Introduce explicit abstractions for different mapping types,
handling the instantiation, forking, pagefaults and freeing of
anonymous memory, direct physical mappings, shared memory and
physically contiguous anonymous memory as separate types, making
region.c more generic.
Also some other genericification like merging the 3 munmap cases
into one.
COW and SMAP safemap code is still implicit in region.c.
. add cpufeature detection of both
. use it for both ipc and kernelcall traps, using a register
for call number
. SYSENTER/SYSCALL does not save any context, therefore userland
has to save it
. to accomodate multiple kernel entry/exit types, the entry
type is recorded in the process struct. hitherto all types
were interrupt (soft int, exception, hard int); now SYSENTER/SYSCALL
is new, with the difference that context is not fully restored
from proc struct when running the process again. this can't be
done as some information is missing.
. complication: cases in which the kernel has to fully change
process context (i.e. sigreturn). in that case the exit type
is changed from SYSENTER/SYSEXIT to soft-int (i.e. iret) and
context is fully restored from the proc struct. this does mean
the PC and SP must change, as the sysenter/sysexit userland code
will otherwise try to restore its own context. this is true in the
sigreturn case.
. override all usage by setting libc_ipc=1
fixes an assert() firing when starting X. thanks to the report by pikpik.
. NO_MEM was 0, which is actually an existing piece
of physical memory. it can't be allocated because it's reserved
for bios data (by the kernel), but it can be mapped in (e.g.
by X), causing sanity check disaster.
. NONCONTIGUOUS is also obsolete as all allocations are single-page
now, i.e. NONCONTIGUOUS is really the default and only mode.
complete munmap implementation; single-page references made
a general munmap() implementation possible to write cleanly.
. memory: let the MIOCRAMSIZE ioctl set the imgrd device
size (but only to 0)
. let the ramdisk command set sizes to 0
. use this command to set /dev/imgrd to 0 after mounting /usr
in /etc/rc, so the boot time ramdisk is freed (about 4MB
currently)
. only reference single pages in process data structures
to simplify page faults, copy-on-write, etc.
. this breaks the secondary cache for objects that are
not one-page-sized; restored in a next commit
. done by RS to reduce/remove dependency on VM for recovery
. RS has the default stack size of 64MB since the nosegments
change, using a huge amount of unused memory to pre-allocate
. ignore these requests until actually required (i.e. being able
to survive VM crashes)
Thanks to pikpik for investigating why RS was so huge.
. map all objects named usermapped_*.o with globally visible
pages; usermapped_glo_*.o with the VM 'global' bit on, i.e.
permanently in tlb (very scarce resource!)
. added kinfo, machine, kmessages and loadinfo for a start
. modified log, tty to make use of the shared messages struct
. some strncpy/strcpy to strlcpy conversions
. new <minix/param.h> to avoid including other minix headers
that have colliding definitions with library and commands code,
causing parse warnings
. removed some dead code / assignments
This commit removes all traces of Minix segments (the text/data/stack
memory map abstraction in the kernel) and significance of Intel segments
(hardware segments like CS, DS that add offsets to all addressing before
page table translation). This ultimately simplifies the memory layout
and addressing and makes the same layout possible on non-Intel
architectures.
There are only two types of addresses in the world now: virtual
and physical; even the kernel and processes have the same virtual
address space. Kernel and user processes can be distinguished at a
glance as processes won't use 0xF0000000 and above.
No static pre-allocated memory sizes exist any more.
Changes to booting:
. The pre_init.c leaves the kernel and modules exactly as
they were left by the bootloader in physical memory
. The kernel starts running using physical addressing,
loaded at a fixed location given in its linker script by the
bootloader. All code and data in this phase are linked to
this fixed low location.
. It makes a bootstrap pagetable to map itself to a
fixed high location (also in linker script) and jumps to
the high address. All code and data then use this high addressing.
. All code/data symbols linked at the low addresses is prefixed by
an objcopy step with __k_unpaged_*, so that that code cannot
reference highly-linked symbols (which aren't valid yet) or vice
versa (symbols that aren't valid any more).
. The two addressing modes are separated in the linker script by
collecting the unpaged_*.o objects and linking them with low
addresses, and linking the rest high. Some objects are linked
twice, once low and once high.
. The bootstrap phase passes a lot of information (e.g. free memory
list, physical location of the modules, etc.) using the kinfo
struct.
. After this bootstrap the low-linked part is freed.
. The kernel maps in VM into the bootstrap page table so that VM can
begin executing. Its first job is to make page tables for all other
boot processes. So VM runs before RS, and RS gets a fully dynamic,
VM-managed address space. VM gets its privilege info from RS as usual
but that happens after RS starts running.
