Commit graph

56 commits

Author SHA1 Message Date
Lionel Sambuc
cc0c1fbd75 Message type for SYS_FORK
Change-Id: Ibcf4fdfec51129b2be3d667ec07aea0f42e3fd89
2014-07-28 17:05:49 +02:00
Thomas Cort
9f23acf410 kernel: spelling fixes
Change-Id: I73c759bdef98be35be77130895ae0ec497e1b954
2013-10-09 20:24:17 -04:00
Lukasz Hryniuk
06154a34a4 Some more 64bit function eradication.
. Replace 64bit funcions with operators in arch_clock.c
  . Replace 64bit funcions with operators in proc.c
  . Replace 64bit funcions with operators in vbox.c
  . Replace 64bit funcions with operators in driver.c
  . Eradicates is_zero64, make_zero64, neg64

Change-Id: Ie4e1242a73534f114725271b2e2365b2004cb7b9
2013-08-07 12:35:53 +00:00
Xiaoguang Sun
64f10ee644 Implement getrusage
Implement getrusage.
These fields of struct rusage are not supported and always set to zero at this time
long ru_nswap;           /* swaps */
long ru_inblock;         /* block input operations */
long ru_oublock;         /* block output operations */
long ru_msgsnd;          /* messages sent */
long ru_msgrcv;          /* messages received */
long ru_nvcsw;           /* voluntary context switches */
long ru_nivcsw;          /* involuntary context switches */

test75.c is the unit test for this new function

Change-Id: I3f1eb69de1fce90d087d76773b09021fc6106539
2013-07-01 23:00:47 +02:00
Ben Gras
604046faf3 kernel: trap-dependent state restore, trace fixes
. restore state depends on how saving of state was done;
	  also remember trap style in sig context
	. actually set and restore TRACEBIT with new trap styles;
	  have to remove it once process enters kernel though, done
	  in debug trap exception handler
	. introduce MF_STEP that makes arch-specific code
	  turn on trace bit instead of setting TRACEBIT directly,
	  a bit more arch-friendly and avoids keeping precious
	  state in per-process PSW arch-dependently
2013-01-08 15:47:37 +00:00
Arun Thomas
471a03a362 ARM support for kernel and vm 2012-10-07 21:38:03 -04:00
Arun Thomas
6723dcfab7 Replace MACHINE/CHIP macros with compiler macros 2012-08-06 17:49:22 +02:00
Ben Gras
50e2064049 No more intel/minix segments.
This commit removes all traces of Minix segments (the text/data/stack
memory map abstraction in the kernel) and significance of Intel segments
(hardware segments like CS, DS that add offsets to all addressing before
page table translation). This ultimately simplifies the memory layout
and addressing and makes the same layout possible on non-Intel
architectures.

There are only two types of addresses in the world now: virtual
and physical; even the kernel and processes have the same virtual
address space. Kernel and user processes can be distinguished at a
glance as processes won't use 0xF0000000 and above.

No static pre-allocated memory sizes exist any more.

Changes to booting:
        . The pre_init.c leaves the kernel and modules exactly as
          they were left by the bootloader in physical memory
        . The kernel starts running using physical addressing,
          loaded at a fixed location given in its linker script by the
          bootloader.  All code and data in this phase are linked to
          this fixed low location.
        . It makes a bootstrap pagetable to map itself to a
          fixed high location (also in linker script) and jumps to
          the high address. All code and data then use this high addressing.
        . All code/data symbols linked at the low addresses is prefixed by
          an objcopy step with __k_unpaged_*, so that that code cannot
          reference highly-linked symbols (which aren't valid yet) or vice
          versa (symbols that aren't valid any more).
        . The two addressing modes are separated in the linker script by
          collecting the unpaged_*.o objects and linking them with low
          addresses, and linking the rest high. Some objects are linked
          twice, once low and once high.
        . The bootstrap phase passes a lot of information (e.g. free memory
          list, physical location of the modules, etc.) using the kinfo
          struct.
        . After this bootstrap the low-linked part is freed.
        . The kernel maps in VM into the bootstrap page table so that VM can
          begin executing. Its first job is to make page tables for all other
          boot processes. So VM runs before RS, and RS gets a fully dynamic,
          VM-managed address space. VM gets its privilege info from RS as usual
          but that happens after RS starts running.
        . Both the kernel loading VM and VM organizing boot processes happen
	  using the libexec logic. This removes the last reason for VM to
	  still know much about exec() and vm/exec.c is gone.

