Commit graph

23 commits

Author SHA1 Message Date
David van Moolenbroek
b003ed0929 UDS: split off from PFS
Change-Id: I769cbd64aa6e5e85a797caf0f8bbb4c20e145263
2014-03-01 09:04:57 +01:00
David van Moolenbroek
36ac0dbcf8 Take LOG out of the boot image
Change-Id: Id2629776b53aae46629b04a42c15cbbacac9b949
2014-03-01 09:04:55 +01:00
David van Moolenbroek
665198b4c2 Rewrite character driver protocol
As a side effect, remove the clone style, as the normal device style
supports device cloning now.

Change-Id: Ie82d1ef0385514a04a8faa139129a617895780b5
2014-03-01 09:04:52 +01:00
David van Moolenbroek
6331e8f845 Retire the synchronous character driver protocol
- change all sync char drivers into async drivers;
- retire support for the sync protocol in libchardev;
- remove async dev style, as this is now the default;
- remove dev_status from VFS;
- clean up now-unused protocol messages.

Change-Id: I6aacff712292f6b29f2ccd51bc1e7d7003723e87
2014-02-18 11:25:02 +01:00
Ben Gras
7336a67dfe retire PUBLIC, PRIVATE and FORWARD 2012-03-25 21:58:14 +02:00
Thomas Veerman
ece4c9d565 Add DEV_CLONE_A dev type 2011-07-27 12:23:03 +00:00
Thomas Veerman
5aff633a0b Make RS and VFS aware of new UDS major. Contributed by Thomas Cort 2010-07-15 13:51:38 +00:00
Cristiano Giuffrida
f8a8ea0a79 Dynamic configuration in system.conf for boot system services. 2010-07-13 21:11:44 +00:00
Cristiano Giuffrida
8cedace2f5 Scheduling parameters out of the kernel. 2010-07-13 15:30:17 +00:00
Cristiano Giuffrida
3de6a807ce Configure settings for system services dynamically with the new service edit command. 2010-07-05 19:37:08 +00:00
Erik van der Kouwe
23284ee7bd User-space scheduling for system processes 2010-07-01 08:32:33 +00:00
Cristiano Giuffrida
06700d05d1 Give RS a page table. 2010-06-28 21:53:37 +00:00
Tomas Hruby
b09bcf6779 Scheduling server (by Bjorn Swift)
In this second phase, scheduling is moved from PM to its own
scheduler (see r6557 for phase one). In the next phase we hope to a)
include useful information in the "out of quantum" message and b)
create some simple scheduling policy that makes use of that
information.

When the system starts up, PM will iterate over its process table and
ask SCHED to take over scheduling unprivileged processes. This is
done by sending a SCHEDULING_START message to SCHED. This message
includes the processes endpoint, the parent's endpoint and its nice
level. The scheduler adds this process to its schedproc table, issues
a schedctl, and returns its own endpoint to PM - as the endpoint of
the effective scheduler. When a process terminates, a SCHEDULING_STOP
message is sent to the scheduler.

The reason for this effective endpoint is for future compatibility.
Some day, we may have a scheduler that, instead of scheduling the
process itself, forwards the SCHEDULING_START message on to another
scheduler.

PM has information on who schedules whom. As such, scheduling
messages from user-land are sent through PM. An example is when
processes change their priority, using nice(). In that case, a
getsetpriority message is sent to PM, which then sends a
SCHEDULING_SET_NICE to the process's effective scheduler.

When a process is forked through PM, it inherits its parent's
scheduler, but is spawned with an empty quantum. As before, a request
to fork a process flows through VM before returning to PM, which then
wakes up the child process. This flow has been modified slightly so
that PM notifies the scheduler of the new process, before waking up
the child process. If the scheduler fails to take over scheduling,
the child process is torn down and the fork fails with an erroneous
value.

Process priority is entirely decided upon using nice levels. PM
stores a copy of each process's nice level and when a child is
forked, its parent's nice level is sent in the SCHEDULING_START
message. How this level is mapped to a priority queue is up to the
scheduler. It should be noted that the nice level is used to
determine the max_priority and the parent could have been in a lower
priority when it was spawned. To prevent a CPU intensive process from
hawking the CPU by continuously forking children that get scheduled
in the max_priority, the scheduler should determine in which queue
the parent is currently scheduled, and schedule the child in that
same queue.