. Both the kernel loading VM and VM organizing boot processes happen
using the libexec logic. This removes the last reason for VM to
still know much about exec() and vm/exec.c is gone.
Further Implementation:
. All segments are based at 0 and have a 4 GB limit.
. The kernel is mapped in at the top of the virtual address
space so as not to constrain the user processes.
. Processes do not use segments from the LDT at all; there are
no segments in the LDT any more, so no LLDT is needed.
. The Minix segments T/D/S are gone and so none of the
user-space or in-kernel copy functions use them. The copy
functions use a process endpoint of NONE to realize it's
a physical address, virtual otherwise.
. The umap call only makes sense to translate a virtual address
to a physical address now.
. Segments-related calls like newmap and alloc_segments are gone.
. All segments-related translation in VM is gone (vir2map etc).
. Initialization in VM is simpler as no moving around is necessary.
. VM and all other boot processes can be linked wherever they wish
and will be mapped in at the right location by the kernel and VM
respectively.
Other changes:
. The multiboot code is less special: it does not use mb_print
for its diagnostics any more but uses printf() as normal, saving
the output into the diagnostics buffer, only printing to the
screen using the direct print functions if a panic() occurs.
. The multiboot code uses the flexible 'free memory map list'
style to receive the list of free memory if available.
. The kernel determines the memory layout of the processes to
a degree: it tells VM where the kernel starts and ends and
where the kernel wants the top of the process to be. VM then
uses this entire range, i.e. the stack is right at the top,
and mmap()ped bits of memory are placed below that downwards,
and the break grows upwards.
Other Consequences:
. Every process gets its own page table as address spaces
can't be separated any more by segments.
. As all segments are 0-based, there is no distinction between
virtual and linear addresses, nor between userspace and
kernel addresses.
. Less work is done when context switching, leading to a net
performance increase. (8% faster on my machine for 'make servers'.)
. The layout and configuration of the GDT makes sysenter and syscall
possible.
. all invocations were S or D, so can safely be dropped
to prepare for the segmentless world
. still assign D to the SCP_SEG field in the message
to make previous kernels usable
. new mode for sys_memset: include process so memset can be
done in physical or virtual address space.
. add a mode to mmap() that lets a process allocate uninitialized
memory.
. this allows an exec()er (RS, VFS, etc.) to request uninitialized
memory from VM and selectively clear the ranges that don't come
from a file, leaving no uninitialized memory left for the process
to see.
. use callbacks for clearing the process, clearing memory in the
process, and copying into the process; so that the libexec code
can be used from rs, vfs, and in the future, kernel (to load vm)
and vm (to load boot-time processes)
. make exec() callers (i.e. vfs and rs) determine the
memory layout by explicitly reserving regions using
mmap() calls on behalf of the exec()ing process,
i.e. handling all of the exec logic, thereby eliminating
all special exec() knowledge from VM.
. the new procedure is: clear the exec()ing process
first, then call third-party mmap()s to reserve memory, then
copy the executable file section contents in, all using callbacks
tailored to the caller's way of starting an executable
. i.e. no more explicit EXEC_NEWMEM-style calls in PM or VM
as with rigid 2-section arguments
. this naturally allows generalizing exec() by simply loading
all ELF sections
. drop/merge of lots of duplicate exec() code into libexec
. not copying the code sections to vfs and into the executable
again is a measurable performance improvement (about 3.3% faster
for 'make' in src/servers/)
these two functions will be used to support all exec() functionality
going into a single library shared by RS and VFS and exec() knowledge
leaving VM.
. third-party mmap: allow certain processes (VFS, RS) to
do mmap() on behalf of another process
. PROCCTL: used to free and clear a process' address space
use the user-supplied point to lookup which region to perform brk() on,
and if it's a reasonable one, do it, no matter what vm's notion of the
heap region is.
Previously, the mmap address (if given) was merely used as a lower
bound, and then possibly overriden with a hint. Now, the mapping is
first tried at the exact given address. If that fails, the start of
the mmap range is used as lower bound (which is then still overridden
by the hint for efficiency).
This allows two pages to be mapped in at predefined addresses, where
the second address is lower than the first. That was not possible.
remove some old minix-userland-specific stuff
. /etc/ttytab as a file, and minix-compat function (fftyslot()),
replaced by /etc/ttys and new libc functions
. also remove minix-specific nlist(), cuserid(), fttyslot(), v8 regex
functions and <compat/regex.h>
. and remaining minix-only utilities that use them
. also unused <compat/pwd.h> and <compat/syslog.h> and
redundant <sys/sigcontext.h>