Further Implementation:
        . All segments are based at 0 and have a 4 GB limit.
        . The kernel is mapped in at the top of the virtual address
          space so as not to constrain the user processes.
        . Processes do not use segments from the LDT at all; there are
          no segments in the LDT any more, so no LLDT is needed.
        . The Minix segments T/D/S are gone and so none of the
          user-space or in-kernel copy functions use them. The copy
          functions use a process endpoint of NONE to realize it's
          a physical address, virtual otherwise.
        . The umap call only makes sense to translate a virtual address
          to a physical address now.
        . Segments-related calls like newmap and alloc_segments are gone.
        . All segments-related translation in VM is gone (vir2map etc).
        . Initialization in VM is simpler as no moving around is necessary.
        . VM and all other boot processes can be linked wherever they wish
          and will be mapped in at the right location by the kernel and VM
          respectively.

Other changes:
        . The multiboot code is less special: it does not use mb_print
          for its diagnostics any more but uses printf() as normal, saving
          the output into the diagnostics buffer, only printing to the
          screen using the direct print functions if a panic() occurs.
        . The multiboot code uses the flexible 'free memory map list'
          style to receive the list of free memory if available.
        . The kernel determines the memory layout of the processes to
          a degree: it tells VM where the kernel starts and ends and
          where the kernel wants the top of the process to be. VM then
          uses this entire range, i.e. the stack is right at the top,
          and mmap()ped bits of memory are placed below that downwards,
          and the break grows upwards.

Other Consequences:
        . Every process gets its own page table as address spaces
          can't be separated any more by segments.
        . As all segments are 0-based, there is no distinction between
          virtual and linear addresses, nor between userspace and
          kernel addresses.
        . Less work is done when context switching, leading to a net
          performance increase. (8% faster on my machine for 'make servers'.)
	. The layout and configuration of the GDT makes sysenter and syscall
	  possible.
2012-07-15 22:30:15 +02:00
Ben Gras
a149be43fc use linker to align fpu state save area 2012-04-19 15:06:47 +02:00
Ben Gras
7336a67dfe retire PUBLIC, PRIVATE and FORWARD 2012-03-25 21:58:14 +02:00
Ben Gras
b984fa41df Revert "print kernel stacktrace for exceptions in kernel"
This reverts commit eff1369cab.

This was in a working branch and I only intended to commit
exception.c. But I committed the exact inverse. Sorry.
2011-07-22 15:01:44 +02:00
Ben Gras
eff1369cab print kernel stacktrace for exceptions in kernel
fpu alignment check feature, checksum feature
2011-07-22 11:03:45 +00:00
Ben Gras
c6e6aa8850 mark forked process as such in the kernel p_name
. helps debugging output; you can see the difference
    between parent and child easily (it's sometimes 
    confusing to see an expected endpoint number with
    an unexpected name, i.e. before exec())
  . when processes crash after fork and before exec, it's
    an instant hint that that's what's going on, instead of
    it being the parent (endpoint numbers don't usually convey
    this)
  . name returns to 'normal' after exec(), so *F isn't visible
    normally at all. (Except for for RS which forks apparently.)
2011-02-21 15:05:32 +00:00
Ben Gras
07bfb4f4e4 kernel - account for kernel cpu time (ipc, kcalls) in caller 2011-02-08 13:58:32 +00:00
David van Moolenbroek
b6f3b7e7f6 Kernel: statistical profiling fixes
- create name entries for forked processes as well;
- create name entries only for system processes.
2010-12-16 09:46:26 +00:00
Tomas Hruby
a665ae3de1 Userspace scheduling - exporting stats
- contributed by Bjorn Swift

- adds process accounting, for example counting the number of messages
  sent, how often the process was preemted and how much time it spent
  in the run queue. These statistics, along with the current cpu load,
  are sent back to the user-space scheduler in the Out Of Quantum
  message.

