Coverity was flagging a recursive include between kernel.h and
cpulocals.h. As cpulocals.h also included proc.h, we can move that
include statement into kernel.h, and clean up the source files'
include statements accordingly.
. some strncpy/strcpy to strlcpy conversions
. new <minix/param.h> to avoid including other minix headers
that have colliding definitions with library and commands code,
causing parse warnings
. removed some dead code / assignments
adjust the smp booting procedure for segmentless operation. changes are
mostly due to gdt/idt being dependent on paging, because of the high
location, and paging being on much sooner because of that too.
also smaller fixes: redefine DESC_SIZE, fix kernel makefile variable name
(crosscompiling), some null pointer checks that trap now because of a
sparser pagetable, acpi sanity checking
This commit removes all traces of Minix segments (the text/data/stack
memory map abstraction in the kernel) and significance of Intel segments
(hardware segments like CS, DS that add offsets to all addressing before
page table translation). This ultimately simplifies the memory layout
and addressing and makes the same layout possible on non-Intel
architectures.
There are only two types of addresses in the world now: virtual
and physical; even the kernel and processes have the same virtual
address space. Kernel and user processes can be distinguished at a
glance as processes won't use 0xF0000000 and above.
No static pre-allocated memory sizes exist any more.
Changes to booting:
. The pre_init.c leaves the kernel and modules exactly as
they were left by the bootloader in physical memory
. The kernel starts running using physical addressing,
loaded at a fixed location given in its linker script by the
bootloader. All code and data in this phase are linked to
this fixed low location.
. It makes a bootstrap pagetable to map itself to a
fixed high location (also in linker script) and jumps to
the high address. All code and data then use this high addressing.
. All code/data symbols linked at the low addresses is prefixed by
an objcopy step with __k_unpaged_*, so that that code cannot
reference highly-linked symbols (which aren't valid yet) or vice
versa (symbols that aren't valid any more).
. The two addressing modes are separated in the linker script by
collecting the unpaged_*.o objects and linking them with low
addresses, and linking the rest high. Some objects are linked
twice, once low and once high.
. The bootstrap phase passes a lot of information (e.g. free memory
list, physical location of the modules, etc.) using the kinfo
struct.
. After this bootstrap the low-linked part is freed.
. The kernel maps in VM into the bootstrap page table so that VM can
begin executing. Its first job is to make page tables for all other
boot processes. So VM runs before RS, and RS gets a fully dynamic,
VM-managed address space. VM gets its privilege info from RS as usual
but that happens after RS starts running.
. Both the kernel loading VM and VM organizing boot processes happen
using the libexec logic. This removes the last reason for VM to
still know much about exec() and vm/exec.c is gone.
Further Implementation:
. All segments are based at 0 and have a 4 GB limit.
. The kernel is mapped in at the top of the virtual address
space so as not to constrain the user processes.
. Processes do not use segments from the LDT at all; there are
no segments in the LDT any more, so no LLDT is needed.
. The Minix segments T/D/S are gone and so none of the
user-space or in-kernel copy functions use them. The copy
functions use a process endpoint of NONE to realize it's
a physical address, virtual otherwise.
. The umap call only makes sense to translate a virtual address
to a physical address now.
. Segments-related calls like newmap and alloc_segments are gone.
. All segments-related translation in VM is gone (vir2map etc).
. Initialization in VM is simpler as no moving around is necessary.
. VM and all other boot processes can be linked wherever they wish
and will be mapped in at the right location by the kernel and VM
respectively.
Other changes:
. The multiboot code is less special: it does not use mb_print
for its diagnostics any more but uses printf() as normal, saving
the output into the diagnostics buffer, only printing to the
screen using the direct print functions if a panic() occurs.
. The multiboot code uses the flexible 'free memory map list'
style to receive the list of free memory if available.
