Commit graph

131 commits

Author SHA1 Message Date
Tomas Hruby
c9bfb13cdb Kernel keeps information about each cpu
- kernel maintains a cpu_info array which contains various
  information about each cpu as filled when each cpu boots

- the information contains idetification, features etc.
2010-10-26 21:07:27 +00:00
Tomas Hruby
a665ae3de1 Userspace scheduling - exporting stats
- contributed by Bjorn Swift

- adds process accounting, for example counting the number of messages
  sent, how often the process was preemted and how much time it spent
  in the run queue. These statistics, along with the current cpu load,
  are sent back to the user-space scheduler in the Out Of Quantum
  message.

- the user-space scheduler may choose to make use of these statistics
  when making scheduling decisions. For isntance the cpu load becomes
  especially useful when scheduling on multiple cores.
2010-09-19 15:52:12 +00:00
Tomas Hruby
5b8b623765 SMP - lazy FPU
- when a process is migrated to a different CPU it may have an active
  FPU context in the processor registers. We must save it and migrate
  it together with the process.
2010-09-15 14:11:25 +00:00
Tomas Hruby
e2701da5a9 SMP - Single shot local timer
- APIC timer always reprogrammed if expired

- timer tick never happens when in kernel => never immediate return
  from userspace to kernel because of a buffered interrupt

- renamed argument to lapic_set_timer_one_shot()

- removed arch_ prefix from timer functions
2010-09-15 14:11:06 +00:00
Tomas Hruby
387e1835d1 SMP - BSP halts APs before shutting down 2010-09-15 14:10:54 +00:00
Tomas Hruby
1e273f640e SMP - Scheduler can assign process to a cpu
- machine information contains the number of cpus and the bsp id

- a dummy SMP scheduler which keeps all system processes on BSP and
  all other process on APs. The scheduler remembers how many processes
  are assigned to each CPU and always picks the one with the least
  processes for a new process.
2010-09-15 14:10:33 +00:00
Tomas Hruby
67f039540c SMP - proc_ptr and bill_ptr initialization
- they should point somewhere
2010-09-15 14:10:24 +00:00
Tomas Hruby
fac5fbfdbf SMP - CPU local run queues
- each CPU has its own runqueues

- processes on BSP are put on the runqueues later after a switch to
  the final stack when cpuid works to avoid special cases

- enqueue() and dequeue() use the run queues of the cpu the process is
  assigned to

- pick_proc() uses the local run queues

- printing of per-CPU run queues ('2') on serial console
2010-09-15 14:10:18 +00:00
Tomas Hruby
85cca7096f SMP - The slave CPUs turn paging on
- APs wait until BSP turns paging on, it is not possible to safely
  execute any code on APs until we can turn paging on as well as it
  must be done synchronously everywhere

- APs turn paging on but do not continue and wait
2010-09-15 14:10:07 +00:00
Tomas Hruby
6aa26565e6 SMP - Big kernel lock (BKL)
- to isolate execution inside kernel we use a big kernel lock
  implemented as a spinlock

- the lock is acquired asap after entering kernel mode and released as
  late as possible. Only one CPU as a time can execute the core kernel
  code

- measurement son real hw show that the overhead of this lock is close
  to 0% of kernel time for the currnet system

- the overhead of this lock may be as high as 45% of kernel time in
  virtual machines depending on the ratio between physical CPUs
  available and emulated CPUs. The performance degradation is
  significant
2010-09-15 14:10:03 +00:00
Tomas Hruby
62c666566e SMP - We boot APs
- kernel detects CPUs by searching ACPI tables for local apic nodes

- each CPU has its own TSS that points to its own stack. All cpus boot
  on the same boot stack (in sequence) but switch to its private stack
  as soon as they can.

- final booting code in main() placed in bsp_finish_booting() which is
  executed only after the BSP switches to its final stack

- apic functions to send startup interrupts

- assembler functions to handle CPU features not needed for single cpu
  mode like memory barries, HT detection etc.

- new files kernel/smp.[ch], kernel/arch/i386/arch_smp.c and
  kernel/arch/i386/include/arch_smp.h

- 16-bit trampoline code for the APs. It is executed by each AP after
  receiving startup IPIs it brings up the CPUs to 32bit mode and let
  them spin in an infinite loop so they don't do any damage.