- the user-space scheduler may choose to make use of these statistics
  when making scheduling decisions. For isntance the cpu load becomes
  especially useful when scheduling on multiple cores.
2010-09-19 15:52:12 +00:00
Tomas Hruby
5b8b623765 SMP - lazy FPU
- when a process is migrated to a different CPU it may have an active
  FPU context in the processor registers. We must save it and migrate
  it together with the process.
2010-09-15 14:11:25 +00:00
Ben Gras
f6f814cb02 include, kernel: minor fixes to make compiling and linking work with clang.
(fixing warnings)
2010-07-06 11:59:19 +00:00
Tomas Hruby
97eb470bee Fix 2010-07-01 12:31:53 +00:00
Tomas Hruby
7920d48156 FPU cleanup
- last reference to MF_USED_FPU removed

- proc_used_fpu() used to test for MF_FPU_INITIALIZED
2010-07-01 12:23:25 +00:00
Erik van der Kouwe
23284ee7bd User-space scheduling for system processes 2010-07-01 08:32:33 +00:00
Tomas Hruby
6bc21b6992 Cycle counters zeroed after fork for the child 2010-06-18 14:01:34 +00:00
Tomas Hruby
360de619c0 No linear addresses in message delivery
- removes p_delivermsg_lin item from the process structure and code
  related to it

- as the send part, the receive does not need to use the
  PHYS_COPY_CATCH() and umap_local() couple.  

- The address space of the target process is installed before
  delivermsg() is called.

- unlike the linear address, the virtual address does not change when
  paging is turned on nor after fork().
2010-06-11 08:16:10 +00:00
Tomas Hruby
cbc9586c13 Lazy FPU
- FPU context is stored only if conflict between 2 FPU users or while
  exporting context of a process to userspace while it is the active
  user of FPU

- FPU has its owner (fpu_owner) which points to the process whose
  state is currently loaded in FPU

- the FPU exception is only turned on when scheduling a process which
  is not the owner of FPU

- FPU state is restored for the process that generated the FPU
  exception. This process runs immediately without letting scheduler
  to pick a new process to resolve the FPU conflict asap, to minimize
  the FPU thrashing and FPU exception hadler execution

- faster all non-FPU-exception kernel entries as FPU state is not
  checked nor saved

- removed MF_USED_FPU flag, only MF_FPU_INITIALIZED remains to signal
  that a process has used FPU in the past
2010-06-07 07:43:17 +00:00
Ben Gras
c5c25e7abc kernel/vm: change pde table info from single buffer to explicit per-process.
makes code in kernel more readable, and allows better sanity checking on
using the pde info.
2010-05-12 08:31:05 +00:00
Tomas Hruby
9b599bac1d Quantum in fork
- This patch removes the time slice split between parent and child in
  fork.

- The time slice of the parent remains unchanged and the child does
  not have any.

- If the process has a scheduler, the scheduler must assign the
  quantum and priority of the new process and let it run.

- If the child does not inherit a scheduler, it is scheduled by the
  dummy default kernel policy. (servers, drivers, etc.)

- In theory, the scheduler can change the quantum even of the parent
  process and implement any policy for splitting the quantum as
  neither the parent nor the child are runnable.  Sending the
  out-of_quantum message on behalf of the processes may look like the
  right solution, however, the scheduler would probably handle the
  message before the whole fork protocol is finished. This way the
  scheduler has absolute control when the process should become
  runnable.
2010-04-10 15:27:38 +00:00
Arun Thomas
4ed3a0cf3a Convert kernel over to bsdmake 2010-04-01 22:22:33 +00:00
Tomas Hruby
b4cf88a04f Userspace scheduling
- cotributed by Bjorn Swift

- In this first phase, scheduling is moved from the kernel to the PM
  server. The next steps are to a) moving scheduling to its own server
  and b) include useful information in the "out of quantum" message,
  so that the scheduler can make use of this information.