. The kernel determines the memory layout of the processes to
a degree: it tells VM where the kernel starts and ends and
where the kernel wants the top of the process to be. VM then
uses this entire range, i.e. the stack is right at the top,
and mmap()ped bits of memory are placed below that downwards,
and the break grows upwards.
Other Consequences:
. Every process gets its own page table as address spaces
can't be separated any more by segments.
. As all segments are 0-based, there is no distinction between
virtual and linear addresses, nor between userspace and
kernel addresses.
. Less work is done when context switching, leading to a net
performance increase. (8% faster on my machine for 'make servers'.)
. The layout and configuration of the GDT makes sysenter and syscall
possible.
patch my fdmanana:
As recommended by the Intel 64 and IA-32 Architectures Developer's
Manual Volume 3A, the GDT and IDT base addresses should be aligned on an
8 byte boundary to yield better processor performance.
- kernel detects CPUs by searching ACPI tables for local apic nodes
- each CPU has its own TSS that points to its own stack. All cpus boot
on the same boot stack (in sequence) but switch to its private stack
as soon as they can.
- final booting code in main() placed in bsp_finish_booting() which is
executed only after the BSP switches to its final stack
- apic functions to send startup interrupts
- assembler functions to handle CPU features not needed for single cpu
mode like memory barries, HT detection etc.
- new files kernel/smp.[ch], kernel/arch/i386/arch_smp.c and
kernel/arch/i386/include/arch_smp.h
- 16-bit trampoline code for the APs. It is executed by each AP after
receiving startup IPIs it brings up the CPUs to 32bit mode and let
them spin in an infinite loop so they don't do any damage.
- implementation of kernel spinlock
- CONFIG_SMP and CONFIG_MAX_CPUS set by the build system
Move archtypes.h to include/ dir, since several servers require it. Move
fpu.h and stackframe.h to arch-specific header directory. Make source
files and makefiles aware of the new header locations.
this change
- makes panic() variadic, doing full printf() formatting -
no more NO_NUM, and no more separate printf() statements
needed to print extra info (or something in hex) before panicing
- unifies panic() - same panic() name and usage for everyone -
vm, kernel and rest have different names/syntax currently
in order to implement their own luxuries, but no longer
- throws out the 1st argument, to make source less noisy.
the panic() in syslib retrieves the server name from the kernel
so it should be clear enough who is panicing; e.g.
panic("sigaction failed: %d", errno);
looks like:
at_wini(73130): panic: sigaction failed: 0
syslib:panic.c: stacktrace: 0x74dc 0x2025 0x100a
- throws out report() - printf() is more convenient and powerful
- harmonizes/fixes the use of panic() - there were a few places
that used printf-style formatting (didn't work) and newlines
(messes up the formatting) in panic()
- throws out a few per-server panic() functions
- cleans up a tie-in of tty with panic()
merging printf() and panic() statements to be done incrementally.
- there are no tasks running, we don't need TASK_PRIVILEGE priviledge anymore
- as there is no ring 1 anymore, there is no need for level0() to call sensitive
code from ring 1 in ring 0
- 286 related macros removed as clean up
* Userspace change to use the new kernel calls
- _taskcall(SYSTASK...) changed to _kernel_call(...)
- int 32 reused for the kernel calls
- _do_kernel_call() to make the trap to kernel
- kernel_call() to make the actuall kernel call from C using
_do_kernel_call()
- unlike ipc call the kernel call always succeeds as kernel is
always available, however, kernel may return an error
* Kernel side implementation of kernel calls
- the SYSTEm task does not run, only the proc table entry is
preserved
- every data_copy(SYSTEM is no data_copy(KERNEL
- "locking" is an empty operation now as everything runs in
kernel
- sys_task() is replaced by kernel_call() which copies the
message into kernel, dispatches the call to its handler and
finishes by either copying the results back to userspace (if
need be) or by suspending the process because of VM
- suspended processes are later made runnable once the memory
issue is resolved, picked up by the scheduler and only at
this time the call is resumed (in fact restarted) which does
not need to copy the message from userspace as the message
is already saved in the process structure.