- implementation of kernel spinlock

- CONFIG_SMP and CONFIG_MAX_CPUS set by the build system
2010-09-15 14:09:52 +00:00
Tomas Hruby
13a0d5fa5e SMP - Cpu local variables
- most global variables carry information which is specific to the
  local CPU and each CPU must have its own copy

- cpu local variable must be declared in cpulocal.h between
  DECLARE_CPULOCAL_START and DECLARE_CPULOCAL_END markers using
  DECLARE_CPULOCAL macro

- to access the cpu local data the provided macros must be used

	get_cpu_var(cpu, name)
	get_cpu_var_ptr(cpu, name)

	get_cpulocal_var(name)
	get_cpulocal_var_ptr(name)

- using this macros makes future changes in the implementation
  possible

- switching to ELF will make the declaration of cpu local data much
  simpler, e.g.

  CPULOCAL int blah;

  anywhere in the kernel source code
2010-09-15 14:09:46 +00:00
Tomas Hruby
2a2a19e542 proc_init()
- code that initializes proc.c structures removed from main() and placed in
  proc_init() function
2010-09-15 14:09:43 +00:00
Tomas Hruby
e6ebac015d APIC mode uses IO APICs
- kernel turns on IO APICs if no_apic is _not_ set or is equal 0

- pci driver must use the acpi driver to setup IRQ routing otherwise
  the system cannot work correctly except systems like KVM that use
  only legacy (E)ISA IRQs 0-15
2010-09-07 07:18:11 +00:00
Erik van der Kouwe
50ca7f7f8f Zero out to three stack dwords to fix boot errors 2010-08-24 12:51:11 +00:00
Erik van der Kouwe
b9f5e50421 Provide boot image process main functions with a full parameter list, so that bad things don't heppen when using getenv 2010-08-20 11:07:16 +00:00
Ben Gras
b05c989298 kernel - prettier output for ipc errors, call names instead of trap numbers 2010-07-16 15:36:29 +00:00
Cristiano Giuffrida
20101b3bab Remove patch leftovers. 2010-07-13 22:40:14 +00:00
Cristiano Giuffrida
f8a8ea0a79 Dynamic configuration in system.conf for boot system services. 2010-07-13 21:11:44 +00:00
Cristiano Giuffrida
8cedace2f5 Scheduling parameters out of the kernel. 2010-07-13 15:30:17 +00:00
Cristiano Giuffrida
1f8dbed029 RS crash recovery support. 2010-07-06 22:05:21 +00:00
Ben Gras
e920c1e1df kernel: fix main prototype 2010-07-06 12:14:59 +00:00
Kees van Reeuwijk
0cfdb11450 Repair errors and warnings flagged by llvm. 2010-07-06 11:29:23 +00:00
Erik van der Kouwe
23284ee7bd User-space scheduling for system processes 2010-07-01 08:32:33 +00:00
Tomas Hruby
451a6890d6 scheduling - time quantum in miliseconds
- Currently the cpu time quantum is timer-ticks based. Thus the
  remaining quantum is decreased only if the processes is interrupted
  by a timer tick. As processes block a lot this typically does not
  happen for normal user processes. Also the quantum depends on the
  frequency of the timer.

- This change makes the quantum miliseconds based. Internally the
  miliseconds are translated into cpu cycles. Everytime userspace
  execution is interrupted by kernel the cycles just consumed by the
  current process are deducted from the remaining quantum.

- It makes the quantum system timer frequency independent.

- The boot processes quantum is loosely derived from the tick-based
  quantas and 60Hz timer and subject to future change

- the 64bit arithmetics is a little ugly, will be changes once we have
  compiler support for 64bit integers (soon)
2010-05-25 08:06:14 +00:00
Tomas Hruby
dcc81d73e8 boot image - no need for entry point
- removes the initial_pc from struct boot_image. It is always set
  to 0 and RS uses a.out headers.
2010-05-18 13:51:46 +00:00
Tomas Hruby
b90c2d7026 rename of mode/context switching functions
- this patch only renames schedcheck() to switch_to_user(),
  cycles_accounting_stop() to context_stop() and restart() to
  +restore_user_context()

- the motivation is that since the introduction of schedcheck() it has
  been abused for many things. It deserves a better name.  It should
  express the fact that from the moment we call the function we are in
  the process of switching to user.

- cycles_accounting_stop() was originally a single purpose function.
  As this function is called at were convenient places it is used in
  for other things too, e.g. (un)locking the kernel. Thus it deserves
  a better name too.