- The kernel process table now keeps record of who is responsible for
  scheduling each process (p_scheduler). When this pointer is NULL,
  the process will be scheduled by the kernel. If such a process runs
  out of quantum, the kernel will simply renew its quantum an requeue
  it.

- When PM loads, it will take over scheduling of all running
  processes, except system processes, using sys_schedctl().
  Essentially, this only results in taking over init. As children
  inherit a scheduler from their parent, user space programs forked by
  init will inherit PM (for now) as their scheduler.

 - Once a process has been assigned a scheduler, and runs out of
   quantum, its RTS_NO_QUANTUM flag will be set and the process
   dequeued. The kernel will send a message to the scheduler, on the
   process' behalf, informing the scheduler that it has run out of
   quantum. The scheduler can take what ever action it pleases, based
   on its policy, and then reschedule the process using the
   sys_schedule() system call.

- Balance queues does not work as before. While the old in-kernel
  function used to renew the quantum of processes in the highest
  priority run queue, the user-space implementation only acts on
  processes that have been bumped down to a lower priority queue.
  This approach reacts slower to changes than the old one, but saves
  us sending a sys_schedule message for each process every time we
  balance the queues. Currently, when processes are moved up a
  priority queue, their quantum is also renewed, but this can be
  fiddled with.

- do_nice has been removed from kernel. PM answers to get- and
  setpriority calls, updates it's own nice variable as well as the
  max_run_queue. This will be refactored once scheduling is moved to a
  separate server. We will probably have PM update it's local nice
  value and then send a message to whoever is scheduling the process.

- changes to fix an issue in do_fork() where processes could run out
  of quantum but bypassing the code path that handles it correctly.
  The future plan is to remove the policy from do_fork() and implement
  it in userspace too.
2010-03-29 11:07:20 +00:00
Ben Gras
0937d6c367 re-establish kernel assert()s.
use the regular <assert.h> assert() instead of vmassert() in
kernel. throw out some #if 0 code. fix a few assert() conditions.
enable by default.
2010-03-10 13:00:05 +00:00
Tomas Hruby
c6fec6866f No locking in kernel code
- No locking in RTS_(UN)SET macros

- No lock_notify()

- Removed unused lock_send()

- No lock/unlock macros anymore
2010-02-09 15:26:58 +00:00
Tomas Hruby
cca24d06d8 This patch removes the global variables who_p and who_e from the
kernel (sys task).  The main reason is that these would have to become
cpu local variables on SMP.  Once the system task is not a task but a
genuine part of the kernel there is even less reason to have these
extra variables as proc_ptr will already contain all neccessary
information. In addition converting who_e to the process pointer and
back again all the time will be avoided.

Although proc_ptr will contain all important information, accessing it
as a cpu local variable will be fairly expensive, hence the value
would be assigned to some on stack local variable. Therefore it is
better to add the 'caller' argument to the syscall handlers to pass
the value on stack anyway. It also clearly denotes on who's behalf is
the syscall being executed.

This patch also ANSIfies the syscall function headers.

Last but not least, it also fixes a potential bug in virtual_copy_f()
in case the check is disabled. So far the function in case of a
failure could possible reuse an old who_p in case this function had
not been called from the system task.

virtual_copy_f() takes the caller as a parameter too. In case the
checking is disabled, the caller must be NULL and non NULL if it is
enabled as we must be able to suspend the caller.
2010-02-03 09:04:48 +00:00
Kees van Reeuwijk
a7cee5bec4 Removed unused symbols.
Minor cleanups.
2010-01-22 22:01:08 +00:00
Cristiano Giuffrida
c5b309ff07 Merge of Wu's GSOC 09 branch (src.20090525.r4372.wu)
Main changes:
- COW optimization for safecopy.
- safemap, a grant-based interface for sharing memory regions between processes.
- Integration with safemap and complete rework of DS, supporting new data types
  natively (labels, memory ranges, memory mapped ranges).
- For further information:
  http://wiki.minix3.org/en/SummerOfCode2009/MemoryGrants