- no ned for the vmrestart queue, the scheduler will restart
the system calls
- no special case in do_vmctl(), all requests remove the
RTS_VMREQUEST flag
- the syscalls are pretty much just ipc calls, however, sendrec() is
used to implement system task (sys) calls
- sendrec() won't be used anymore for this, therefore ipc calls will
become pure ipc calls
Main changes:
- COW optimization for safecopy.
- safemap, a grant-based interface for sharing memory regions between processes.
- Integration with safemap and complete rework of DS, supporting new data types
natively (labels, memory ranges, memory mapped ranges).
- For further information:
http://wiki.minix3.org/en/SummerOfCode2009/MemoryGrants
Additional changes not included in the original Wu's branch:
- Fixed unhandled case in VM when using COW optimization for safecopy in case
of a block that has already been shared as SMAP.
- Better interface and naming scheme for sys_saferevmap and ds_retrieve_map
calls.
- Better input checking in syslib: check for page alignment when creating
memory mapping grants.
- DS notifies subscribers when an entry is deleted.
- Documented the behavior of indirect grants in case of memory mapping.
- Test suite in /usr/src/test/safeperf|safecopy|safemap|ds/* reworked
and extended.
- Minor fixes and general cleanup.
- TO-DO: Grant ids should be generated and managed the way endpoints are to make
sure grant slots are never misreused.
- local APIC timer used as the source of time
- PIC is still used as the hw interrupt controller as we don't have
enough info without ACPI or MPS to set up IO APICs
- remapping of APIC when switching paging on, uses the new mechanism
to tell VM what phys areas to map in kernel's virtual space
- one more step to SMP
based on code by Arun C.
- after a trap to kernel, the code automatically switches to kernel
stack, in the future local to the CPU
- k_reenter variable replaced by a test whether the CS is kernel cs or
not. The information is passed further if needed. Removes a global
variable which would need to be cpu local
- no need for global variables describing the exception or trap
context. This information is kept on stack and a pointer to this
structure is passed to the C code as a single structure
- removed loadedcr3 variable and its use replaced by reading the %cr3
register
- no need to redisable interrupts in restart() as they are already
disabled.
- unified handling of traps that push and don't push errorcode
- removed save() function as the process context is not saved directly
to process table but saved as required by the trap code. Essentially
it means that save() code is inlined everywhere not only in the
exception handling routine
- returning from syscall is more arch independent - it sets the retger
in C
- top of the x86 stack contains the current CPU id and pointer to the
currently scheduled process (the one right interrupted) so the mode
switch code can find where to save the context without need to use
proc_ptr which will be cpu local in the future and therefore
difficult to access in assembler and expensive to access in general
- some more clean up of level0 code. No need to read-back the argument
passed in
%eax from the proc structure. The mode switch code does not clobber
%the general registers and hence we can just call what is in %eax
- many assebly macros in sconst.h as they will be reused by the apic
assembly
- headers use the endpoint_t in syslib.h and the implmentation was using int
instead. Both uses endpoint_t now
- every variable named like proc, proc_nr or proc_nr_e of type endpoint_t has
name proc_ep now
- endpoint_t defined as u32_t not int
- no longer have kernel have its own page table that is loaded
on every kernel entry (trap, interrupt, exception). the primary
purpose is to reduce the number of required reloads.
Result:
- kernel can only access memory of process that was running when
kernel was entered
- kernel must be mapped into every process page table, so traps to
kernel keep working
Problem:
- kernel must often access memory of arbitrary processes (e.g. send
arbitrary processes messages); this can't happen directly any more;
usually because that process' page table isn't loaded at all, sometimes
because that memory isn't mapped in at all, sometimes because it isn't
mapped in read-write.
So:
- kernel must be able to map in memory of any process, in its own
address space.