Other fixes: The USER_Q in kernel/proc.h was incorrectly defined as
NR_SCHED_QUEUES/2. That results in a "off by one" error when
converting priority->nice->priority for nice=0. This also had the
side effect that if someone were to set the MAX_USER_Q to something
else than 0, then USER_Q would be off.
2010-05-18 13:39:04 +00:00
Cristiano Giuffrida
0164957abb Unified crash recovery and live update.
RS CHANGES:
- Crash recovery is now implemented like live update. Two instances are kept
side by side and the dead version is live updated into the new one. The endpoint
doesn't change and the failure is not exposed (by default) to other system
services.
- The new instance can be created reactively (when a crash is detected) or
proactively. In the latter case, RS can be instructed to keep a replica of
the system service to perform a hot swap when the service fails. The flag
SF_USE_REPL is set in that case.
- The new flag SF_USE_REPL is supported for services in the boot image and
dynamically started services through the RS interface (i.e. -p option in the
service utility).
- Fixed a free unallocated memory bug for core system services.
2010-04-27 11:17:30 +00:00
Cristiano Giuffrida
65ef539739 Driver mapping refactory.
VFS CHANGES:
- dmap table no longer statically initialized in VFS
- Dropped FSSIGNON svrctl call no longer used by INET

INET CHANGES:
- INET announces its presence to VFS just like any other driver

RS CHANGES:
- The boot image dev table contains all the data to initialize VFS' dmap table
- RS interface supports asynchronous up and update operations now
- RS interface extended to support driver style and flags
2010-04-09 21:56:44 +00:00
Cristiano Giuffrida
cb176df60f New RS and new signal handling for system processes.
UPDATING INFO:
20100317:
        /usr/src/etc/system.conf updated to ignore default kernel calls: copy
        it (or merge it) to /etc/system.conf.
        The hello driver (/dev/hello) added to the distribution:
        # cd /usr/src/commands/scripts && make clean install
        # cd /dev && MAKEDEV hello

KERNEL CHANGES:
- Generic signal handling support. The kernel no longer assumes PM as a signal
manager for every process. The signal manager of a given process can now be
specified in its privilege slot. When a signal has to be delivered, the kernel
performs the lookup and forwards the signal to the appropriate signal manager.
PM is the default signal manager for user processes, RS is the default signal
manager for system processes. To enable ptrace()ing for system processes, it
is sufficient to change the default signal manager to PM. This will temporarily
disable crash recovery, though.
- sys_exit() is now split into sys_exit() (i.e. exit() for system processes,
which generates a self-termination signal), and sys_clear() (i.e. used by PM
to ask the kernel to clear a process slot when a process exits).
- Added a new kernel call (i.e. sys_update()) to swap two process slots and
implement live update.

PM CHANGES:
- Posix signal handling is no longer allowed for system processes. System
signals are split into two fixed categories: termination and non-termination
signals. When a non-termination signaled is processed, PM transforms the signal
into an IPC message and delivers the message to the system process. When a
termination signal is processed, PM terminates the process.
- PM no longer assumes itself as the signal manager for system processes. It now
makes sure that every system signal goes through the kernel before being
actually processes. The kernel will then dispatch the signal to the appropriate
signal manager which may or may not be PM.

SYSLIB CHANGES:
- Simplified SEF init and LU callbacks.
- Added additional predefined SEF callbacks to debug crash recovery and
live update.
- Fixed a temporary ack in the SEF init protocol. SEF init reply is now
completely synchronous.
- Added SEF signal event type to provide a uniform interface for system
processes to deal with signals. A sef_cb_signal_handler() callback is
available for system processes to handle every received signal. A
sef_cb_signal_manager() callback is used by signal managers to process
system signals on behalf of the kernel.
- Fixed a few bugs with memory mapping and DS.

VM CHANGES:
- Page faults and memory requests coming from the kernel are now implemented
using signals.
- Added a new VM call to swap two process slots and implement live update.
- The call is used by RS at update time and in turn invokes the kernel call
sys_update().

RS CHANGES:
- RS has been reworked with a better functional decomposition.
- Better kernel call masks. com.h now defines the set of very basic kernel calls
every system service is allowed to use. This makes system.conf simpler and
easier to maintain. In addition, this guarantees a higher level of isolation
for system libraries that use one or more kernel calls internally (e.g. printf).
- RS is the default signal manager for system processes. By default, RS
intercepts every signal delivered to every system process. This makes crash
recovery possible before bringing PM and friends in the loop.
- RS now supports fast rollback when something goes wrong while initializing
the new version during a live update.
- Live update is now implemented by keeping the two versions side-by-side and
swapping the process slots when the old version is ready to update.
- Crash recovery is now implemented by keeping the two versions side-by-side
and cleaning up the old version only when the recovery process is complete.