Additional changes not included in the original Wu's branch:
- Fixed unhandled case in VM when using COW optimization for safecopy in case
  of a block that has already been shared as SMAP.
- Better interface and naming scheme for sys_saferevmap and ds_retrieve_map
  calls.
- Better input checking in syslib: check for page alignment when creating
  memory mapping grants.
- DS notifies subscribers when an entry is deleted.
- Documented the behavior of indirect grants in case of memory mapping.
- Test suite in /usr/src/test/safeperf|safecopy|safemap|ds/* reworked
  and extended.
- Minor fixes and general cleanup.
- TO-DO: Grant ids should be generated and managed the way endpoints are to make
sure grant slots are never misreused.
2010-01-14 15:24:16 +00:00
David van Moolenbroek
fe982ca684 FPU: fix field names, compiler warning, long lines 2009-12-02 23:12:46 +00:00
Ben Gras
bd42705433 FPU context switching support by Evgeniy Ivanov. 2009-12-02 13:01:48 +00:00
Tomas Hruby
a972f4bacc All macros defining rts flags are prefixed with RTS_
- macros used with RTS_SET group of macros to define struct proc p_rts_flags are
  now prefixed with RTS_ to make things clear
2009-11-10 09:11:13 +00:00
David van Moolenbroek
b423d7b477 Merge of David's ptrace branch. Summary:
o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL
o PM signal handling logic should now work properly, even with debuggers
  being present
o Asynchronous PM/VFS protocol, full IPC support for senda(), and
  AMF_NOREPLY senda() flag

DETAILS

Process stop and delay call handling of PM:
o Added sys_runctl() kernel call with sys_stop() and sys_resume()
  aliases, for PM to stop and resume a process
o Added exception for sending/syscall-traced processes to sys_runctl(),
  and matching SIGKREADY pseudo-signal to PM
o Fixed PM signal logic to deal with requests from a process after
  stopping it (so-called "delay calls"), using the SIGKREADY facility
o Fixed various PM panics due to race conditions with delay calls versus
  VFS calls
o Removed special PRIO_STOP priority value
o Added SYS_LOCK RTS kernel flag, to stop an individual process from
  running while modifying its process structure

Signal and debugger handling in PM:
o Fixed debugger signals being dropped if a second signal arrives when
  the debugger has not retrieved the first one
o Fixed debugger signals being sent to the debugger more than once
o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR
  protocol message
o Detached debugger signals from general signal logic and from being
  blocked on VFS calls, meaning that even VFS can now be traced
o Fixed debugger being unable to receive more than one pending signal in
  one process stop
o Fixed signal delivery being delayed needlessly when multiple signals
  are pending
o Fixed wait test for tracer, which was returning for children that were
  not waited for
o Removed second parallel pending call from PM to VFS for any process
o Fixed process becoming runnable between exec() and debugger trap
o Added support for notifying the debugger before the parent when a
  debugged child exits
o Fixed debugger death causing child to remain stopped forever
o Fixed consistently incorrect use of _NSIG

Extensions to ptrace():
o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a
  debugger to and from a process
o Added T_SYSCALL ptrace request, to trace system calls
o Added T_SETOPT ptrace request, to set trace options
o Added TO_TRACEFORK trace option, to attach automatically to children
  of a traced process
o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon
  a successful exec() of the tracee
o Extended T_GETUSER ptrace support to allow retrieving a process's priv
  structure
o Removed T_STOP ptrace request again, as it does not help implementing
  debuggers properly
o Added MINIX3-specific ptrace test (test42)
o Added proper manual page for ptrace(2)

Asynchronous PM/VFS interface:
o Fixed asynchronous messages not being checked when receive() is called
  with an endpoint other than ANY
o Added AMF_NOREPLY senda() flag, preventing such messages from
  satisfying the receive part of a sendrec()
o Added asynsend3() that takes optional flags; asynsend() is now a
  #define passing in 0 as third parameter
o Made PM/VFS protocol asynchronous; reintroduced tell_fs()
o Made PM_BASE request/reply number range unique
o Hacked in a horrible temporary workaround into RS to deal with newly
  revealed RS-PM-VFS race condition triangle until VFS is asynchronous