Implementation:
- VM and kernel share a range of memory in which addresses of
all page tables of all processes are available. This has two purposes:
. Kernel has to know what data to copy in order to map in a range
. Kernel has to know where to write the data in order to map it in
That last point is because kernel has to write in the currently loaded
page table.
- Processes and kernel are separated through segments; kernel segments
haven't changed.
- The kernel keeps the process whose page table is currently loaded
in 'ptproc.'
- If it wants to map in a range of memory, it writes the value of the
page directory entry for that range into the page directory entry
in the currently loaded map. There is a slot reserved for such
purposes. The kernel can then access this memory directly.
- In order to do this, its segment has been increased (and the
segments of processes start where it ends).
- In the pagefault handler, detect if the kernel is doing
'trappable' memory access (i.e. a pagefault isn't a fatal
error) and if so,
- set the saved instruction pointer to phys_copy_fault,
breaking out of phys_copy
- set the saved eax register to the address of the page
fault, both for sanity checking and for checking in
which of the two ranges that phys_copy was called
with the fault occured
- Some boot-time processes do not have their own page table,
and are mapped in with the kernel, and separated with
segments. The kernel detects this using HASPT. If such a
process has to be scheduled, any page table will work and
no page table switch is done.
Major changes in kernel are
- When accessing user processes memory, kernel no longer
explicitly checks before it does so if that memory is OK.
It simply makes the mapping (if necessary), tries to do the
operation, and traps the pagefault if that memory isn't present;
if that happens, the copy function returns EFAULT.
So all of the CHECKRANGE_OR_SUSPEND macros are gone.
- Kernel no longer has to copy/read and parse page tables.
- A message copying optimisation: when messages are copied, and
the recipient isn't mapped in, they are copied into a buffer
in the kernel. This is done in QueueMess. The next time
the recipient is scheduled, this message is copied into
its memory. This happens in schedcheck().
This eliminates the mapping/copying step for messages, and makes
it easier to deliver messages. This eliminates soft_notify.
- Kernel no longer creates a page table at all, so the vm_setbuf
and pagetable writing in memory.c is gone.
Minor changes in kernel are
- ipc_stats thrown out, wasn't used
- misc flags all renamed to MF_*
- NOREC_* macros to enter and leave functions that should not
be called recursively; just sanity checks really
- code to fully decode segment selectors and descriptors
to print on exceptions
- lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
This is a backport form the SMP branch. Not required here, it only makes life
for SMP easier. And future merging too.
- filling the IDT is removed from prot_init()
- struct gate_table_s is a public type
- gate_table_pic is a global array as it is used by APIC code too
- idt_copy_vectors() is also global and used by idt_init() as well as
apic_idt_init()
- idt_init() is called right after prot_init() in system_init()
mainly in the kernel and headers. This split based on work by
Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture
port.
. kernel does not program the interrupt controller directly, do any
other architecture-dependent operations, or contain assembly any more,
but uses architecture-dependent functions in arch/$(ARCH)/.
. architecture-dependent constants and types defined in arch/$(ARCH)/include.
. <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now,
architecture-independent functions.
. int86, sdevio, readbios, and iopenable are now i386-specific kernel calls
and live in arch/i386/do_* now.
. i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have
gone, and 'machine.protected' is gone (and always taken to be 1 in i386).
If 86 support is to return, it should be a new architecture.
. prototypes for the architecture-dependent functions defined in
kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h
. /etc/make.conf included in makefiles and shell scripts that need to
know the building architecture; it defines ARCH=<arch>, currently only
i386.
. some basic per-architecture build support outside of the kernel (lib)
. in clock.c, only dequeue a process if it was ready
. fixes for new include files
files deleted:
. mpx/klib.s - only for choosing between mpx/klib86 and -386
. klib86.s - only for 86
i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/:
. mpx386.s (entry point)
. klib386.s
. sconst.h
. exception.c
. protect.c
. protect.h
. i8269.c