- using the old name, restart() does not call schedcheck(), however
  calls to restart are replaced by calls to schedcheck()
  [switch_to_user] and it calls restart() [restore_user_context]
2010-05-18 13:00:39 +00:00
Erik van der Kouwe
b7bf2733d6 Intermediate boot verbosity level EXTRA (2), MAX moved to 3 2010-05-10 18:07:59 +00:00
Kees van Reeuwijk
d106968d77 Remove useless symbol declarations from headers, make symbols local where possible, add some explicit initialization to global variables. 2010-04-22 07:49:40 +00:00
Kees van Reeuwijk
4865e3f4f9 More use of endpoint_t. Other code cleanup. 2010-03-30 14:07:15 +00:00
Tomas Hruby
b4cf88a04f Userspace scheduling
- cotributed by Bjorn Swift

- In this first phase, scheduling is moved from the kernel to the PM
  server. The next steps are to a) moving scheduling to its own server
  and b) include useful information in the "out of quantum" message,
  so that the scheduler can make use of this information.

- The kernel process table now keeps record of who is responsible for
  scheduling each process (p_scheduler). When this pointer is NULL,
  the process will be scheduled by the kernel. If such a process runs
  out of quantum, the kernel will simply renew its quantum an requeue
  it.

- When PM loads, it will take over scheduling of all running
  processes, except system processes, using sys_schedctl().
  Essentially, this only results in taking over init. As children
  inherit a scheduler from their parent, user space programs forked by
  init will inherit PM (for now) as their scheduler.

 - Once a process has been assigned a scheduler, and runs out of
   quantum, its RTS_NO_QUANTUM flag will be set and the process
   dequeued. The kernel will send a message to the scheduler, on the
   process' behalf, informing the scheduler that it has run out of
   quantum. The scheduler can take what ever action it pleases, based
   on its policy, and then reschedule the process using the
   sys_schedule() system call.

- Balance queues does not work as before. While the old in-kernel
  function used to renew the quantum of processes in the highest
  priority run queue, the user-space implementation only acts on
  processes that have been bumped down to a lower priority queue.
  This approach reacts slower to changes than the old one, but saves
  us sending a sys_schedule message for each process every time we
  balance the queues. Currently, when processes are moved up a
  priority queue, their quantum is also renewed, but this can be
  fiddled with.

- do_nice has been removed from kernel. PM answers to get- and
  setpriority calls, updates it's own nice variable as well as the
  max_run_queue. This will be refactored once scheduling is moved to a
  separate server. We will probably have PM update it's local nice
  value and then send a message to whoever is scheduling the process.

- changes to fix an issue in do_fork() where processes could run out
  of quantum but bypassing the code path that handles it correctly.
  The future plan is to remove the policy from do_fork() and implement
  it in userspace too.
2010-03-29 11:07:20 +00:00
Kees van Reeuwijk
98493805fd Lots of const correctness. 2010-03-27 14:31:00 +00:00
Cristiano Giuffrida
cb176df60f New RS and new signal handling for system processes.
UPDATING INFO:
20100317:
        /usr/src/etc/system.conf updated to ignore default kernel calls: copy
        it (or merge it) to /etc/system.conf.
        The hello driver (/dev/hello) added to the distribution:
        # cd /usr/src/commands/scripts && make clean install
        # cd /dev && MAKEDEV hello

KERNEL CHANGES:
- Generic signal handling support. The kernel no longer assumes PM as a signal
manager for every process. The signal manager of a given process can now be
specified in its privilege slot. When a signal has to be delivered, the kernel
performs the lookup and forwards the signal to the appropriate signal manager.
PM is the default signal manager for user processes, RS is the default signal
manager for system processes. To enable ptrace()ing for system processes, it
is sufficient to change the default signal manager to PM. This will temporarily
disable crash recovery, though.
- sys_exit() is now split into sys_exit() (i.e. exit() for system processes,
which generates a self-termination signal), and sys_clear() (i.e. used by PM
to ask the kernel to clear a process slot when a process exits).
- Added a new kernel call (i.e. sys_update()) to swap two process slots and
implement live update.

PM CHANGES:
- Posix signal handling is no longer allowed for system processes. System
signals are split into two fixed categories: termination and non-termination
signals. When a non-termination signaled is processed, PM transforms the signal
into an IPC message and delivers the message to the system process. When a
termination signal is processed, PM terminates the process.
- PM no longer assumes itself as the signal manager for system processes. It now
makes sure that every system signal goes through the kernel before being
actually processes. The kernel will then dispatch the signal to the appropriate
signal manager which may or may not be PM.