System signal handling:
o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal
o Removed is-superuser check from PM's do_procstat() (aka getsigset())
o Added sigset macros to allow system processes to deal with the full
  signal set, rather than just the POSIX subset

Miscellaneous PM fixes:
o Split do_getset into do_get and do_set, merging common code and making
  structure clearer
o Fixed setpriority() being able to put to sleep processes using an
  invalid parameter, or revive zombie processes
o Made find_proc() global; removed obsolete proc_from_pid()
o Cleanup here and there

Also included:
o Fixed false-positive boot order kernel warning
o Removed last traces of old NOTIFY_FROM code

THINGS OF POSSIBLE INTEREST

o It should now be possible to run PM at any priority, even lower than
  user processes
o No assumptions are made about communication speed between PM and VFS,
  although communication must be FIFO
o A debugger will now receive incoming debuggee signals at kill time
  only; the process may not yet be fully stopped
o A first step has been made towards making the SYSTEM task preemptible
2009-09-30 09:57:22 +00:00
Ben Gras
cd8b915ed9 Primary goal for these changes is:
- no longer have kernel have its own page table that is loaded
    on every kernel entry (trap, interrupt, exception). the primary
    purpose is to reduce the number of required reloads.
Result:
  - kernel can only access memory of process that was running when
    kernel was entered
  - kernel must be mapped into every process page table, so traps to
    kernel keep working
Problem:
  - kernel must often access memory of arbitrary processes (e.g. send
    arbitrary processes messages); this can't happen directly any more;
    usually because that process' page table isn't loaded at all, sometimes
    because that memory isn't mapped in at all, sometimes because it isn't
    mapped in read-write.
So:
  - kernel must be able to map in memory of any process, in its own
    address space.
Implementation:
  - VM and kernel share a range of memory in which addresses of
    all page tables of all processes are available. This has two purposes:
      . Kernel has to know what data to copy in order to map in a range
      . Kernel has to know where to write the data in order to map it in
    That last point is because kernel has to write in the currently loaded
    page table.
  - Processes and kernel are separated through segments; kernel segments
    haven't changed.
  - The kernel keeps the process whose page table is currently loaded
    in 'ptproc.'
  - If it wants to map in a range of memory, it writes the value of the
    page directory entry for that range into the page directory entry
    in the currently loaded map. There is a slot reserved for such
    purposes. The kernel can then access this memory directly.
  - In order to do this, its segment has been increased (and the
    segments of processes start where it ends).
  - In the pagefault handler, detect if the kernel is doing
    'trappable' memory access (i.e. a pagefault isn't a fatal
     error) and if so,
       - set the saved instruction pointer to phys_copy_fault,
	 breaking out of phys_copy
       - set the saved eax register to the address of the page
	 fault, both for sanity checking and for checking in
	 which of the two ranges that phys_copy was called
	 with the fault occured
  - Some boot-time processes do not have their own page table,
    and are mapped in with the kernel, and separated with
    segments. The kernel detects this using HASPT. If such a
    process has to be scheduled, any page table will work and
    no page table switch is done.

Major changes in kernel are
  - When accessing user processes memory, kernel no longer
    explicitly checks before it does so if that memory is OK.
    It simply makes the mapping (if necessary), tries to do the
    operation, and traps the pagefault if that memory isn't present;
    if that happens, the copy function returns EFAULT.
    So all of the CHECKRANGE_OR_SUSPEND macros are gone.
  - Kernel no longer has to copy/read and parse page tables.
  - A message copying optimisation: when messages are copied, and
    the recipient isn't mapped in, they are copied into a buffer
    in the kernel. This is done in QueueMess. The next time
    the recipient is scheduled, this message is copied into
    its memory. This happens in schedcheck().
    This eliminates the mapping/copying step for messages, and makes
    it easier to deliver messages. This eliminates soft_notify.
  - Kernel no longer creates a page table at all, so the vm_setbuf
    and pagetable writing in memory.c is gone.