DS CHANGES:
- Fixed a bug when the process doing ds_publish() or ds_delete() is not known
by DS.
- Fixed the completely broken support for strings. String publishing is now
implemented in the system library and simply wraps publishing of memory ranges.
Ideally, we should adopt a similar approach for other data types as well.
- Test suite fixed.

DRIVER CHANGES:
- The hello driver has been added to the Minix distribution to demonstrate basic
live update and crash recovery functionalities.
- Other drivers have been adapted to conform the new SEF interface.
2010-03-17 01:15:29 +00:00
Thomas Veerman
fadbbf7b2e Unmount defunct boot ramdisk at bootup 2010-01-21 09:58:07 +00:00
Cristiano Giuffrida
c5b309ff07 Merge of Wu's GSOC 09 branch (src.20090525.r4372.wu)
Main changes:
- COW optimization for safecopy.
- safemap, a grant-based interface for sharing memory regions between processes.
- Integration with safemap and complete rework of DS, supporting new data types
  natively (labels, memory ranges, memory mapped ranges).
- For further information:
  http://wiki.minix3.org/en/SummerOfCode2009/MemoryGrants

Additional changes not included in the original Wu's branch:
- Fixed unhandled case in VM when using COW optimization for safecopy in case
  of a block that has already been shared as SMAP.
- Better interface and naming scheme for sys_saferevmap and ds_retrieve_map
  calls.
- Better input checking in syslib: check for page alignment when creating
  memory mapping grants.
- DS notifies subscribers when an entry is deleted.
- Documented the behavior of indirect grants in case of memory mapping.
- Test suite in /usr/src/test/safeperf|safecopy|safemap|ds/* reworked
  and extended.
- Minor fixes and general cleanup.
- TO-DO: Grant ids should be generated and managed the way endpoints are to make
sure grant slots are never misreused.
2010-01-14 15:24:16 +00:00
Cristiano Giuffrida
d1fd04e72a Initialization protocol for system services.
SYSLIB CHANGES:
- SEF framework now supports a new SEF Init request type from RS. 3 different
callbacks are available (init_fresh, init_lu, init_restart) to specify
initialization code when a service starts fresh, starts after a live update,
or restarts.

SYSTEM SERVICE CHANGES:
- Initialization code for system services is now enclosed in a callback SEF will
automatically call at init time. The return code of the callback will
tell RS whether the initialization completed successfully.
- Each init callback can access information passed by RS to initialize. As of
now, each system service has access to the public entries of RS's system process
table to gather all the information required to initialize. This design
eliminates many existing or potential races at boot time and provides a uniform
initialization interface to system services. The same interface will be reused
for the upcoming publish/subscribe model to handle dynamic 
registration / deregistration of system services.

VM CHANGES:
- Uniform privilege management for all system services. Every service uses the
same call mask format. For boot services, VM copies the call mask from init
data. For dynamic services, VM still receives the call mask via rs_set_priv
call that will be soon replaced by the upcoming publish/subscribe model.

