANY || src == (*ntf_q_pp)->n_source) { /* Found notification. Assemble and copy message. */ m.NOTIFY_SOURCE = (*ntf_q_pp)->n_source; m.NOTIFY_TYPE = (*ntf_q_pp)->n_type; m.NOTIFY_FLAGS = (*ntf_q_pp)->n_flags; m.NOTIFY_ARG = (*ntf_q_pp)->n_arg; CopyMess((*ntf_q_pp)->n_source, proc_addr(HARDWARE), &m, caller_ptr, m_ptr); /* Remove notification from queue and return. */ bit_nr = ((long)(*ntf_q_pp) - (long) ¬ify_buffer[0]) / sizeof(struct notification); *ntf_q_pp = (*ntf_q_pp)->n_next;/* remove from queue */ free_bit(bit_nr, notify_bitmap, NR_NOTIFY_BUFS); return(OK); /* report success */ } ntf_q_pp = &(*ntf_q_pp)->n_next; /* proceed to next */ } } /* No suitable message is available. Block the process trying to receive, * unless this is not allowed by the system call. */ if (may_block) { caller_ptr->p_getfrom = src; caller_ptr->p_messbuf = m_ptr; if (caller_ptr->p_flags == 0) unready(caller_ptr); caller_ptr->p_flags |= RECEIVING; return(OK); } else { return(ENOTREADY); } } /*===========================================================================* * mini_notify * *===========================================================================*/ PRIVATE int mini_notify(caller_ptr, dst, m_ptr) register struct proc *caller_ptr; /* process trying to notify */ int dst; /* which process to notify */ message *m_ptr; /* pointer to message buffer */ { register struct proc *dst_ptr = proc_addr(dst); register struct notification *ntf_p ; register struct notification **ntf_q_pp; int ntf_index; message ntf_mess; /* Check to see if target is blocked waiting for this message. */ if ( (dst_ptr->p_flags & (RECEIVING | SENDING)) == RECEIVING && (dst_ptr->p_getfrom == ANY || dst_ptr->p_getfrom == proc_number(caller_ptr))) { /* Destination is indeed waiting for this message. */ CopyMess(proc_number(caller_ptr), caller_ptr, m_ptr, dst_ptr, dst_ptr->p_messbuf); dst_ptr->p_flags &= ~RECEIVING; /* deblock destination */ if (dst_ptr->p_flags == 0) ready(dst_ptr); } /* Destination is not ready. Add the notification to the pending queue. */ else { /* Get pointer to notification message. */ if (! istaskp(caller_ptr)) { CopyMess(proc_number(caller_ptr), caller_ptr, m_ptr, proc_addr(HARDWARE), &ntf_mess); m_ptr = &ntf_mess; } /* Enqueue the message. Existing notifications are overwritten with * the newer one. New notifications are added to the end of the list. */ ntf_q_pp = &dst_ptr->p_ntf_q; while (*ntf_q_pp) { /* Replace notifications with same source and type. */ if ((*ntf_q_pp)->n_type == m_ptr->m_type && (*ntf_q_pp)->n_source == m_ptr->m_source) { (*ntf_q_pp)->n_flags = m_ptr->NOTIFY_FLAGS; (*ntf_q_pp)->n_arg = m_ptr->NOTIFY_ARG; break; } return(OK); } /* Add to end of queue. Get a free notification buffer. */ if ((ntf_index = alloc_bit(notify_bitmap, NR_NOTIFY_BUFS)) < 0) return(ENOSPC); /* should be atomic! */ ntf_p = ¬ify_buffer[ntf_index]; ntf_p->n_source = proc_number(caller_ptr); ntf_p->n_type = m_ptr->NOTIFY_TYPE; ntf_p->n_flags = m_ptr->NOTIFY_FLAGS; ntf_p->n_arg = m_ptr->NOTIFY_ARG; *ntf_q_pp = ntf_p; } return(OK); } /*==========================================================================* * lock_notify * *==========================================================================*/ PUBLIC int lock_notify(src, dst, m_ptr) int src; /* who is trying to send a message? */ int dst; /* to whom is message being sent? */ message *m_ptr; /* pointer to message buffer */ { /* Safe gateway to mini_notify() for tasks. */ int result; lock(); result = mini_notify(proc_addr(src), dst, m_ptr); unlock(); return(result); } /*===========================================================================* * pick_proc * *===========================================================================*/ PRIVATE void pick_proc() { /* Decide who to run now. A new process is selected by setting 'proc_ptr'. * When a fresh user (or idle) process is selected, record it in 'bill_ptr', * so the clock task can tell who to bill for system time. */ register struct proc *rp; /* process to run */ int q; /* iterate over queues */ /* Check each of the scheduling queues for ready processes. The number of * queues is defined in proc.h, and priorities are set in the task table. * The lowest queue contains IDLE, which is always ready. */ for (q=0; q < NR_SCHED_QUEUES; q++) { if ( (rp = rdy_head[q]) != NIL_PROC) { proc_ptr = rp; /* run process 'rp' next */ if (isuserp(rp) || isidlep(rp)) /* possible bill 'rp' */ bill_ptr = rp; return; } } } /*===========================================================================* * ready * *===========================================================================*/ PRIVATE void ready(rp) register struct proc *rp; /* this