Minor changes in kernel are
  - ipc_stats thrown out, wasn't used
  - misc flags all renamed to MF_*
  - NOREC_* macros to enter and leave functions that should not
    be called recursively; just sanity checks really
  - code to fully decode segment selectors and descriptors
    to print on exceptions
  - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 14:31:52 +00:00
David van Moolenbroek
f2def7d360 Kernel: correct a few SYSTEM source documentation comments 2009-09-17 20:51:34 +00:00
David van Moolenbroek
323f0abdd6 Support for setitimer(ITIMER_VIRTUAL/ITIMER_PROF). New test (41) for setitimer. 2009-08-15 21:37:26 +00:00
David van Moolenbroek
c2aef85eda Clear trace bit for child on fork.
Without this, a forking single-stepped process will have its child
die from a TRAP signal right away.
2009-05-13 21:58:10 +00:00
Ben Gras
c078ec0331 Basic VM and other minor improvements.
Not complete, probably not fully debugged or optimized.
2008-11-19 12:26:10 +00:00
Ben Gras
41e9fedf87 Mostly bugfixes of bugs triggered by the test set.
bugfixes:
 SYSTEM:
 . removed
        rc->p_priv->s_flags = 0;
   for the priv struct shared by all user processes in get_priv(). this
   should only be done once. doing a SYS_PRIV_USER in sys_privctl()
   caused the flags of all user processes to be reset, so they were no
   longer PREEMPTIBLE. this happened when RS executed a policy script.
   (this broke test1 in the test set)

 VFS/MFS:
 . chown can change the mode of a file, and chmod arguments are only
   part of the full file mode so the full filemode is slightly magic.
   changed these calls so that the final modes are returned to VFS, so
   that the vnode can be kept up-to-date.
   (this broke test11 in the test set)

 MFS:
 . lookup() checked for sizeof(string) instead of sizeof(user_path),
   truncating long path names
   (caught by test 23)
 . truncate functions neglected to update ctime
   (this broke test16)

 VFS:
 . corner case of an empty filename lookup caused fields of a request
   not to be filled in in the lookup functions, not making it clear
   that the lookup had failed, causing messages to garbage processes,
   causing strange failures.
   (caught by test 30)
 . trust v_size in vnode when doing reads or writes on non-special
   files, truncating i/o where necessary; this is necessary for pipes,
   as MFS can't tell when a pipe has been truncated without it being
   told explicitly each time.
   when the last reader/writer on a pipe closes, tell FS about
   the new size using truncate_vn().
   (this broke test 25, among others)
 . permission check for chdir() had disappeared; added a
   forbidden() call
   (caught by test 23)

new code, shouldn't change anything:
 . introduced RTS_SET, RTS_UNSET, and RTS_ISSET macro's, and their
   LOCK variants. These macros set and clear the p_rts_flags field,
   causing a lot of duplicated logic like

       old_flags = rp->p_rts_flags;            /* save value of the flags */
       rp->p_rts_flags &= ~NO_PRIV;
       if (old_flags != 0 && rp->p_rts_flags == 0) lock_enqueue(rp);

   to change into the simpler

       RTS_LOCK_UNSET(rp, NO_PRIV);

   so the macros take care of calling dequeue() and enqueue() (or lock_*()),
   as the case may be). This makes the code a bit more readable and a
   bit less fragile.
 . removed return code from do_clocktick in CLOCK as it currently
   never replies
 . removed some debug code from VFS
 . fixed grant debug message in device.c
 
preemptive checks, tests, changes:
 . added return code checks of receive() to SYSTEM and CLOCK
 . O_TRUNC should never arrive at MFS (added sanity check and removed
   O_TRUNC code)
 . user_path declared with PATH_MAX+1 to let it be null-terminated
 . checks in MFS to see if strings passed by VFS are null-terminated
 
 IS:
 . static irq name table thrown out
2007-02-01 17:50:02 +00:00
Ben Gras
6f77685609 Split of architecture-dependent and -independent functions for i386,
mainly in the kernel and headers. This split based on work by
Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture
port.