SYSLIB CHANGES:
- Simplified SEF init and LU callbacks.
- Added additional predefined SEF callbacks to debug crash recovery and
live update.
- Fixed a temporary ack in the SEF init protocol. SEF init reply is now
completely synchronous.
- Added SEF signal event type to provide a uniform interface for system
processes to deal with signals. A sef_cb_signal_handler() callback is
available for system processes to handle every received signal. A
sef_cb_signal_manager() callback is used by signal managers to process
system signals on behalf of the kernel.
- Fixed a few bugs with memory mapping and DS.

VM CHANGES:
- Page faults and memory requests coming from the kernel are now implemented
using signals.
- Added a new VM call to swap two process slots and implement live update.
- The call is used by RS at update time and in turn invokes the kernel call
sys_update().

RS CHANGES:
- RS has been reworked with a better functional decomposition.
- Better kernel call masks. com.h now defines the set of very basic kernel calls
every system service is allowed to use. This makes system.conf simpler and
easier to maintain. In addition, this guarantees a higher level of isolation
for system libraries that use one or more kernel calls internally (e.g. printf).
- RS is the default signal manager for system processes. By default, RS
intercepts every signal delivered to every system process. This makes crash
recovery possible before bringing PM and friends in the loop.
- RS now supports fast rollback when something goes wrong while initializing
the new version during a live update.
- Live update is now implemented by keeping the two versions side-by-side and
swapping the process slots when the old version is ready to update.
- Crash recovery is now implemented by keeping the two versions side-by-side
and cleaning up the old version only when the recovery process is complete.

DS CHANGES:
- Fixed a bug when the process doing ds_publish() or ds_delete() is not known
by DS.
- Fixed the completely broken support for strings. String publishing is now
implemented in the system library and simply wraps publishing of memory ranges.
Ideally, we should adopt a similar approach for other data types as well.
- Test suite fixed.

DRIVER CHANGES:
- The hello driver has been added to the Minix distribution to demonstrate basic
live update and crash recovery functionalities.
- Other drivers have been adapted to conform the new SEF interface.
2010-03-17 01:15:29 +00:00
Ben Gras
0937d6c367 re-establish kernel assert()s.
use the regular <assert.h> assert() instead of vmassert() in
kernel. throw out some #if 0 code. fix a few assert() conditions.
enable by default.
2010-03-10 13:00:05 +00:00
Ben Gras
35a108b911 panic() cleanup.
this change
   - makes panic() variadic, doing full printf() formatting -
     no more NO_NUM, and no more separate printf() statements
     needed to print extra info (or something in hex) before panicing
   - unifies panic() - same panic() name and usage for everyone -
     vm, kernel and rest have different names/syntax currently
     in order to implement their own luxuries, but no longer
   - throws out the 1st argument, to make source less noisy.
     the panic() in syslib retrieves the server name from the kernel
     so it should be clear enough who is panicing; e.g.
         panic("sigaction failed: %d", errno);
     looks like:
         at_wini(73130): panic: sigaction failed: 0
         syslib:panic.c: stacktrace: 0x74dc 0x2025 0x100a
   - throws out report() - printf() is more convenient and powerful
   - harmonizes/fixes the use of panic() - there were a few places
     that used printf-style formatting (didn't work) and newlines
     (messes up the formatting) in panic()
   - throws out a few per-server panic() functions
   - cleans up a tie-in of tty with panic()

merging printf() and panic() statements to be done incrementally.
2010-03-05 15:05:11 +00:00
Ben Gras
e6cb76a2e2 no more kprintf - kernel uses libsys printf now, only kputc is special
to the kernel.
2010-03-03 15:45:01 +00:00
Erik van der Kouwe
ff835e0e35 use the verbose=2 boot monitor setting to get extensive output for debugging 2010-02-13 22:11:16 +00:00
Tomas Hruby
1b56fdb33c Time accounting based on TSC
- as thre are still KERNEL and IDLE entries, time accounting for
  kernel and idle time works the same as for any other process

- everytime we stop accounting for the currently running process,
  kernel or idle, we read the TSC counter and increment the p_cycles
  entry.

