UPDATING INFO:
20100317:
/usr/src/etc/system.conf updated to ignore default kernel calls: copy
it (or merge it) to /etc/system.conf.
The hello driver (/dev/hello) added to the distribution:
# cd /usr/src/commands/scripts && make clean install
# cd /dev && MAKEDEV hello
KERNEL CHANGES:
- Generic signal handling support. The kernel no longer assumes PM as a signal
manager for every process. The signal manager of a given process can now be
specified in its privilege slot. When a signal has to be delivered, the kernel
performs the lookup and forwards the signal to the appropriate signal manager.
PM is the default signal manager for user processes, RS is the default signal
manager for system processes. To enable ptrace()ing for system processes, it
is sufficient to change the default signal manager to PM. This will temporarily
disable crash recovery, though.
- sys_exit() is now split into sys_exit() (i.e. exit() for system processes,
which generates a self-termination signal), and sys_clear() (i.e. used by PM
to ask the kernel to clear a process slot when a process exits).
- Added a new kernel call (i.e. sys_update()) to swap two process slots and
implement live update.
PM CHANGES:
- Posix signal handling is no longer allowed for system processes. System
signals are split into two fixed categories: termination and non-termination
signals. When a non-termination signaled is processed, PM transforms the signal
into an IPC message and delivers the message to the system process. When a
termination signal is processed, PM terminates the process.
- PM no longer assumes itself as the signal manager for system processes. It now
makes sure that every system signal goes through the kernel before being
actually processes. The kernel will then dispatch the signal to the appropriate
signal manager which may or may not be PM.
SYSLIB CHANGES:
- Simplified SEF init and LU callbacks.
- Added additional predefined SEF callbacks to debug crash recovery and
live update.
- Fixed a temporary ack in the SEF init protocol. SEF init reply is now
completely synchronous.
- Added SEF signal event type to provide a uniform interface for system
processes to deal with signals. A sef_cb_signal_handler() callback is
available for system processes to handle every received signal. A
sef_cb_signal_manager() callback is used by signal managers to process
system signals on behalf of the kernel.
- Fixed a few bugs with memory mapping and DS.
VM CHANGES:
- Page faults and memory requests coming from the kernel are now implemented
using signals.
- Added a new VM call to swap two process slots and implement live update.
- The call is used by RS at update time and in turn invokes the kernel call
sys_update().
RS CHANGES:
- RS has been reworked with a better functional decomposition.
- Better kernel call masks. com.h now defines the set of very basic kernel calls
every system service is allowed to use. This makes system.conf simpler and
easier to maintain. In addition, this guarantees a higher level of isolation
for system libraries that use one or more kernel calls internally (e.g. printf).
- RS is the default signal manager for system processes. By default, RS
intercepts every signal delivered to every system process. This makes crash
recovery possible before bringing PM and friends in the loop.
- RS now supports fast rollback when something goes wrong while initializing
the new version during a live update.
- Live update is now implemented by keeping the two versions side-by-side and
swapping the process slots when the old version is ready to update.
- Crash recovery is now implemented by keeping the two versions side-by-side
and cleaning up the old version only when the recovery process is complete.
DS CHANGES:
- Fixed a bug when the process doing ds_publish() or ds_delete() is not known
by DS.
- Fixed the completely broken support for strings. String publishing is now
implemented in the system library and simply wraps publishing of memory ranges.
Ideally, we should adopt a similar approach for other data types as well.
- Test suite fixed.
DRIVER CHANGES:
- The hello driver has been added to the Minix distribution to demonstrate basic
live update and crash recovery functionalities.
- Other drivers have been adapted to conform the new SEF interface.
Move archtypes.h to include/ dir, since several servers require it. Move
fpu.h and stackframe.h to arch-specific header directory. Make source
files and makefiles aware of the new header locations.
SYSLIB CHANGES:
- SEF framework now supports a new SEF Init request type from RS. 3 different
callbacks are available (init_fresh, init_lu, init_restart) to specify
initialization code when a service starts fresh, starts after a live update,
or restarts.
SYSTEM SERVICE CHANGES:
- Initialization code for system services is now enclosed in a callback SEF will
automatically call at init time. The return code of the callback will
tell RS whether the initialization completed successfully.