 . kernel does not program the interrupt controller directly, do any
   other architecture-dependent operations, or contain assembly any more,
   but uses architecture-dependent functions in arch/$(ARCH)/.
 . architecture-dependent constants and types defined in arch/$(ARCH)/include.
 . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now,
   architecture-independent functions.
 . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls
   and live in arch/i386/do_* now.
 . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have
   gone, and 'machine.protected' is gone (and always taken to be 1 in i386).
   If 86 support is to return, it should be a new architecture.
 . prototypes for the architecture-dependent functions defined in
   kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h
 . /etc/make.conf included in makefiles and shell scripts that need to
   know the building architecture; it defines ARCH=<arch>, currently only
   i386.
 . some basic per-architecture build support outside of the kernel (lib)
 . in clock.c, only dequeue a process if it was ready
 . fixes for new include files

files deleted:
 . mpx/klib.s - only for choosing between mpx/klib86 and -386
 . klib86.s - only for 86

i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/:
 . mpx386.s (entry point)
 . klib386.s
 . sconst.h
 . exception.c
 . protect.c
 . protect.h
 . i8269.c
2006-12-22 15:22:27 +00:00
Philip Homburg
15b8fe54a8 Better initialization of the memory map of processes that are part of the
image. Removed NO_MAP flag.
2006-05-11 14:49:46 +00:00
Ben Gras
1335d5d700 'proc number' is process slot, 'endpoint' are generation-aware process
instance numbers, encoded and decoded using macros in <minix/endpoint.h>.

proc number -> endpoint migration
  . proc_nr in the interrupt hook is now an endpoint, proc_nr_e.
  . m_source for messages and notifies is now an endpoint, instead of
    proc number.
  . isokendpt() converts an endpoint to a process number, returns
    success (but fails if the process number is out of range, the
    process slot is not a living process, or the given endpoint
    number does not match the endpoint number in the process slot,
    indicating an old process).
  . okendpt() is the same as isokendpt(), but panic()s if the conversion
    fails. This is mainly used for decoding message.m_source endpoints,
    and other endpoint numbers in kernel data structures, which should
    always be correct.
  . if DEBUG_ENABLE_IPC_WARNINGS is enabled, isokendpt() and okendpt()
    get passed the __FILE__ and __LINE__ of the calling lines, and
    print messages about what is wrong with the endpoint number
    (out of range proc, empty proc, or inconsistent endpoint number),
    with the caller, making finding where the conversion failed easy
    without having to include code for every call to print where things
    went wrong. Sometimes this is harmless (wrong arg to a kernel call),
    sometimes it's a fatal internal inconsistency (bogus m_source).
  . some process table fields have been appended an _e to indicate it's
    become and endpoint.
  . process endpoint is stored in p_endpoint, without generation number.
    it turns out the kernel never needs the generation number, except
    when fork()ing, so it's decoded then.
  . kernel calls all take endpoints as arguments, not proc numbers.
    the one exception is sys_fork(), which needs to know in which slot
    to put the child.
2006-03-03 10:00:02 +00:00
Ben Gras
32514fb5f9 Al's system call -> kernel call renaming 2005-10-14 08:58:59 +00:00
Jorrit Herder
872687ddfc Scheduling updates to the kernel. Sched() function now is single point for
policy. Actual policy not yet implemented.

PM calculates nice values for processes in boot image.

IS debug dumps improved (Shift+F1-F4).
2005-08-22 15:14:11 +00:00
Jorrit Herder
a01645b788 New scheduling code in kernel. Work in progress.
Round-robin within one priority queue works fine.
Ageing algorithm to be done.
2005-08-19 16:43:28 +00:00
Jorrit Herder
e561081545 Miscellaneous clean ups and fixes to the kernel.
Support for FLOPPY in boot image. (Set controller=fd at boot monitor.)
Moved major device numbers to <minix/dmap.h> (maybe rename to dev.h?)
2005-08-04 09:26:36 +00:00