- the process cycles inherently include some of the kernel cycles as
  we can stop accounting for the process only after we save its
  context and we start accounting just before we restore its context

- this assumes that the system does not scale the CPU frequency which
  will be true for ... long time ;-)
2010-02-10 15:36:54 +00:00
Tomas Hruby
ebba20a65d No CLOCK task
- no kernel tasks are runnable

- clock initialization moved to the end of main()

- the rest of the body of clock_task() is moved to bsp_timer_int_handler() as
  for now we are going to handle this on the bootstrap cpu. A change later is
  possible.
2010-02-09 15:22:43 +00:00
Tomas Hruby
728f0f0c49 Removal of the system task
* Userspace change to use the new kernel calls

	- _taskcall(SYSTASK...) changed to _kernel_call(...)

	- int 32 reused for the kernel calls

	- _do_kernel_call() to make the trap to kernel

	- kernel_call() to make the actuall kernel call from C using
	  _do_kernel_call()

	- unlike ipc call the kernel call always succeeds as kernel is
	  always available, however, kernel may return an error

* Kernel side implementation of kernel calls

	- the SYSTEm task does not run, only the proc table entry is
	  preserved

	- every data_copy(SYSTEM is no data_copy(KERNEL

	- "locking" is an empty operation now as everything runs in
	  kernel

	- sys_task() is replaced by kernel_call() which copies the
	  message into kernel, dispatches the call to its handler and
	  finishes by either copying the results back to userspace (if
	  need be) or by suspending the process because of VM

	- suspended processes are later made runnable once the memory
	  issue is resolved, picked up by the scheduler and only at
	  this time the call is resumed (in fact restarted) which does
	  not need to copy the message from userspace as the message
	  is already saved in the process structure.

	- no ned for the vmrestart queue, the scheduler will restart
	  the system calls

	- no special case in do_vmctl(), all requests remove the
	  RTS_VMREQUEST flag
2010-02-09 15:20:09 +00:00
Tomas Hruby
8a03d497b8 System task initialization moved to main()
- the system task initialization code does not really need to be part
  of the system task process. An earlier initialization in kernel is
  cleaner as it does not only initialize the syscalls but also irq
  hooks etc.
2010-02-09 15:12:20 +00:00
Ben Gras
75a3d4ebde bump version number to 3.1.6, copyright year to 2010. 2010-01-27 16:19:50 +00:00
Kees van Reeuwijk
c8a11b5453 Fixed some type inconsistencies in the kernel. 2010-01-26 12:26:06 +00:00
Kees van Reeuwijk
b67f788eea Removed a number of useless #includes 2010-01-26 10:59:01 +00:00
Kees van Reeuwijk
a7cee5bec4 Removed unused symbols.
Minor cleanups.
2010-01-22 22:01:08 +00:00
Cristiano Giuffrida
c5b309ff07 Merge of Wu's GSOC 09 branch (src.20090525.r4372.wu)
Main changes:
- COW optimization for safecopy.
- safemap, a grant-based interface for sharing memory regions between processes.
- Integration with safemap and complete rework of DS, supporting new data types
  natively (labels, memory ranges, memory mapped ranges).
- For further information:
  http://wiki.minix3.org/en/SummerOfCode2009/MemoryGrants

Additional changes not included in the original Wu's branch:
- Fixed unhandled case in VM when using COW optimization for safecopy in case
  of a block that has already been shared as SMAP.
- Better interface and naming scheme for sys_saferevmap and ds_retrieve_map
  calls.
- Better input checking in syslib: check for page alignment when creating
  memory mapping grants.
- DS notifies subscribers when an entry is deleted.
- Documented the behavior of indirect grants in case of memory mapping.
- Test suite in /usr/src/test/safeperf|safecopy|safemap|ds/* reworked
  and extended.
- Minor fixes and general cleanup.
- TO-DO: Grant ids should be generated and managed the way endpoints are to make
sure grant slots are never misreused.
2010-01-14 15:24:16 +00:00
Tomas Hruby
98563a4afa Killing Minix by typing Q on serial console
- if debugging on serial console is enabled typing Q kills the system. It is
  handy if the system gets locked up and the timer interrupts still work. Good
  for remote debugging.

- NOT_REACHABLE reintroduced and fixed. It should be used for marking code which
  is not reachable because the previous code _should_ not return. Such places
  are not always obvious
2010-01-14 09:46:16 +00:00
Cristiano Giuffrida
d1fd04e72a Initialization protocol for system services.
SYSLIB CHANGES:
- SEF framework now supports a new SEF Init request type from RS. 3 different
callbacks are available (init_fresh, init_lu, init_restart) to specify
initialization code when a service starts fresh, starts after a live update,
or restarts.