- Each init callback can access information passed by RS to initialize. As of
now, each system service has access to the public entries of RS's system process
table to gather all the information required to initialize. This design
eliminates many existing or potential races at boot time and provides a uniform
initialization interface to system services. The same interface will be reused
for the upcoming publish/subscribe model to handle dynamic
registration / deregistration of system services.
VM CHANGES:
- Uniform privilege management for all system services. Every service uses the
same call mask format. For boot services, VM copies the call mask from init
data. For dynamic services, VM still receives the call mask via rs_set_priv
call that will be soon replaced by the upcoming publish/subscribe model.
RS CHANGES:
- The system process table has been reorganized and split into private entries
and public entries. Only the latter ones are exposed to system services.
- VM call masks are now entirely configured in rs/table.c
- RS has now its own slot in the system process table. Only kernel tasks and
user processes not included in the boot image are now left out from the system
process table.
- RS implements the initialization protocol for system services.
- For services in the boot image, RS blocks till initialization is complete and
panics when failure is reported back. Services are initialized in their order of
appearance in the boot image priv table and RS blocks to implements synchronous
initialization for every system service having the flag SF_SYNCH_BOOT set.
- For services started dynamically, the initialization protocol is implemented
as though it were the first ping for the service. In this case, if the
system service fails to report back (or reports failure), RS brings the service
down rather than trying to restart it.
KERNEL CHANGES:
- The kernel only knows about privileges of kernel tasks and the root system
process (now RS).
- Kernel tasks and the root system process are the only processes that are made
schedulable by the kernel at startup. All the other processes in the boot image
don't get their privileges set at startup and are inhibited from running by the
RTS_NO_PRIV flag.
- Removed the assumption on the ordering of processes in the boot image table.
System processes can now appear in any order in the boot image table.
- Privilege ids can now be assigned both statically or dynamically. The kernel
assigns static privilege ids to kernel tasks and the root system process. Each
id is directly derived from the process number.
- User processes now all share the static privilege id of the root user
process (now INIT).
- sys_privctl split: we have more calls now to let RS set privileges for system
processes. SYS_PRIV_ALLOW / SYS_PRIV_DISALLOW are only used to flip the
RTS_NO_PRIV flag and allow / disallow a process from running. SYS_PRIV_SET_SYS /
SYS_PRIV_SET_USER are used to set privileges for a system / user process.
- boot image table flags split: PROC_FULLVM is the only flag that has been
moved out of the privilege flags and is still maintained in the boot image
table. All the other privilege flags are out of the kernel now.
RS CHANGES:
- RS is the only user-space process who gets to run right after in-kernel
startup.
- RS uses the boot image table from the kernel and three additional boot image
info table (priv table, sys table, dev table) to complete the initialization
of the system.
- RS checks that the entries in the priv table match the entries in the boot
image table to make sure that every process in the boot image gets schedulable.
- RS only uses static privilege ids to set privileges for system services in
the boot image.
- RS includes basic memory management support to allocate the boot image buffer
dynamically during initialization. The buffer shall contain the executable
image of all the system services we would like to restart after a crash.
- First step towards decoupling between resource provisioning and resource
requirements in RS: RS must know what resources it needs to restart a process
and what resources it has currently available. This is useful to tradeoff
reliability and resource consumption. When required resources are missing, the
process cannot be restarted. In that case, in the future, a system flag will
tell RS what to do. For example, if CORE_PROC is set, RS should trigger a
system-wide panic because the system can no longer function correctly without
a core system process.
PM CHANGES:
- The process tree built at initialization time is changed to have INIT as root
with pid 0, RS child of INIT and all the system services children of RS. This
is required to make RS in control of all the system services.
- PM no longer registers labels for system services in the boot image. This is
now part of RS's initialization process.
