Commit graph

10 commits

Author SHA1 Message Date
Ben Gras
7336a67dfe retire PUBLIC, PRIVATE and FORWARD 2012-03-25 21:58:14 +02:00
Tomas Hruby
06b6e5624a SMP - Changed prototype of sys_schedule()
- sys_schedule can change only selected values, -1 means that the
  current value should be kept unchanged. For instance we mostly want
  to change the scheduling quantum and priority but we want to keep
  the process at the current cpu

- RS can hand off its processes to scheduler

- service can read the destination cpu from system.conf

- RS can pass the information farther
2010-09-15 14:10:42 +00:00
Erik van der Kouwe
98725c443e Fix RS warning at start-up by inheriting scdeduling properties from init for unprivileged children of system processes 2010-07-16 14:56:05 +00:00
Erik van der Kouwe
23284ee7bd User-space scheduling for system processes 2010-07-01 08:32:33 +00:00
Tomas Hruby
b09bcf6779 Scheduling server (by Bjorn Swift)
In this second phase, scheduling is moved from PM to its own
scheduler (see r6557 for phase one). In the next phase we hope to a)
include useful information in the "out of quantum" message and b)
create some simple scheduling policy that makes use of that
information.

When the system starts up, PM will iterate over its process table and
ask SCHED to take over scheduling unprivileged processes. This is
done by sending a SCHEDULING_START message to SCHED. This message
includes the processes endpoint, the parent's endpoint and its nice
level. The scheduler adds this process to its schedproc table, issues
a schedctl, and returns its own endpoint to PM - as the endpoint of
the effective scheduler. When a process terminates, a SCHEDULING_STOP
message is sent to the scheduler.

The reason for this effective endpoint is for future compatibility.
Some day, we may have a scheduler that, instead of scheduling the
process itself, forwards the SCHEDULING_START message on to another
scheduler.

PM has information on who schedules whom. As such, scheduling
messages from user-land are sent through PM. An example is when
processes change their priority, using nice(). In that case, a
getsetpriority message is sent to PM, which then sends a
SCHEDULING_SET_NICE to the process's effective scheduler.

When a process is forked through PM, it inherits its parent's
scheduler, but is spawned with an empty quantum. As before, a request
to fork a process flows through VM before returning to PM, which then
wakes up the child process. This flow has been modified slightly so
that PM notifies the scheduler of the new process, before waking up
the child process. If the scheduler fails to take over scheduling,
the child process is torn down and the fork fails with an erroneous
value.

Process priority is entirely decided upon using nice levels. PM
stores a copy of each process's nice level and when a child is
forked, its parent's nice level is sent in the SCHEDULING_START
message. How this level is mapped to a priority queue is up to the
scheduler. It should be noted that the nice level is used to
determine the max_priority and the parent could have been in a lower
priority when it was spawned. To prevent a CPU intensive process from
hawking the CPU by continuously forking children that get scheduled
in the max_priority, the scheduler should determine in which queue
the parent is currently scheduled, and schedule the child in that
same queue.

Other fixes: The USER_Q in kernel/proc.h was incorrectly defined as
NR_SCHED_QUEUES/2. That results in a "off by one" error when
converting priority->nice->priority for nice=0. This also had the
side effect that if someone were to set the MAX_USER_Q to something
else than 0, then USER_Q would be off.
2010-05-18 13:39:04 +00:00
Erik van der Kouwe
93f3bf5bda Fix wrong word 2010-04-28 20:37:08 +00:00
Tomas Hruby
86378ff645 PM remembers what it should schedule
- while PM implements fork also for RS it needs to remember what to
  schedule and what not. PM_SCHEDULED flag serves this purpose.

- PM only schedules processes that are descendaints of init, i.e. normal
  user processes

- after a process is forked PM schedules for the first time only
  processes that have PM_SCHEDULED set. The others are handled iether
  by kernel or some other scheduler
2010-04-13 10:45:08 +00:00
Tomas Hruby
1a31d158ad Restructure and simplyfycation of the scheduling code in PM a little bit.
- It introduces schedule_process() which makes a kernel call to set
  the scheduling parameters of a process. It is used in the next patch.
2010-04-10 15:24:49 +00:00
Arun Thomas
4ed3a0cf3a Convert kernel over to bsdmake 2010-04-01 22:22:33 +00:00
Tomas Hruby
b4cf88a04f Userspace scheduling
- cotributed by Bjorn Swift

- In this first phase, scheduling is moved from the kernel to the PM
  server. The next steps are to a) moving scheduling to its own server
  and b) include useful information in the "out of quantum" message,
  so that the scheduler can make use of this information.

- The kernel process table now keeps record of who is responsible for
  scheduling each process (p_scheduler). When this pointer is NULL,
  the process will be scheduled by the kernel. If such a process runs
  out of quantum, the kernel will simply renew its quantum an requeue
  it.

- When PM loads, it will take over scheduling of all running
  processes, except system processes, using sys_schedctl().
  Essentially, this only results in taking over init. As children
  inherit a scheduler from their parent, user space programs forked by
  init will inherit PM (for now) as their scheduler.

 - Once a process has been assigned a scheduler, and runs out of
   quantum, its RTS_NO_QUANTUM flag will be set and the process
   dequeued. The kernel will send a message to the scheduler, on the
   process' behalf, informing the scheduler that it has run out of
   quantum. The scheduler can take what ever action it pleases, based
   on its policy, and then reschedule the process using the
   sys_schedule() system call.

- Balance queues does not work as before. While the old in-kernel
  function used to renew the quantum of processes in the highest
  priority run queue, the user-space implementation only acts on
  processes that have been bumped down to a lower priority queue.
  This approach reacts slower to changes than the old one, but saves
  us sending a sys_schedule message for each process every time we
  balance the queues. Currently, when processes are moved up a
  priority queue, their quantum is also renewed, but this can be
  fiddled with.

- do_nice has been removed from kernel. PM answers to get- and
  setpriority calls, updates it's own nice variable as well as the
  max_run_queue. This will be refactored once scheduling is moved to a
  separate server. We will probably have PM update it's local nice
  value and then send a message to whoever is scheduling the process.

- changes to fix an issue in do_fork() where processes could run out
  of quantum but bypassing the code path that handles it correctly.
  The future plan is to remove the policy from do_fork() and implement
  it in userspace too.
2010-03-29 11:07:20 +00:00