When an FS crashes, VFS will clean up resources tied to that FS:
- Pending requests to the FS are canceled (i.e., fail with EIO)
- Threads waiting for a reply are stopped (i.e., fail with EIO)
- Open files are marked invalid. Future operations on a file descriptor
will cause EBADF errors.
- vmnt entry is cleared, so in-flight system calls that got past the
file descriptor check but not yet talking to the crashed FS, will
fail with EIO.
- The reference counter of the mount point is decreased, effectively
removing the crashed FS from the file system tree. Descendants of
this part of the tree are unreachable by means of a path, but can
still be unmounted by feeding the block special file to unmount(2).
This patch also gets rid of the "not a known driver endpoint" messages
during shutdown.
Some code relies on having the file descriptor in m_in.fd. Consequently,
m_in is not only used to provide syscall parameters from user space to
VFS, but also as a global variable to store temporary data within VFS.
This has the ugly side effect that m_in gets overwritten during core
dumping.*
To work around this problem VFS now uses a so called "scratchpad" to
store temporary data that has to be globally accessible. This is a simple
table indexed by process number, just like fproc. The scratchpad allows
us to store the buffer pointer and buffer size for suspended system calls
(i.e., read, write, open, lock) instead of using fproc. This makes fproc
a bit smaller and fproc iterators a bit faster. Moreover, suspension of
processes becomes simpler altogether and suspended operations on pipes
are now less of a special case.
* This patch fixes a bug where due to unexpected m_in overwriting a
coredump would fail, and consequently resources are leaked. The coredump
was triggered with:
$ a() { a; }
$ a
This patch separates the character and block driver communication
protocols. The old character protocol remains the same, but a new
block protocol is introduced. The libdriver library is replaced by
two new libraries: libchardriver and libblockdriver. Their exposed
API, and drivers that use them, have been updated accordingly.
Together, libbdev and libblockdriver now completely abstract away
the message format used by the block protocol. As the memory driver
is both a character and a block device driver, it now implements its
own message loop.
The most important semantic change made to the block protocol is that
it is no longer possible to return both partial results and an error
for a single transfer. This simplifies the interaction between the
caller and the driver, as the I/O vector no longer needs to be copied
back. Also, drivers are now no longer supposed to decide based on the
layout of the I/O vector when a transfer should be cut short. Put
simply, transfers are now supposed to either succeed completely, or
result in an error.
After this patch, the state of the various pieces is as follows:
- block protocol: stable
- libbdev API: stable for synchronous communication
- libblockdriver API: needs slight revision (the drvlib/partition API
in particular; the threading API will also change shortly)
- character protocol: needs cleanup
- libchardriver API: needs cleanup accordingly
- driver restarts: largely unsupported until endpoint changes are
reintroduced
As a side effect, this patch eliminates several bugs, hacks, and gcc
-Wall and -W warnings all over the place. It probably introduces a
few new ones, too.
Update warning: this patch changes the protocol between MFS and disk
drivers, so in order to use old/new images, the MFS from the ramdisk
must be used to mount all file systems.