Kernel:
o Remove s_ipc_sendrec, instead using s_ipc_to for all send primitives
o Centralize s_ipc_to bit manipulation,
- disallowing assignment of bits pointing to unused priv structs;
- preventing send-to-self by not setting bit for own priv struct;
- preserving send mask matrix symmetry in all cases
o Add IPC send mask checks to SENDA, which were missing entirely somehow
o Slightly improve IPC stats accounting for SENDA
o Remove SYSTEM from user processes' send mask
o Half-fix the dependency between boot image order and process numbers,
- correcting the table order of the boot processes;
- documenting the order requirement needed for proper send masks;
- warning at boot time if the order is violated
RS:
o Add support in /etc/drivers.conf for servers that talk to user processes,
- disallowing IPC to user processes if no "ipc" field is present
- adding a special "USER" label to explicitly allow IPC to user processes
o Always apply IPC masks when specified; remove -i flag from service(8)
o Use kernel send mask symmetry to delay adding IPC permissions for labels
that do not exist yet, adding them to that label's process upon creation
o Add VM to ipc permissions list for rtl8139 and fxp in drivers.conf
Left to future fixes:
o Removal of the table order vs process numbers dependency altogether,
possibly using per-process send list structures as used for SYSTEM calls
o Proper assignment of send masks to boot processes;
some of the assigned (~0) masks are much wider than necessary
o Proper assignment of IPC send masks for many more servers in drivers.conf
o Removal of the debugging warning about the now legitimate case where RS's
add_forward_ipc cannot find the IPC destination's label yet
mainly in the kernel and headers. This split based on work by
Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture
port.
. kernel does not program the interrupt controller directly, do any
other architecture-dependent operations, or contain assembly any more,
but uses architecture-dependent functions in arch/$(ARCH)/.
. architecture-dependent constants and types defined in arch/$(ARCH)/include.
. <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now,
architecture-independent functions.
. int86, sdevio, readbios, and iopenable are now i386-specific kernel calls
and live in arch/i386/do_* now.
. i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have
gone, and 'machine.protected' is gone (and always taken to be 1 in i386).
If 86 support is to return, it should be a new architecture.
. prototypes for the architecture-dependent functions defined in
kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h
. /etc/make.conf included in makefiles and shell scripts that need to
know the building architecture; it defines ARCH=<arch>, currently only
i386.
. some basic per-architecture build support outside of the kernel (lib)
. in clock.c, only dequeue a process if it was ready
. fixes for new include files
files deleted:
. mpx/klib.s - only for choosing between mpx/klib86 and -386
. klib86.s - only for 86
i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/:
. mpx386.s (entry point)
. klib386.s
. sconst.h
. exception.c
. protect.c
. protect.h
. i8269.c
any number of kernel calls.
Allowed kernel calls are stored in table.c for every image process as a
variably-sized array of allowed calls. This is used to fill the bitmap
of size determined at compile time by the number of kernel calls. This
filling is done by main.c. There is a special call called SYS_ALL_CALLS
which fills the bitmap of allowed calls completely, if that is the only
entry in the array.
enforced. If a call is denied, this will be kprinted. Please report any such
errors, so that I can adjust the mask before returning errors instead of
warnings.
Wrote CMOS driver. All CMOS code from FS has been removed. Currently the
driver only supports get time calls. Set time is left out as an exercise
for the book readers ... startup scripts were updated because the CMOS driver
is needed early on. (IS got same treatment.) Don't forget to run MAKEDEV cmos
in /dev/, otherwise the driver cannot be loaded.
to provide an index (0 .. 31) that is passed in the HARD_INT message when an
interrupt occurs. The NOTIFY_ARG field contains a bitmap with all indexes for
which an interrupt occured.
- reinstalled priority changing, now in sched() and unready()
- reinstalled check on message buffer in sys_call()
- reinstalled check in send masks in sys_call()
- changed do_fork() to get new privilege structure for SYS_PROCs
- removed some processes from boot image---will be dynamically started later
- fixed bug that caused IDLE to panic (irq hook inconsistency);
- kprintf() now accepts multiple arguments; moved to utility.c;
- prepare_shutdown() signals system processes with SIGKSTOP;
- phys_fill() renamed to phys_memset(), argument order changed;
- kmemset() removed in favor of phys_kmemset();
- kstrncpy() removed in favor of phys_copy();
- katoi, kstrncmp replaced by normal library procedure again;
- rm_irq_handler() interface changed (simply pass hook pointer);
that passes signal map along. This mechanisms is also used for nonuser signals
like SIGKMESS, SIGKSTOP, SIGKSIG.
Revised comments of many system call handlers. Renamed setpriority to nice.