SYSTEM SERVICE CHANGES:
- Initialization code for system services is now enclosed in a callback SEF will
automatically call at init time. The return code of the callback will
tell RS whether the initialization completed successfully.
- Each init callback can access information passed by RS to initialize. As of
now, each system service has access to the public entries of RS's system process
table to gather all the information required to initialize. This design
eliminates many existing or potential races at boot time and provides a uniform
initialization interface to system services. The same interface will be reused
for the upcoming publish/subscribe model to handle dynamic 
registration / deregistration of system services.

VM CHANGES:
- Uniform privilege management for all system services. Every service uses the
same call mask format. For boot services, VM copies the call mask from init
data. For dynamic services, VM still receives the call mask via rs_set_priv
call that will be soon replaced by the upcoming publish/subscribe model.

RS CHANGES:
- The system process table has been reorganized and split into private entries
and public entries. Only the latter ones are exposed to system services.
- VM call masks are now entirely configured in rs/table.c
- RS has now its own slot in the system process table. Only kernel tasks and
user processes not included in the boot image are now left out from the system
process table.
- RS implements the initialization protocol for system services.
- For services in the boot image, RS blocks till initialization is complete and
panics when failure is reported back. Services are initialized in their order of
appearance in the boot image priv table and RS blocks to implements synchronous
initialization for every system service having the flag SF_SYNCH_BOOT set.
- For services started dynamically, the initialization protocol is implemented
as though it were the first ping for the service. In this case, if the
system service fails to report back (or reports failure), RS brings the service
down rather than trying to restart it.
2010-01-08 01:20:42 +00:00
Cristiano Giuffrida
f4574783dc Rewrite of boot process
KERNEL CHANGES:
- The kernel only knows about privileges of kernel tasks and the root system
process (now RS).
- Kernel tasks and the root system process are the only processes that are made
schedulable by the kernel at startup. All the other processes in the boot image
don't get their privileges set at startup and are inhibited from running by the
RTS_NO_PRIV flag.
- Removed the assumption on the ordering of processes in the boot image table.
System processes can now appear in any order in the boot image table.
- Privilege ids can now be assigned both statically or dynamically. The kernel
assigns static privilege ids to kernel tasks and the root system process. Each
id is directly derived from the process number.
- User processes now all share the static privilege id of the root user
process (now INIT).
- sys_privctl split: we have more calls now to let RS set privileges for system
processes. SYS_PRIV_ALLOW / SYS_PRIV_DISALLOW are only used to flip the
RTS_NO_PRIV flag and allow / disallow a process from running. SYS_PRIV_SET_SYS /
SYS_PRIV_SET_USER are used to set privileges for a system / user process.
- boot image table flags split: PROC_FULLVM is the only flag that has been
moved out of the privilege flags and is still maintained in the boot image
table. All the other privilege flags are out of the kernel now.

RS CHANGES:
- RS is the only user-space process who gets to run right after in-kernel
startup.
- RS uses the boot image table from the kernel and three additional boot image
info table (priv table, sys table, dev table) to complete the initialization
of the system.
- RS checks that the entries in the priv table match the entries in the boot
image table to make sure that every process in the boot image gets schedulable.
- RS only uses static privilege ids to set privileges for system services in
the boot image.
- RS includes basic memory management support to allocate the boot image buffer
dynamically during initialization. The buffer shall contain the executable
image of all the system services we would like to restart after a crash.
- First step towards decoupling between resource provisioning and resource
requirements in RS: RS must know what resources it needs to restart a process
and what resources it has currently available. This is useful to tradeoff
reliability and resource consumption. When required resources are missing, the
process cannot be restarted. In that case, in the future, a system flag will
tell RS what to do. For example, if CORE_PROC is set, RS should trigger a
system-wide panic because the system can no longer function correctly without
a core system process.

PM CHANGES:
- The process tree built at initialization time is changed to have INIT as root
with pid 0, RS child of INIT and all the system services children of RS. This
is required to make RS in control of all the system services.
- PM no longer registers labels for system services in the boot image. This is
now part of RS's initialization process.
2009-12-11 00:08:19 +00:00
David van Moolenbroek
fce9fd4b4e Add 'getidle' CPU utilization measurement infrastructure 2009-12-02 11:52:26 +00:00