RS CHANGES:
- The system process table has been reorganized and split into private entries
and public entries. Only the latter ones are exposed to system services.
- VM call masks are now entirely configured in rs/table.c
- RS has now its own slot in the system process table. Only kernel tasks and
user processes not included in the boot image are now left out from the system
process table.
- RS implements the initialization protocol for system services.
- For services in the boot image, RS blocks till initialization is complete and
panics when failure is reported back. Services are initialized in their order of
appearance in the boot image priv table and RS blocks to implements synchronous
initialization for every system service having the flag SF_SYNCH_BOOT set.
- For services started dynamically, the initialization protocol is implemented
as though it were the first ping for the service. In this case, if the
system service fails to report back (or reports failure), RS brings the service
down rather than trying to restart it.
2010-01-08 01:20:42 +00:00
David van Moolenbroek
ac9ab099c8 General cleanup:
- clean up kernel section of minix/com.h somewhat
- remove ALLOCMEM and VM_ALLOCMEM calls
- remove non-safecopy and minix-vmd support from Inet
- remove SYS_VIRVCOPY and SYS_PHYSVCOPY calls
- remove obsolete segment encoding in SYS_SAFECOPY*
- remove DEVCTL call, svrctl(FSDEVUNMAP), map_driverX
- remove declarations of unimplemented svrctl requests
- remove everything related to swapping to disk
- remove floppysetup.sh
- remove traces of rescue device
- update DESCRIBE.sh with new devices
- some other small changes
2010-01-05 19:39:27 +00:00
Cristiano Giuffrida
6f912993ff Share exec images in RS.
RS CHANGES:
- RS retains information on both labels and process names now. Labels for boot
processes are configured in the boot image priv table. Process names are
inherited from the in-kernel boot image table.
- When RS_REUSE is specified in do_up, RS looks for an existing slot having the
same process name as the one we are about to start. If one is found with
an in-memory copy of its executable image, the image is then shared between
the two processes, rather than copying it again. This behavior can be specified
by using 'service -r' when starting a system service from the command line.
2009-12-23 14:05:20 +00:00
Thomas Veerman
958b25be50 - Introduce support for sticky bit.
- Revise VFS-FS protocol and update VFS/MFS/ISOFS accordingly.
- Clean up MFS by removing old, dead code (backwards compatibility is broken by
  the new VFS-FS protocol, anyway) and rewrite other parts. Also, make sure all
  functions have proper banners and prototypes.
- VFS should always provide a (syntactically) valid path to the FS; no need for
  the FS to do sanity checks when leaving/entering mount points.
- Fix several bugs in MFS:
  - Several path lookup bugs in MFS.
  - A link can be too big for the path buffer.
  - A mountpoint can become inaccessible when the creation of a new inode
    fails, because the inode already exists and is a mountpoint.
- Introduce support for supplemental groups.
- Add test 46 to test supplemental group functionality (and removed obsolete
  suppl. tests from test 2).
- Clean up VFS (not everything is done yet).
- ISOFS now opens device read-only. This makes the -r flag in the mount command
  unnecessary (but will still report to be mounted read-write).
- Introduce PipeFS. PipeFS is a new FS that handles all anonymous and
  named pipes. However, named pipes still reside on the (M)FS, as they are part
  of the file system on disk. To make this work VFS now has a concept of
  'mapped' inodes, which causes read, write, truncate and stat requests to be
  redirected to the mapped FS, and all other requests to the original FS.
2009-12-20 20:27:14 +00:00
Cristiano Giuffrida
f4574783dc Rewrite of boot process
KERNEL CHANGES:
- The kernel only knows about privileges of kernel tasks and the root system
process (now RS).
- Kernel tasks and the root system process are the only processes that are made
schedulable by the kernel at startup. All the other processes in the boot image
don't get their privileges set at startup and are inhibited from running by the
RTS_NO_PRIV flag.
- Removed the assumption on the ordering of processes in the boot image table.
System processes can now appear in any order in the boot image table.
- Privilege ids can now be assigned both statically or dynamically. The kernel
assigns static privilege ids to kernel tasks and the root system process. Each
id is directly derived from the process number.
- User processes now all share the static privilege id of the root user
process (now INIT).
- sys_privctl split: we have more calls now to let RS set privileges for system
processes. SYS_PRIV_ALLOW / SYS_PRIV_DISALLOW are only used to flip the
RTS_NO_PRIV flag and allow / disallow a process from running. SYS_PRIV_SET_SYS /
SYS_PRIV_SET_USER are used to set privileges for a system / user process.
- boot image table flags split: PROC_FULLVM is the only flag that has been
moved out of the privilege flags and is still maintained in the boot image
table. All the other privilege flags are out of the kernel now.

RS CHANGES:
- RS is the only user-space process who gets to run right after in-kernel
startup.
- RS uses the boot image table from the kernel and three additional boot image
info table (priv table, sys table, dev table) to complete the initialization
of the system.
- RS checks that the entries in the priv table match the entries in the boot
image table to make sure that every process in the boot image gets schedulable.
- RS only uses static privilege ids to set privileges for system services in
the boot image.
- RS includes basic memory management support to allocate the boot image buffer
dynamically during initialization. The buffer shall contain the executable
image of all the system services we would like to restart after a crash.
- First step towards decoupling between resource provisioning and resource
requirements in RS: RS must know what resources it needs to restart a process
and what resources it has currently available. This is useful to tradeoff
reliability and resource consumption. When required resources are missing, the
process cannot be restarted. In that case, in the future, a system flag will
tell RS what to do. For example, if CORE_PROC is set, RS should trigger a
system-wide panic because the system can no longer function correctly without
a core system process.

PM CHANGES:
- The process tree built at initialization time is changed to have INIT as root
with pid 0, RS child of INIT and all the system services children of RS. This
is required to make RS in control of all the system services.
- PM no longer registers labels for system services in the boot image. This is
now part of RS's initialization process.
2009-12-11 00:08:19 +00:00