process is now runnable */ { /* Add 'rp' to one of the queues of runnable processes. */ int q = rp->p_priority; /* scheduling queue to use */ /* Processes, in principle, are added to the end of the queue. However, * user processes are added in front of the queue, because this is a bit * fairer to I/O bound processes. */ if (isuserp(rp)) { /* add to front of queue */ if (rdy_head[q] == NIL_PROC) rdy_tail[q] = rp; rp->p_nextready = rdy_head[q]; /* add to front of queue */ rdy_head[q] = rp; } else { if (rdy_head[q] != NIL_PROC) rdy_tail[q]->p_nextready = rp; /* add to end of queue */ else rdy_head[q] = rp; /* add to empty queue */ rdy_tail[q] = rp; rp->p_nextready = NIL_PROC; } /* Run 'rp' next if it has a higher priority than 'proc_ptr'. This actually * should be done via pick_proc(), but the message passing functions rely * on this side-effect. */ if (rp->p_priority < proc_ptr->p_priority) proc_ptr = rp; } /*===========================================================================* * unready * *===========================================================================*/ PRIVATE void unready(rp) register struct proc *rp; /* this process is no longer runnable */ { /* A process has blocked. See ready for a description of the queues. */ register struct proc *xp; register struct proc **qtail; /* queue's rdy_tail */ int q = rp->p_priority; /* queue to use */ /* Side-effect for tasks: check if the task's stack still is ok? */ if (istaskp(rp)) { if (*rp->p_stguard != STACK_GUARD) panic("stack overrun by task", proc_number(rp)); } /* Now make sure that the process is not in its ready queue. Remove the * process if it is found. A process can be made unready even if it is not * running by being sent a signal that kills it. */ if ( (xp = rdy_head[q]) != NIL_PROC) { /* ready queue is empty */ if (xp == rp) { /* check head of queue */ rdy_head[q] = xp->p_nextready; /* new head of queue */ if (rp == proc_ptr) /* current process removed */ pick_proc(); /* pick new process to run */ } else { /* check body of queue */ while (xp->p_nextready != rp) /* stop if process is next */ if ( (xp = xp->p_nextready) == NIL_PROC) return; xp->p_nextready = xp->p_nextready->p_nextready; if (rdy_tail[q] == rp) /* possibly update tail */ rdy_tail[q] = rp; } } } /*===========================================================================* * sched * *===========================================================================*/ PRIVATE void sched() { /* The current process has run too long. If another low priority (user) * process is runnable, put the current process on the end of the user queue, * possibly promoting another user to head of the queue. */ if (rdy_head[PPRI_USER] == NIL_PROC) return; /* One or more user processes queued. */ rdy_tail[PPRI_USER]->p_nextready = rdy_head[PPRI_USER]; rdy_tail[PPRI_USER] = rdy_head[PPRI_USER]; rdy_head[PPRI_USER] = rdy_head[PPRI_USER]->p_nextready; rdy_tail[PPRI_USER]->p_nextready = NIL_PROC; pick_proc(); } /*==========================================================================* * lock_pick_proc * *==========================================================================*/ PUBLIC void lock_pick_proc() { /* Safe gateway to pick_proc() for tasks. */ lock(); pick_proc(); unlock(); } /*==========================================================================* * lock_send * *==========================================================================*/ PUBLIC int lock_send(src, dst, m_ptr) int src; /* who is trying to send a message? */ int dst; /* to whom is message being sent? */ message *m_ptr; /* pointer to message buffer */ { /* Safe gateway to mini_send() for tasks. */ int result; lock(); result = mini_send(proc_addr(src), dst, m_ptr, FALSE); unlock(); return(result); } /*==========================================================================* * lock_ready * *==========================================================================*/ PUBLIC void lock_ready(rp) struct proc *rp; /* this process is now runnable */ { /* Safe gateway to ready() for tasks. */ lock(); ready(rp); unlock(); } /*==========================================================================* * lock_unready * *==========================================================================*/ PUBLIC void lock_unready(rp) struct proc *rp; /* this process is no longer runnable */ { /* Safe gateway to unready() for tasks. */ lock(); unready(rp); unlock(); } /*==========================================================================* * lock_sched * *==========================================================================*/ PUBLIC void lock_sched() { /* Safe gateway to sched() for tasks. */ lock(); sched(); unlock(); }